分子生物学检测技术概述..
- 格式:doc
- 大小:94.00 KB
- 文档页数:21
分子生物学检验技术分子生物学检验技术是一种用于研究和分析生物分子如DNA、RNA和蛋白质的技术手段,广泛应用于生命科学研究、医学诊断、药物研发等领域。
它的发展给生物学和医学研究带来了革命性的变化,为人类健康和疾病治疗提供了重要手段。
分子生物学检验技术有多种方法,其中最常见的包括:聚合酶链反应(PCR)、核酸杂交、DNA测序、蛋白质电泳等。
这些技术在生物学研究和医学诊断中发挥着重要作用。
聚合酶链反应(PCR)是一种通过体外扩增DNA片段的技术。
它利用DNA聚合酶酶和引物,通过多次循环反应,在较短的时间内扩增出大量目标DNA片段。
PCR技术广泛应用于基因检测、病原体检测、遗传疾病筛查等领域。
核酸杂交是一种通过互补配对原理来检测目标序列的技术。
它利用标记的探针与待测样品中的目标DNA或RNA序列互相结合,通过检测探针的标记物来确定目标序列的存在与否。
核酸杂交技术广泛应用于基因表达研究、病原体检测、基因定位等领域。
DNA测序是一种确定DNA序列的技术。
它通过化学或物理方法对DNA 分子进行断裂、扩增和测序,最终确定DNA的碱基序列。
DNA测序技术是基因组学研究的重要工具,也是研究基因突变、病因分析等领域的基础。
蛋白质电泳是一种通过电场作用使蛋白质在凝胶中分离的技术。
它根据蛋白质的大小、电荷和结构差异,将混合样品中的蛋白质分离成不同的条带,从而实现对蛋白质的分析和检测。
蛋白质电泳技术广泛应用于蛋白质组学研究、疾病标志物筛查等领域。
除了上述常见的技术,分子生物学检验技术还包括许多其他方法,如基因芯片技术、原位杂交技术、蛋白质质谱等。
这些技术在不同领域有着特定的应用,为科学研究和医学诊断提供了更多的手段和思路。
分子生物学检验技术的发展不仅推动了科学研究的进展,也在医学诊断和治疗中发挥着重要作用。
例如,在基因检测中,通过分子生物学检验技术可以检测人体携带的致病基因,帮助人们了解自己的遗传状况,预防或早期干预遗传性疾病。
概念临床分子生物学检验技术是一种通过检测核酸或蛋白质分子的特异性探针,结合PCR扩增等技术手段,对患者进行疾病诊断、评估和监测的生物学检测技术。
其主要原理是通过检测局部基因组的DNA序列变异或特定基因表达的差异,较快地、精准地检测出有关疾病的相关信息。
常见的临床分子生物学检验包括基因测序、实时荧光定量PCR、基因芯片、蛋白质组学等。
应用临床分子生物学检验技术在诊断和治疗疾病等方面有广泛的应用。
它包括以下方面:病毒感染检测病毒感染检测是临床分子生物学检验技术的最常见应用之一。
例如,病毒性肝炎、艾滋病等病毒可以通过PCR扩增等技术检测其DNA或RNA序列,快速、准确地诊断出相关病情。
遗传疾病检测临床分子生物学检验技术可以用来检测遗传疾病,例如囊性纤维化、血友病等。
通过测试特定基因的变异,可以帮助提供准确的诊断和治疗方案。
肿瘤检测临床分子生物学检验技术可以用于肿瘤的检测和治疗。
例如,可以通过检测特定基因的变异来确定病程、判断预后、评估生存率。
此外,分子靶向治疗可以根据肿瘤基因异质性搭配治疗,旨在找到更好的治疗方案。
发展趋势随着分子生物学技术的不断发展,临床分子生物学检验技术也有了新的发展方向,主要包括以下几个方面:个性化医疗个性化医疗是临床分子生物学检验技术的重要发展所趋,它利用分子层面的信息,识别和分析患者的基本和环境因素,以针对性和定制性地制定最佳治疗方案,提高临床疗效。
基于大数据的检测随着数据采集和处理技术的不断提高,数据已成为生物医学研究中最重要的资源之一。
临床分子生物学检验技术在未来还将集成可视化数据分析、机器学习等技术,打造更开放、高效、便捷的医学数据系统。
智能化诊断随着人工智能技术的崛起,临床分子生物学检验技术将融合人工智能技术,利用计算机进行大数据分析和诊断,打造智能化临床检测平台,大大改进诊断效率和准确性,从而进一步提升疾病的治疗效果和预测准确性。
总的来说,临床分子生物学检验技术在治疗、预防及生物医学研究方面持有巨大潜力。
临床分子生物学检验技术名词解释临床分子生物学检验技术是一种应用分子生物学原理和技术的方法,用于检测和诊断临床样本中的遗传变异、基因表达和蛋白质水平等。
它可以为临床医生提供有关疾病发生、发展和治疗反应的重要信息。
以下是一些常见的临床分子生物学检验技术及其解释:1.聚合酶链反应(PCR):PCR是一种用于扩增DNA片段的技术。
它可以从极小的DNA样本中扩增特定的DNA片段,以检测和诊断遗传性疾病、感染和肿瘤等。
2.基因测序:基因测序是一种用于确定DNA或RNA序列的技术。
它可以揭示个体的遗传信息,检测基因突变和多态性,帮助诊断遗传性疾病、肿瘤和药物反应等。
3.核酸杂交:核酸杂交是一种用于检测目标DNA或RNA序列的技术。
它利用DNA或RNA探针与目标序列互补结合的原理,可以检测病毒感染、基因突变和融合基因等。
4.蛋白质电泳:蛋白质电泳是一种用于分离和检测蛋白质的技术。
它通过在凝胶中进行电泳,可以分离不同大小、电荷和亲和性的蛋白质,用于疾病标记和生物标志物的检测。
5.免疫组化:免疫组化是一种用于检测蛋白质在细胞或组织中的表达和定位的技术。
它利用特异性抗体与目标蛋白质结合,通过染色或荧光信号来检测和定量蛋白质的表达水平。
6.质谱分析:质谱分析是一种用于分析和鉴定化合物的技术。
它可以通过将样本中的分子离子化,利用质谱仪测量其质量和电荷比,从而确定样品的组成和结构,用于肿瘤标记物和药物代谢产物的检测。
这些临床分子生物学检验技术在临床实践中起着重要的作用,可以帮助医生进行准确的诊断和治疗决策,为患者提供更好的医疗服务。
随着技术的不断发展和突破,我们可以预期未来将出现更多更精确的分子生物学检验技术,为临床医学带来更大的进步和革新。
1、分子生物学检验技术:就是以核酸或蛋白质为分析材料,通过分析基因得结构、表达得变化与由此而导致得基因功能得改变,为疾病得研究与诊断提供更准确、更科学得信息与依据得一门学科。
2、请说明分子生物学检验技术在临床试验诊断中得应用。
(1)感染性微生物得检测。
如:用PCR技术进行甲型肝炎病毒得检测、乙型肝炎病毒得检测与解脲脲原体得检测等。
(2)基因突变得检测。
如:用PCR一限制性片段长度多态性(RFLP)技术检测地中海贫血基因突变。
(3)法医学检测。
如:用PCR微卫星检测技术进行亲子关系得鉴定与个体识别。
(4)基因异常表达得检测。
如:用cDNA表达得芯片技术进行基因异常表达得检测。
(5)基因定位。
如:用原位杂交技术进行组织与细胞中基因表达得定位。
3、基因组:就是一个细胞或一种生物体得整套遗传物质。
4、基因:就是基因组中一个功能单位,就是贮存有功能得蛋白质多肽链信息或RNA序列信息及表达这些信息所必需得全部核苷酸序列。
5、原核生物:就是细菌、支原体、衣原体、立克次体、螺旋体、放线菌与蓝绿藻等原始生物得总称,就是最简单得细胞生物体。
6、操纵子结构:就是原核生物基因组得功能单位。
7、质粒:就是指细菌细胞染色体外,能独立复制并稳定遗传得共价闭合环状分子。
8、转座因子:又称为转座元件,就是一类在细菌染色体、质粒与噬菌体之间自行移动并具有转位特性得独立得DNA序列。
9、原核生物基因组得结构特征:(1)原核生物基因组通常仅由一个DNA分子构成,基因组中只有一个复制起点,具有类核结构。
(2)具有操纵子结构,模板mRNA为多顺反子mRNA。
编码区远远大于真核生物基因组,但又远远小于病毒基因组。
在基因组中存在多功能得识别区域,如复制起始区、转录启动区与终止区等,这些区域常常含有反向重复序列。
(3)结构基因通常为单拷贝基因,编码顺序一般不重叠。
(4)具有编码同工酶得基因。
(5)含有可移动得DNA序列。
10、病毒基因组得结构特点:(1)与细菌与真核生物基因组相比,病毒基因组结构简单,基因数少,所含信息量也少。
分子生物学常用实验技术概述分子生物学是研究生物大分子(如DNA、RNA和蛋白质等)组成、结构和功能的科学领域。
在分子生物学的研究中,常用各种实验技术来解析生物大分子的结构和功能,为科学研究和应用提供依据。
下面将概述一些常用的分子生物学实验技术。
1.PCR(聚合酶链式反应):PCR是一种能在体外快速扩增DNA序列的技术,可以从一个DNA模板扩增出百万倍的DNA片段。
PCR包括三个步骤:变性、退火和延伸。
通过PCR,可以在短时间内扩增大量特定的DNA 片段,并常应用于基因分析、疾病诊断以及基因工程等领域。
2.转基因技术:转基因技术是将外源基因导入到目标生物体细胞中,使其表达外源蛋白或产生新的表型。
转基因技术通常包括四个步骤:基因分离、基因克隆、基因传递和基因表达。
转基因技术在农业、医学和生物科学研究中具有广泛的应用。
3.蛋白质电泳:蛋白质电泳是根据蛋白质的电荷和大小差异将其分离的一种方法。
常用的蛋白质电泳方法包括SDS-和二维电泳。
蛋白质电泳可用于纯化蛋白质、分析蛋白质组成以及检测蛋白质的修饰。
4.蛋白质质谱:蛋白质质谱是一种分析蛋白质的结构和功能的方法。
常用的蛋白质质谱技术包括MALDI-TOF质谱和液相色谱-串联质谱(LC-MS/MS)。
蛋白质质谱可用于鉴定未知蛋白质、确定蛋白质的氨基酸序列以及检测蛋白质的修饰等。
5.分子克隆:分子克隆是将外源DNA或RNA序列插入到载体DNA中,并通过细胞转染等方法将其导入到目标细胞中进行表达的过程。
分子克隆常用的方法包括限制性内切酶切割、连接反应、质粒构建和转染等步骤。
分子克隆技术可用于分析、表达和研究目标基因。
6. Northern blotting:Northern blotting是一种检测RNA的方法,常用于检测特定的mRNA分子。
在Northern blotting中,通过RNA的电泳分离、转移、固定以及杂交等步骤,可以检测目标RNA的存在和表达水平。
分子生物学的实验技术【分子生物学的实验技术】分子生物学作为现代生物科学领域的重要组成部分,以其独特的实验技术为研究人员提供了许多强有力的工具。
本文将对分子生物学中常见的实验技术进行介绍,包括DNA提取、PCR扩增、凝胶电泳、克隆和测序等。
一、DNA提取DNA提取是分子生物学研究的第一步,也是最基本的实验技术之一。
DNA提取的目的是从生物样本中分离出DNA,并纯化得到高质量的DNA溶液,以便后续实验使用。
常用的DNA提取方法有酚/氯仿法、离心柱法和磁珠法等。
酚/氯仿法是一种传统的DNA提取方法,它利用酚和氯仿的不同密度分离DNA。
首先,将生物样本与裂解缓冲液混合并加入酚/氯仿混合液,通过离心分离出DNA在上层的细胞碎片,然后进行酚/氯仿再萃取和乙醇沉淀,最后得到纯化的DNA。
离心柱法是一种高效的DNA提取方法,它利用离心柱上的纤维素膜或硅胶膜对DNA进行捕获和纯化。
在这种方法中,生物样本与裂解缓冲液混合后,加入离心柱进行离心,DNA能够通过纤维素膜或硅胶膜的作用被固定,而其他杂质则被洗脱掉,最后用纯化缓冲液洗脱得到高质量的DNA。
磁珠法是一种快速、高通量的DNA提取方法,它利用表面修饰的磁珠对DNA进行特异性捕获。
在这种方法中,生物样本与裂解缓冲液混合后,加入磁珠混悬液,并利用磁力使磁珠与DNA结合,然后用磁力将磁珠与DNA一起沉淀到管壁上,洗脱杂质后得到纯化的DNA。
二、PCR扩增PCR(聚合酶链式反应)是一种用于体外扩增DNA的技术,通过反复的循环性温度变化,可以扩增特定的DNA片段。
PCR由于其高度敏感和高效性,被广泛应用于基因分型、基因定量、基因突变分析等领域。
PCR反应的基本组成包括DNA模板、引物、聚合酶、四种脱氧核苷酸和缓冲液。
首先,将DNA模板与引物、脱氧核苷酸和缓冲液混合,并添加聚合酶,然后进行多次温度循环,包括变性、退火和延伸等步骤,从而使DNA模板经过反复扩增,最后得到目标DNA片段的数量大幅增加。
生物药物检测技术生物药物检测技术随着生物技术的飞速发展,生物药物的研发和应用越来越广泛。
生物药物是指由生物发酵、基因工程、细胞培养等技术制备的具有特定疗效的药物,广泛应用于医学领域。
与化学药物不同,生物药物具有复杂的分子结构和多样化的药效机制,其临床研究和药物质量控制对于生物药物检测技术的要求也越来越高。
本文将介绍生物药物检测技术的种类和原理,以及在生物药物研究和质量控制中的应用。
一、生物药物检测技术种类生物药物检测技术种类繁多,主要包括以下几类:1. 分子生物学检测技术分子生物学检测技术主要包括聚合酶链反应(PCR)、反转录聚合酶链反应(RT-PCR)、DNA微阵列技术等。
这些技术可以迅速、准确、灵敏地检测药物的核酸序列,具有非常重要的应用价值。
例如,在研究生物药物的基因遗传学机制和药效评价过程中,PCR和RT-PCR可以用来分析药物的基因表达水平和基因突变信息。
2. 免疫学检测技术免疫学检测技术主要包括ELISA、免疫印迹法(Western blot)、免疫荧光法等。
这些技术可以检测药物中的蛋白质,如抗体、细胞因子等,对于生物药物质量控制和疗效评价非常重要。
例如,在研发抗生素、细胞因子等生物药物时, ELISA 是一种很好的筛选技术。
3. 生物分析技术生物分析技术主要包括流式细胞术、质谱分析等。
这些技术主要用于生物药物的结构分析和特征鉴定。
例如,流式细胞术可以用来对生物药物中的花粉卤素、细胞因子等进行快速筛选。
二、常见生物药物检测技术原理1. PCR技术原理PCR技术是一种在体外扩增DNA片段的方法,它通过不断重复DNA的特异性序列,将少量的DNA扩增到足够多的量。
PCR技术可用于生物药物中的DNA检测,如疫苗中的病毒加强剂、DNA疫苗的制备等。
PCR反应需要三种核苷酸,即dATP,dCTP,dGTP和dUTP。
PCR反应的三个步骤是:1)变性:将双链DNA在高温(94℃)下的变性为单链。
2)连接:退火温度下50-70℃左右的温度下引入特异性引物结合到DNA模板上,并用DNA聚合酶将被扩增DNA的两端连接。
分子生物学检测技术分子生物学诊断技术是现代分子生物学与分子遗传学取得巨大进步的结晶,是在人们对基因的结构以及基因的表达和调控等生命本质问题的认识日益加深的基础上产生的。
近年来,分子生物学诊断技术的方法学研究取得了很大进展,先后建立了限制性内切酶酶谱分析、核酸分子杂交、限制性片段长度多态性连锁分析等方法。
1985年由美国Cetus公司人类遗传学研究室Mullis等创立并随后迅速发展起来的DNA 体外扩增技术(Polymerase Chain Reaction, PCR),以及90年代发展起来的DNA芯片技术(DNA Chip),又将分子生物学诊断技术提高到一个崭新的阶段。
一、核酸分子杂交(一)概述:具有一定互补序列的核苷酸单链在液相或固相中按碱基互补配对原则缔合成异质双链的过程叫核酸分子杂交。
应用该技术可对特定DNA或RNA序列进行定性或定量检测。
到目前为止,分子杂交技术在基因诊断中仍占重要地位,它按反应支持物可分为固相杂交和液相杂交两种,前者应用较广,有Southern印迹杂交、点杂交、夹心杂交(三明治杂交)、原位杂交和寡核苷酸探针技术等。
核酸分子杂交主要涉及两个方面:待测的DNA 或RNA,以及用于检测的DNA或RNA 探针。
探针标记的好坏决定检测的敏感性。
1、Southern印迹杂交是最经典和应用最广泛的杂交方法。
根据基因探针与待测DNA限制酶酶解片段杂交的带谱,可以直接确定宿主基因的缺陷所在或病原体的存在状态。
2、Northern 印迹杂交基本原理与Southern印迹杂交相同,不同的是它检测mRNA而不是DNA,因此可分析和了解基因的表达状态。
由于mRNA比DNA更易受到各种因素的降解,所以整个操作过程须特别小心。
3、斑点杂交将待测DNA或细胞裂解物变性后直接点在硝酸纤维素膜上(无需限制酶酶解),与探针进行杂交反应。
该技术对于基因拷贝数多的样品很适合,具有简捷快速的特点,一次可做大批量样品的筛查,适于流行病学调查和感染性疾病外源性致病基因的检测。
目前斑点杂交技术在各实验室中得到较普及的应用。
该技术可用来分析待测核酸片段中是否存在与探针同源的序列,同时还可半定量反映样品中的模板含量。
其原理包括将提取的核酸片段变性后转移并固定于支持膜上,通过预杂交以除去非特异位点,然后以标记探针进行杂交。
标记物有多种,以同位素标记的探针杂交后,可通过放射自显影分析结果,而以非同位素(如生物素、地高辛等)标记的探针杂交后,需加入对应的酶标记物(如亲和素、地高辛抗体),再经过显色反应后,利用光密度扫描仪进行量化检测。
本方法特异性可靠,但灵敏度偏低,而且操作复杂,因此大大限制了该技术的普及应用。
4、分支链DNA(bDNA)技术近几年,bDNA作为核酸直接量化检测技术已广泛应用于HBV、HCV和HIV等的研究。
该方法主要是通过将磷酸化的捕获探针以共价键的形式结合在固相载体上,然后依次加入待测核酸和悬挂有多个支链的信号探针进行杂交,每个支链DNA都结合有放大信号的分子(如碱性磷酸酶),最后通过利用化学发光检测核酸的含量。
bDNA技术是目前核酸直接量化检测技术中灵敏度最高的方法之一。
但该方法成本较高,不利于其普及应用。
5、原位杂交直接在组织切片或细胞涂片上进行杂交反应。
该技术可检出细胞中单拷贝mRNA,估算病毒在宿主细胞中复制和转录的程度,对于病毒感染(特别是具有长潜伏期的病毒感染)和其它退行性疾病的诊断很有用。
6、液相杂交液相杂交酶免疫法量化检测核酸扩增产物这种方法同固相杂交量化检测核酸扩增产物原理大致相同,只是将反应体系换为液相环境。
应用液相杂交量化检测维生素D结合蛋白基因,在PCR扩增时通过掺入法使产物上挂有地高辛分子,再通过液相杂交与标记有生物素的探针结合后,被包被有链亲和素的酶标微孔板捕获,利用辣根酶标记的地高辛抗体使酶反应底物(OPD或TMB)显色。
据报道,核酸扩增产物与特异性探针在液相中的杂交效率要高于在酶标微孔板上的结合,液相杂交的灵敏度通常是固相杂交的10~20倍,可以检测到pg水平。
二、聚合酶链反应(PCR)PCR是近年来发展起来的一种快速的DNA片段扩增技术,它通过分别与双链目的DNA序列两个3’端互补的寡核苷酸引物,由Taq DNA聚合酶从5’到3’进行一系列DNA聚合反应,扩增出所需要的目的DNA。
由于每个循环中合成的引物延伸产物可作为下一循环中的模板,因而每次循环中靶DNA的拷贝数几乎呈几何级数增长,因此,20次PCR循环将产生约一百万倍(220)的扩增产物。
这种1985年由Kary Mullis 建立的方法最早在美国Cetus公司人类遗传学研究室应用于人 -珠蛋白DNA的扩增及镰刀形红细胞贫血病的产前诊断。
随后迅速发展起来,将基因诊断提高到一个崭新的阶段。
PCR反应的设计和优化:PCR技术自建立以来,几年内就成为一项广为应用的研究技术。
PCR之所以得到普及主要是因为它灵敏、特异、高效、简便。
按照最基本的定义,PCR只不过是在适宜的缓冲液中将样本DNA与寡核苷酸引物、脱氧核苷三磷酸及热稳定的Taq DNA聚合酶结合起来,然后反复加热和冷却若干小时,直到获得所需的扩增量。
但事实上,PCR是一个比较复杂、迄今尚未完全明了的生物化学反应。
在反应中各种反应成分之间的动态的相互作用决定着产物的质量。
尽管在多数情况下,反应的最终结果比较好,但如果要获得更好的结果,就有很多参数需要进一步探讨。
由于PCR的应用很广泛,因此,不可能有这样一套条件,它在任何情况下都能保证反应地成功进行。
但是,一般有一种标准反应,可以适用于大多数的DNA扩增反应,即使不能适应,它至少也确定了一个共同的起点,在此基础上可以作多种变化。
标准PCR的体积通常为50μl或100μl,除样品DNA外,还包括50mMKCl,10mM Tris-HCl (Ph 8.4,室温),1.5mM MgCl2,100μg/ml明胶,0.25μM的各种引物,200μM的各种脱氧核苷酸(dATP,dCTP,dGTP和dTTP),以及2.5 单位的TaqDNA聚合酶。
当然,样品DNA的类型是可变的,但通常都要具有102~105拷贝的模板(例如,0.1μg人基因组DNA),通常还要加几滴矿物油,以密封反应,并防止反应体积的减小。
利用这些条件可扩增DNA的靶序列的范围很大。
当上述条件不能产生理想的结果时,即必须进行PCR的优化。
(一) PCR缓冲液的变化通常会影响扩增结果,特别是Mg2+离子,其浓度对扩增的专一性和扩增量有重大影响。
通常最适浓度为1.5mM左右(每种dNTP 的浓度为200μM时),但有时需采用不同的Mg2+浓度。
Mg2+浓度过高,通常会导致非特异性扩增产物的累积,而浓度过低时通常会降低扩增量。
最近证明少用或不用KCl和明胶对反应较为有利。
四种脱氧核苷酸的浓度通常每种都是50~200μM。
过高的浓度会导致聚合酶将其错误掺入,因此应当避免。
浓度为50μM 和200μM时,足以合成6.5μg和25μg的DNA。
由于脱氧核苷酸定量地与Mg2+结合,因此反应中的dNTP的含量将决定游离Mg2+的含量。
在标准反应中,4种脱氧核苷酸的最终浓度为0.8mM,因此原来的1.5mM MgCl2中剩下0.7 mM未与dNTP结合。
所以,如果dNTP的浓度有很大的改变,MgCl2的浓度也必须随着改变。
Taq DNA聚合酶通常浓度为2.5单位/100μL反应液。
对于含有序列非常复杂的DNA 样品(如染色体组DNA)的扩增反应,Taq DNA聚合酶的最适浓度通常为1~4单位/100μL。
浓度高于此水平时,将导致非特异性PCR产物增加。
(二)循环参数也是影响PCR反应的一个重要因素。
标准反应中,将样品快速加热至90~95℃,使双链DNA 变性,再快速冷却至40~60℃,使引物退火结合到互补序列上,然后加热至70~75℃用TaqDNA聚合酶延伸退火引物。
在70~75℃下保温时间因被扩增的靶DNA长度而异。
(如果靶序列含约150个碱基或更短,就可以取消整个延伸过程。
聚合酶在较低温度时仍保持很强的活性,延伸过程有退火转变为变性时即可完成)。
过渡时间,即从一种温度转变到另一种温度所需要的时间,取决于所用设备的类型。
除了有特殊情况外,这种变温速率并不重要,因而应尽量加快过渡转换,从而缩短实验时间。
但是为了确保样品达到所需的温度,应该在扩增过程中测定样品的温度,以确定特定反应中的实际过渡时间。
用一根微探针温差电偶和一台数字式万用表即可达到这个目的。
变性时温度不够是导致PCR反应失败的一个常见原因,但过度变性也是不必要的,应尽可能保持聚合酶活性在整个反应过程中都达到最高水平。
退火时的温度取决于引物的长度和GC含量。
对GC含量约50%,长20个碱基的典型的寡核苷酸引物来说,通常用55℃作为起点温度,尽管较高的温度对提高引物的特异性是必要的,由于在反应的混合物中存在着极其过量的引物,杂交可以在瞬间内完成,因此,不需要长时间退火。
有时,引物只有12~15个碱基,退火温度需达40~45℃。
然而,这样短的引物在72℃的延伸温度下不可能保持退火状态。
利用聚合酶在较低温度时的部分活性将引物延伸几个碱基,使之稳定,就可以解决这个问题。
这可以通过在50~60℃时进行保温或将温度从40℃逐渐升高到72℃来实现。
简并引物与靶序列常常会发生多处错误配对,这可以采用类似方法解决。
在同一温度下使引物退火和延伸是可能的。
在55℃以上的温度同时退火和延伸,除了可将反应程序简化为两温度循环外,还可进一步提高反应的专一性。
(三)引物的优劣直接关系到PCR的特异性与成功与否。
现在对高效而专一性强的引物的选择仍然是凭经验。
没有一套规则能确保高效引物对的合成。
但是遵循某些原则,则有助于引物的设计。
(1)长度寡核苷酸引物长度为15~30bp,一般为20~27bp。
引物的有效长度:Ln=2(G+C)+(A+T),Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。
(2)G+C含量G+C含量一般为40%~60%。
其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下形成50%寡核苷酸双链的温度,有效启动温度一般高于Tm值5~10℃。
若按公式Tm =4 (G+C)+2(A+T)估计引物Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。
(3)碱基的随机分布引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。
尤其3’端不应超过3个连续的G 或C,因这样会使引物在G+C 富集序列区引发错误。
(4)引物自身引物自身之间存在互补序列,否则引物自身会折叠成发夹状结构或引物本身复性。
这种二级结构会因空间位阻而影响引物与模板的复性结合。