遥感图像纹理分析
- 格式:ppt
- 大小:6.10 MB
- 文档页数:85
遥感影像纹理分析方法综述与展望遥感影像纹理分析是指利用遥感影像数据进行纹理特征提取和分析的方法,通过对影像中的纹理特征进行提取和分析,可以揭示地物的空间信息和场景的地貌特征,对土地利用分类、地质勘察、环境监测等领域具有重要的应用价值。
本文将对遥感影像纹理分析的方法进行综述和展望。
一、遥感影像纹理特征的提取方法1.统计纹理分析法:通过对影像中像元灰度值的一维或二维统计分布进行分析,提取纹理特征。
常用的统计纹理分析方法有灰度共生矩阵(GLCM)、灰度平均值方差、灰度直方图等。
这些方法简单易行,适用于各种遥感影像类型。
2.频域纹理分析法:将影像从空域转换到频域,通过分析频谱分布来提取纹理特征。
常用的频域纹理分析方法有傅里叶变换、小波变换等。
这些方法能够较好地反映纹理的频域特征,适用于特定类型的遥感影像。
3.结构纹理分析法:通过分析影像中物体的结构特征,提取纹理信息。
常用的结构纹理分析方法有形态学运算、区域分割、纹理滤波等。
这些方法能够较好地捕捉影像中物体的结构信息,适用于土地利用分类等方面。
二、遥感影像纹理分析的应用1.土地利用分类:通过分析不同土地利用类型的纹理特征,可以对土地利用进行自动分类。
纹理特征可以提供关于土地利用类型、空间分布和结构特征等信息,对土地资源管理和规划具有重要的意义。
2.地质勘察:通过分析地质图像中的纹理特征,可以获取地质结构和地质演化信息。
纹理特征的提取可以帮助地质学家进行地质构造分析、岩石分类和矿产勘查等工作。
3.环境监测:通过分析遥感影像中的纹理特征,可以对环境质量进行评估和监测。
例如,通过分析水域表面的纹理特征,可以判断水质的清澈程度和水藻的分布情况。
三、遥感影像纹理分析的展望随着遥感技术的不断发展和遥感影像数据的不断增多,遥感影像纹理分析面临着以下几个方面的挑战和发展方向:1.大数据处理:随着遥感影像数据量的不断增加,如何高效地处理大规模遥感影像数据,提取出有效的纹理特征,并进行分析和应用,是一个亟待解决的问题。
测绘技术中的遥感图像分析方法解析遥感图像分析是测绘技术中的重要分支,它涉及到对遥感图像的处理、解析和应用。
本文将对遥感图像分析方法进行解析,探讨其在测绘技术中的应用。
一、遥感图像分析方法的分类遥感图像分析方法可以分为两大类:基于特征的图像分类和基于像元的图像分类。
基于特征的图像分类是通过提取图像中的特征,如纹理、色彩和形状等,将图像分成不同的类别。
而基于像元的图像分类则是将图像中的每个像元都视为一个分类单元,通过测量像元的反射率或辐射亮度等特征,将其归类到不同的类别中。
二、基于特征的图像分类方法基于特征的图像分类方法在遥感图像分析中应用广泛。
其中,纹理分析是一种常用的方法。
纹理是图像中像素间的规则或随机分布,通过对图像进行纹理分析可以获取到图像的纹理特征,从而实现图像分类。
另外,色彩分析也是一种常见的方法。
色彩是图像中最直观的特征之一,通过对图像中像素的颜色进行提取和分析,可以实现对图像的分类。
三、基于像元的图像分类方法基于像元的图像分类方法在遥感图像分析中也有重要的应用。
其中,最常见的方法是像元反射率的测量。
通过对图像中不同像元的反射率进行测量,可以将图像分为不同的地物类别,如水体、植被和建筑物等。
此外,辐射亮度的测量也是一种常用的方法。
辐射亮度是图像中像元的辐射能力,通过测量图像中不同像元的辐射亮度,可以实现对图像的分类。
四、遥感图像分析方法的应用遥感图像分析方法在测绘技术中有着广泛的应用。
其中,地表覆盖分类是最常见的应用之一。
通过对遥感图像进行分析,可以将地表分为不同的类别,如森林、草地和水域等,从而实现对地表的监测和管理。
此外,城市扩张分析也是一种重要的应用。
通过对遥感图像进行分析,可以获取到城市的扩张速度和方向等信息,从而为城市规划和管理提供科学依据。
总结起来,遥感图像分析方法在测绘技术中有着重要的地位。
通过对遥感图像进行特征提取和分析,可以实现对地表的分类和监测,为地理信息系统的建设和应用提供数据支持。
遥感图像处理的基本步骤和技巧遥感图像处理是利用遥感技术获取的遥感图像数据进行分析、处理和解释的过程。
遥感图像处理技术在环境监测、资源管理、农业和城市规划等领域具有广泛的应用。
本文将介绍遥感图像处理的基本步骤和技巧。
一、图像预处理图像预处理是遥感图像处理的第一步,目的是改善图像质量,消除噪声和其他不必要的干扰。
常见的图像预处理技术包括辐射校正、大气校正和几何纠正。
辐射校正是将原始图像中的数字数值转换为辐射亮度值,以消除由于不同仪器和观测条件引起的辐射差异。
大气校正则是通过对图像进行大气光校正,消除大气吸收和散射效应,获得更准确的地物辐射亮度信息。
几何纠正是校正图像中的几何畸变,使其与实际地面特征对应。
二、图像增强图像增强是通过增加图像的对比度和清晰度,突出感兴趣的地物信息。
常见的图像增强技术包括直方图均衡化、滤波和波段变换。
直方图均衡化是通过调整图像像素的亮度分布,增强图像对比度。
滤波是通过应用各种滤波器来去除图像中的噪声和模糊。
波段变换是将图像从一种波段转换到另一种波段,以提取不同地物特征。
三、特征提取特征提取是从图像中提取与感兴趣地物相关的信息。
常见的特征提取技术包括阈值分割、边缘检测和纹理分析。
阈值分割是将图像分为不同的区域,使每个区域具有相似的亮度或颜色特征。
边缘检测是寻找图像中的边界线,以辅助划分地物边界。
纹理分析是通过提取图像的纹理特征来描述地物的空间结构。
四、分类与识别分类与识别是将特定地物进行分类和识别的过程。
常见的分类与识别技术包括监督分类、无监督分类和目标检测。
监督分类是通过使用已知类别的训练样本,建立分类器对图像进行分类。
无监督分类是根据图像像素的统计特征将图像自动分为不同的类别。
目标检测是在图像中检测和识别特定的目标,例如建筑物、道路等。
五、图像解译与分析图像解译与分析是对处理后的遥感图像进行解释和分析的过程。
通过对图像分析可以获取地表特征的数量和质量信息,用于环境变化监测、资源管理和规划决策。
遥感影像处理中的纹理分析方法探讨遥感影像处理是一项重要的技术,可以提供大量的地理信息,用于环境监测、资源管理和城市规划等领域。
在遥感影像处理中,纹理分析方法是一种常用的技术,可以提取图像中的纹理信息,帮助我们理解和描述地物的特征。
本文将探讨一些常见的纹理分析方法,并介绍它们在遥感影像处理中的应用。
首先,我们来介绍一种常见的纹理分析方法——灰度共生矩阵(Gray LevelCo-occurrence Matrix,GLCM)。
灰度共生矩阵可以用来描述图像中不同像素对之间的灰度变化关系,从而提取纹理信息。
它基于一个假设,即相同纹理的像素对在图像中的分布应具有一定的统计规律。
通过计算灰度共生矩阵中的各种统计特征,如对比度、相关度、能量和熵等,可以得到图像的纹理特征。
灰度共生矩阵在遥感影像处理中有广泛的应用。
例如,在土地利用分类中,可以利用灰度共生矩阵提取不同土地类型的纹理特征,从而进行分类分析。
此外,灰度共生矩阵还可以用来检测图像中的纹理边界,帮助我们识别建筑物、道路等地物。
另一种常见的纹理分析方法是小波变换。
小波变换是一种时频分析方法,可以将图像分解为不同频率的子带图像,从而提取图像的纹理信息。
小波变换的特点是可以捕捉到图像的局部特征,对于纹理边界和纹理的细节描述具有较好的效果。
小波变换在遥感影像处理中也有广泛的应用。
例如,在地表覆盖变化检测中,可以利用小波变换提取图像的纹理特征,从而识别出不同时间段的遥感影像中地物的变化情况。
此外,小波变换还可以用于地物提取、遥感图像的增强等方面。
除了上述方法外,还有一些其他的纹理分析方法也值得关注。
例如,局部二值模式(Local Binary Pattern,LBP)是一种基于像素之间灰度差异的纹理分析方法。
LBP可以用来描述图像中不同像素点的灰度分布模式,从而提取纹理特征。
在遥感影像处理中,LBP可以应用于图像分类、目标检测等方面。
总结起来,纹理分析方法在遥感影像处理中起着重要的作用。
一 基于灰度共生矩阵的纹理特征提取1概念与原理基于统计的纹理分析方法是纹理分析最基本的一类方法,该方法考虑纹理中灰度级的空间分布,计算影像中每点的局部特征,从特征的分布中推导出一些统计量来刻画纹理,典型的基于统计的纹理分析方法有灰度共生矩阵法(Gray Level Co-occurrence Matrices ,GLCM),灰度-梯度共生矩阵,长游程法等。
灰度共生矩阵法,又称灰度联合概率矩阵法,它建立在估计影像的二阶组合条件概率函数的基础上,通过计算影像中有一定距离和一定方向的两像素点之间的灰度相关性,反映影像在方向、相邻间隔、变化幅度及快慢上的综合信息。
统计图像中相距位置为(Δx,Δy)的两个灰度像元同时出现的联合频数概率的分布称为共生矩阵。
设图像灰度为2m 级,则灰度共生矩阵由2m ×2m 矩阵M 表示。
矩阵中第(i ,j)个元素记为p (i ,j),表示全图中这一对像元,它们相距(Δx,Δy),其中一个像元为i 灰度,另一个像元为j 灰度的情况出现的频数。
这样,两个象素灰度级同时发生的概率,就将(x ,y )的空间坐标转换为对“灰度对”(i ,j )的描述,它们形成了灰度共生矩阵。
通常,灰度共生矩阵需要做如下的归一化:()()()()⎪⎩⎪⎨⎧=θ=θ=θ=θ==135451-N 9001-N N R R j i Pd j i Pd 2或,或,,,, R 为归一化常数。
由于灰度共生矩阵易于理解和计算,因此,由共生矩阵获取特征已经被用在许多的纹理分析方法中。
但是,灰度共生矩阵也有它的缺点。
由定义可以看出,灰度共生矩阵的大小只与最大灰度级有关系,而与图像大小无关,即灰度共生矩阵的大小为G ×G 。
对于灰度级G =256的图像而言,它的灰度共生矩阵为256×256,如果图像比较小,则它可能比较稀疏,而所占的空间还是256×256。
因此,通常情况下,需要对原图像的灰度级进行缩减,以减少计算的时间复杂度。
遥感图像解译的常见方法和技巧遥感图像解译是指通过对遥感图像进行分析和解读,获取地物和环境信息的过程。
在当今社会中,遥感技术在农业、城市规划、环境监测以及资源调查等领域中发挥着重要作用。
然而,由于图像复杂性和解译难度的增加,如何有效地进行遥感图像解译成为了一个亟待解决的问题。
本文将介绍遥感图像解译的常见方法和技巧,希望能给读者在实际应用中带来一些启发。
一、多光谱图像解译多光谱图像是指通过多波段的遥感数据获取的图像,其中每个波段对应一种特定的光谱信息。
多光谱图像解译是最常用的遥感图像解译方法之一。
它基于光谱特征来识别和分析地物,通过比较不同波段的反射率和亮度值,可以获得不同地物的光谱特征,并进行分类判别。
在多光谱图像解译中,常用的技巧包括:光谱特征提取、光谱段的组合以及光谱变换。
光谱特征提取是指从多光谱图像中提取能够反映地物特征的光谱信息,例如反射率、亮度值等。
通过提取不同波段的光谱特征,可以实现对地物的分类和判别。
光谱段的组合是指将不同波段的光谱信息进行组合,以突出地物的特征。
例如,在植被遥感图像中,将近红外波段和红光波段进行组合,可以更好地区分植被和非植被地区。
光谱变换是指通过对光谱数据进行数学变换,以改变光谱分布和强度,从而获得更明显的地物信息。
常用的光谱变换方法包括主成分分析和单波段反射率之间的比率。
二、纹理特征分析除了光谱特征,纹理特征也是进行遥感图像解译的重要指标之一。
纹理特征通过对图像像素间的空间关系分析,反映了地物的空间分布和结构特征。
在遥感图像解译中,纹理特征分析可以用于识别和判别不同地物的纹理特征,提高分类的准确性。
在纹理特征分析中,常用的方法包括:灰度共生矩阵(GLCM)、纹理特征值和基于波谱变换的纹理分析。
灰度共生矩阵是一种常用的纹理特征计算方法,它通过计算像素间的灰度级对出现的频率来描述图像的纹理特征。
纹理特征值是一种通过计算图像像素间的像素差异和空间关系来描述地物纹理特征的方法。
多传感器遥感图像纹理特征选取的研究摘要:由于多传感器遥感图像具有多种多样的特征,分析图像具体信息需要对图像的特征进行准确提取,其中纹理特征能够表现出图像本质,该文采用灰度共生矩阵统计分析方法进行特征提取,能够准确分析出多传感器遥感图像的信息,并且能够满足卫星遥感图像信息处理的技术的不断提高和发展。
关键词:遥感图像;纹理特征;灰度共生矩阵法中图分类号:tp18 文献标识码:a 文章编号:1009-3044(2013)09-2216-031 图像特征分析图像最基本属性称为图像特征,它是图像内部最反映图像本质的信息,图像特征可以根据图像所具有的色度、亮度、边缘值、纹理或结构等划分为多种类别,整个图像在各个方面的属性都得到了反映。
这几种特征主要分为统计特征(比如图像的均值、方差、直方图等)、幅值特征(比如图像像素的灰度值、频谱值等表示的幅值特征)、变换系数特征、边界特征、拓扑特征以及纹理特征。
下面对其中几种重要的特征做出详细的描述:1)变换系数特征:亮度图像决定于变换域系数,它和原空间域图像是相同的,都同时具有唯一性的变化,所以其变换系数可以称为一种图像特征。
2)边界特征:包括了亮度边界点和噪声点。
图像中的亮度边界点是指利用灰度及三色值来表示的在一幅没有噪声的图像中亮度突变或断续的点。
噪声点和周围的像素比较起来也是具有灰度突变的性质,不过它是单独的随机点。
3)纹理特征:纹理特征在所有图像特征的种类中是一种相当重要的特征,它反映了图像或物体本身的属性。
例如对遥感图像的分析和解译,最根本的依据就是波谱信息和空间信息两个方面的数据,即灰度和纹理信息。
以前对图像的波谱信息的使用是最频繁的,随着卫星遥感图像信息处理的技术不断的提高和发展,单利用波谱信息早已适应不了遥感应用技术的发展需要。
譬如,在地质学的角度来看,岩石受含水性或其他因素的影响,它的波谱信息显示的非常杂乱而且没有可循的规律性,但是纹理反映的信息是与岩石的类型有紧密的关系,它详细地描述了岩石表面的粗糙度和岩石的影文结构,所以纹理信息有助于我们将两种不同的物体区别开来,对岩石识别有必要的辅助作用。
遥感图像纹理特征提取与分类分析研究遥感技术的应用日益广泛,其成像质量比传统的图像获取方式更高,并且可以获取超大范围的地表图像。
遥感图像的纹理特征可以帮助我们更好地理解地表特征,因此提取和分类遥感图像的纹理特征变得越来越重要。
纹理特征是指图像中局部区域的像素分布情况,通过计算这些分布的统计特征,如平均灰度、标准差、方差、对比度、能量等,可以描述该局部区域的纹理特征。
提取出一幅遥感图像中的纹理特征信息,可以帮助我们分析该图像中各个区域的地物类型和地貌特征。
在遥感图像处理中,纹理特征提取方法主要包括局部二值模式(LBP)、灰度共生矩阵(GLCM)、边缘方向直方图(EOH)等方法。
这些方法都是通过将图像划分为小的局部区域,然后计算每个区域的纹理特征,来描述整幅图像的纹理特征。
其中,局部二值模式是比较常用的方法,它可以通过将每个像素与其周围的像素比较,判断像素之间的灰度差异性来计算纹理特征。
而灰度共生矩阵则是通过计算不同灰度级别之间的出现次数来计算纹理特征,例如灰度共生矩阵可以被用来描述图像边缘的粗糙度和方向等信息。
纹理特征的分类分析通常利用机器学习方法。
机器学习是一个基于大量数据,自动分析和提取出数据特征、模式、规律的过程,其中深度学习是机器学习的一种方法,其特点是利用多层神经网络来建模并学习数据的复杂特征。
在遥感图像处理中,通常使用监督学习和无监督学习两种机器学习方法来进行遥感图像的分类分析。
在监督学习中,我们首先需要为每个像素标注其所属类别,这可以由人工标注或其他分类方法得到。
然后使用这些已知类别的像素和对应的纹理特征训练一个分类器,例如支持向量机(SVM)、决策树、随机森林等。
分类器可以根据训练数据学习到各个类别的纹理特征,然后利用这些特征对未知区域进行分类。
无监督学习则不需要对每个像素进行标注,而是采用聚类分析的方法,将具有相似纹理特征的像素划分为同一类别,例如k-means聚类算法。
在遥感图像处理中,通常将多个纹理特征用于分类分析。
基于纹理分析的滑坡遥感图像识别的开题报告1. 研究背景和意义滑坡是一种常见的自然灾害,给人类和生态环境带来了巨大的损失。
滑坡的预测和预警是防灾减灾工作的重要组成部分。
传统的滑坡监测方法主要依赖于现场地形调查和测量,但这些方法工作量大,过程耗时,而且对大规模地区的滑坡监测能力有限。
而遥感技术在滑坡监测方面具有很大的应用潜力,因为它可以快速、准确地提供大范围的图像信息。
目前,滑坡遥感图像识别主要基于人工观察和分析,由于种种因素的影响,其识别的精度和效率都存在局限性。
在此背景下,基于纹理分析的滑坡遥感图像自动识别方法应运而生,其主要通过自动提取滑坡区域的纹理特征,然后采用机器学习算法进行分类和识别。
该方法在减少人工干预和提高识别精度等方面,具有机遇和挑战。
2. 研究内容和思路本文旨在深入研究基于纹理分析的滑坡遥感图像识别方法,其具体内容主要包括以下几个方面:(1)对滑坡遥感图像进行预处理,包括图像增强和特征提取等;(2)采用纹理分析方法提取滑坡图像的纹理特征,如灰度共生矩阵、局部二值模式等;(3)设计机器学习模型,对提取的纹理特征进行分类和识别;(4)对比不同机器学习算法的分类效果,确定最优分类模型;(5)实验验证和结果分析,通过对现有数据的处理和实验,检验所提出方法的有效性和可行性。
3. 预期研究结果和意义通过对该方法的研究和实验,预期取得以下结果:(1)建立了基于纹理分析的滑坡遥感图像识别方法,可以有效提高滑坡区域的识别准确率和效率;(2)对不同机器学习算法进行比较和分析,提出最优的分类模型;(3)通过实验数据的处理和分析,检验所提方法的有效性和可行性。
本研究的意义在于为滑坡监测和预警提供一种新的方法,特别是在大规模地区的滑坡监测方面,可以提高效率和精准度,减少灾害的损失。
同时,所研究的方法还可以为其他领域的图像识别和分类提供一定的借鉴和参考。
遥感影像解译中的纹理特征提取方法与实践指南引言:纹理特征是遥感影像解译中的重要信息之一,可以提供有关地物和地表类型的详细信息。
纹理特征提取是利用图像处理和分析技术来定量描述和分析纹理特征的过程。
本文将介绍一些常用的纹理特征提取方法,并提供一些实践指南,以帮助研究人员和从业人员在遥感影像解译中更好地运用纹理特征。
一、纹理特征提取的方法1.统计特征提取法:统计特征提取法是最常用的纹理特征提取方法之一、它基于对图像区域的像素值统计进行分析,包括均值、标准差、方差、最值等统计量。
这些统计特征可以用来描述纹理的均匀性、粗糙度和细节等信息。
2.结构特征提取法:结构特征提取法是基于图像的空间结构进行分析的方法。
其中,灰度共生矩阵(GLCM)和灰度差异共生矩阵(GLDM)是常用的结构特征提取方法。
GLCM通过计算灰度级之间的相对位置关系,描述纹理的对比度、方向、平滑度等特性;GLDM则描述不同灰度级之间的寻找熵、对比度等特性。
3.频域特征提取法:频域特征提取法是将图像转换到频域进行分析的方法。
其中最常用的方法是对图像进行傅里叶变换,并计算其频谱特征。
频域特征能够提供关于纹理重复性和变化的信息。
4.模型特征提取法:模型特征提取法是利用数学模型对纹理进行建模,并从模型中提取特征。
其中,小波变换是常用的模型特征提取方法之一、小波变换能够捕捉到图像中的局部特征,提供更详细的纹理信息。
二、纹理特征提取的实践指南1.数据选择:选择与研究目标相关的高质量遥感影像数据进行分析。
确保数据清晰、分辨率适中,以获取更准确的纹理特征。
2.区域选择:选取具有代表性的区域进行分析。
遥感影像往往包含大量的信息,为了减少冗余和噪声,可以选择感兴趣的区域进行特征提取。
3.特征选择:根据研究目标选择适当的纹理特征。
不同的纹理特征可以提供不同的信息,因此需要根据需求进行选择。
4.参数设置:为提取特定纹理特征,需要根据实际情况设置合适的参数。
这些参数包括窗口大小、灰度级数量、邻域距离等。
遥感图像目视解译标志解译标志有直接标志和间接标志.直接标志是地物本身的有关属性在图像上的直接反映。
如形状、大小、色调、阴影等。
间接标志是指与地物的属性有内在联系,通过相关分析能够推断其性质的影像特征。
一、形状(Shape)形状是指地物外部轮廓的形状在影像上的反映。
不同类型的地面目标有其特定的形状,因此地物影像的形状是目标识别的重要依据。
二、大小(Size)大小是指地物在像片上的尺寸,如长、宽、面积、体积等。
地物的大小特征主要取决于影像比例尺。
有了影像的比例尺,就能够建立物体和影像的大小联系。
三、色调(Tone)和色彩(Color)色调是物体的电磁波特性在图像上的反映,在黑白像片上指黑白深浅程度。
地物的形状、大小都要通过色调显示出来,所以色调特征是最基本的解译标志。
如排水性良好、干燥的、有机质成分低的土壤;中酸性岩浆岩、松散堆积物、大理岩、石英岩等一般具有浅色调。
如潮湿的、有机质成分高的土壤、煤层、基性、超基性岩浆均具有较深色调。
如石灰岩、白云岩、砂岩以及中基性岩浆岩等,变质岩中的变粒岩具有灰色色调。
在利用色彩判断地物时,要注意:①多波段的彩色合成图像,不仅要了解地物的波谱特性,而且要知道彩色合成时波段影像与红、绿、蓝三色的对应关系②彩红外图像:植被-红、水-蓝青、道路-灰白、建筑物-灰或浅蓝。
四、阴影(Shadow)阴影分本影和落影两种。
本影-指物体本身没有被光线直接照射到的部分,在像片上呈暗色调。
它有助于建立像片的立体感。
落影-地物经光线照射投影于地面的物体阴影,在像片上呈暗色调,它有助于观察地物的侧面形态及一些细微特征。
五、水系(River System)水系标志在地质解译中应用最广泛,它可以帮助我们区分岩性、构造等地质现象。
这里所讲的水系是水流作用所形成的水流形迹,即地面流水的渠道。
它可以是大的江河,也可以是小的沟谷,包括冲沟、主流、支流、湖泊以至海洋等。
在图像上可以呈现有水,也可以呈现无水。
《ERDAS IMAGE遥感图像处理方法》操作一空间增强(Spatial Enhancement)1卷积增强处理(Convolution)功能:用一个系数矩阵将整个图像按照象元分块进行平均处理,用于改变图像的空间频率特征。
to效果:地物的轮廓和线条勾勒变清晰了。
2非定向边缘增强(Non-directional Edge)功能:应用两个非常通用的滤波器(Sobel 滤波器和Prewitt 滤波器),首先通过两个正交卷积算子(Horizontal算子和Vertical算子)分别对遥感图像进行边缘检测,然后将两个正交结果进行平均化处理。
to效果:效果明显而且强烈分别出邻区不同的部分。
3.聚焦分析(Focal Analysis)功能:使用类似卷积滤波的方法,选择一定的窗口呼函数,对输入图像文件的数值进行多种变换,应用窗口范围内的象元数值计算窗口中心象元的值,达到图像增强的目的。
to效果:深色地方变模糊,浅色地物图象得到增强,但也变得不清晰。
4.纹理分析(Texture Analysis)功能:通过二次变异等分析使图象的纹理结构更加清晰。
to效果:纹理边缘部分十分清晰。
5.自适应滤波(Adaptive Filter)功能:应用自适应滤波器对图像的感兴趣区域进行对比度拉伸处理。
to效果:颜色变浅了。
6.分辨率融合(Resolution Merge)功能:对不同空间分辨率遥感图像的融合处理,使处理后的遥感图像即具有较好的空间分辨率,又具有多光谱特征,达到图象增强的目的。
+ =效果:处理后图象既有高分辨率又有多光谱特征(彩色)。
7.锐化增强处理(Crisp Enhancement)功能:对图像进行卷积滤波处理,使整景图像的亮度得到增强而不使其专题内容发生变化。
效果:区别不大,亮度得到些许增强。
二.辐射增强(Radiometric Enhancement)1.查找表拉伸(LUT Stretch)功能:通过修改图像查找表使输出图像值发生变化。
附件一:遥感影像云识别方法综述国内外对云的检测与分类研究较多,有较多的研究成果报道。
其方法大致可以分为两类,一类是基于光谱的方法,主要利用云在不同的光谱波段有不同反射特征,大部分以灰度阈值或灰度聚类的方法实现,主要用于多光谱影像,早期研究较多。
如用于A VHRR的ISCCR 法(ROSSOW,1989)、CLA VR法(STOWE,1991)和用于的C02法(WGLIE,1994),近期亦研究用于MODIS的一些云识别与分类的方法,主要为以前方法的改造。
另一类是基于纹理的方法主要应用云影像的灰度空间分布特征。
纹理特征常以统计模型法、结构法、场模型法或频域/空域联合分析法来度量。
其中尤以传统的统计模型研究较多,如灰度共生矩阵(GLCM)、灰度差分矩阵(GLDM)、灰度差分矢量(GLDV)、和差直方图(SADH)等,新近提出的一些方法如场模型法中的分形分维、马尔可夫随机场方法,频域/空域联合分析法中的Gabor变换、小波变换等,有不少的研究成果报道。
1. 基于光谱特征的方法:主要有ISCCP方法、APLOOL方法、CO薄片法、CLAVR方法等。
ISCCP方法主要由Rossow(1989)Seze和Rossow(1991a)及RossowG和arder(1993)和等开发研制,检测方法中公用到窄的可见光波段(0.6)和红外窗区波段的资料。
它假定观测辐射办一自晴空和云两种情况(这两种大气状况相联系的辐射值变化并不相互重叠),把每一个像元的观测辐射值与晴空辐射值比较,若两者的差大于晴空辐射值本身的变化时,定该像元点为云点。
因此算法依赖于阈值,阈值勤的大小就确定了晴空计值中不确定性的大小,当像元的车射值明显有别于晴空像元时,认为像元被云覆盖,但当像元部分被云覆盖时,会发生误判。
算法主要由有五部分组成:1 单一红外图像的空间对比试验。
2 三个连续红处图像的时间对比试验。
3可见光和红外图像的空间/时间的累计统计合成。
摘要随着遥感技术的快速发展,遥感图像已经广泛应用于工业、农业和军事等领域中。
其中,遥感图像分类是其重要组成部分。
遥感数据源的增多,人们对遥感数据处理分析方法和手段也在不断发展,新的分类特征及分类方法都在不断的涌现。
有效特征的提取及分类器的选取是决定分类效果的关键。
本文针对可见光遥感图像,采用纹理特征作为分类特征。
本文首先研究了传统的统计纹理特征如:共生矩阵纹理特征、灰度差分纹理特征、行程长度纹理特征、Tamura 纹理特征以及灰度信息特征的提取方法。
基于类内、类间方差标准,本文从所提取的统计纹理特征中选取出了具有较强分类能力的纹理特征作为有效分类特征。
接下来本文将与大多数哺乳动物的视觉表皮简单细胞的二维感受野模型具有相似的性质的Gabor滤波器引入到纹理特征的提取中。
本文详细介绍了Gabor滤波器的定义与构造方法,针对不同的遥感景物类别构造了对纹理有较强分类能力的Gabor滤波器。
对于Gabor滤波图像,本文以直方谱特征描述纹理,用于分类。
论文最后研究了最近邻分类器及神经网络分类器,并通过分类实验证实了Gabor滤波器结合直方谱特征的分类性能优于传统的统计纹理特征。
关键词:遥感图像分类纹理特征Gabor滤波器直方谱特征分类器AbstractWith the development of remote sensing technology, remote sensing images have been widely utilized in industry, agriculture and military affairs. Remote sensing classification is very important to all these applications. Now, many features and classifiers have been proposed. The extraction of efficient features and the selection of classifiers are pivotal for classification.This thesis employs texture features for remote sensing classification. The contents of this thesis could be summarized as follow. First, it introduces the definition of traditional statistical texture features such as: co-occurrence features, gray-level difference features, run-length features, Tamura features and gray-level information features. Based on the criterion of variances between & intra classes efficient features have been chosen among the extracted features. Secondly, The Gabor filter with the ability of simulating the biological vision has been used for texture features extraction. After the definition of Gabor filter and construction method, this thesis constructs series of Gabor filters with strong ability for classification. Spectrum histogram features has been applied to describe texture information of images processed by Gabor filters. Lastly, the thesis does some research on nearest neighbor classifiers and neural network classifiers and the experiment demonstrates that Gabor filter combined with spectrum histogram features yield higher accuracy than traditional statistical texture features.Key Words: Remote sensing classification Texture features Gabor filter Spectrum histogram features Classifiers目录摘要 (I)Abstract (III)1 绪论1.1 论文研究的背景和意义 (1)1.2 研究现状 (2)1.3 论文研究内容 (4)1.4 论文的结构安排 (4)2 纹理特征2.1 纹理的一些基本概念 (5)2.2 纹理分析方法 (14)2.3 特征归一化策略 (15)2.4 (实验结果 (18)2.5 本章小结 (19)3 Gabor滤波器3.1 Gabor滤波器的提出 (20)3.2 Gabor滤波器的构造 (21)3.3 本章小结 (28)4 Gabor直方谱纹理特征4.1 Gabor方向选择通道 (29)4.2 直方图特征的提取 (30)4.3 Gabor直方谱特征的提取 (32)4.4 Gabor滤波器通道选择 (33)4.5 特征提取结果 (35)4.6 本章小结 (38)5 分类器5.1 K-近邻分类算法 (39)5.2 神经网络分类器 (41)5.3 本章小结 (45)6 实验结果 (46)7 全文总结与展望7.1 论文的主要研究内容 (48)7.2 论文的特色 (48)7.3 需要进一步研究的工作 (48)致谢 (49)参考文献 (50)附录1 攻读硕士学位期间发表的论文目录 (54)1 绪论1.1 论文研究的背景和意义遥感作为采集地球数据及其变化信息的重要技术手段,在世界范围内的许多政府部门,科研单位和公司得到了广泛的应用。