闪蒸过程数学模型与控制过程仿真
- 格式:ppt
- 大小:172.50 KB
- 文档页数:10
闪蒸-双工质循环联合地热发电系统设计摘要:将闪蒸系统发电与双工质循环发电联合,形成一种特殊的能量转换系统,对其进行详细分析,并建立该联合地热电站热力计算的数学模型,以此对电站的功率及效率进行了计算与分析,从中确定该系统的最佳闪蒸温度和由此温度导出的最佳设计参数。
计算结果还表明,对给定温度为110℃的地热水资源,当环境冷却水平均温度为28℃时,闪蒸一双工质循环联合发电的最大总功率比闪蒸系统或双工质循环单独发电时的最大功率要大20%以上。
此外,电站还生产约60℃的热水以供直接利用。
关键词: 闪蒸系统; 双工质循环; 地热发电; 最佳闪蒸温度0.引言我国地热资源主要是以中低温热水为主,其中为数较多的是100℃左右的热水资源,这种资源在全球分布甚广,因此利用这种地热资源发电,具有广泛的现实意义。
地热电站的主要目的是生产电能和提供热水。
为此目的,若将闪蒸系统发电与双工质循环发电联合起来,将使电站的出力提高[1],从而提高对地热资源的有效利用。
闪蒸和双工质循环联合地热发电,实际上是将闪蒸器产生的蒸汽直接用于发电,而产生的饱和水则用于低沸点有机工质发电。
这种特殊的能量转换系统,能使地热资源得到充分利用。
闪蒸一双工质循环联合地热发电的热力系统简图如图1所示,该系统包括闪蒸系统发电和双工质循环发电两部分,系统输出的功率是闪蒸系统和双工质循环发电的总和。
图1闪蒸-双工质循环联合地热发电的热力系统简图1.闪蒸·双工质循环的热力计算[2]为计算此系统所需的热力循环分别示于图2及图3。
本文将以我国某地热点的热水资源为例对闪蒸系统和双工质循环系统分别进行计算,由于是热水发电,其最佳闪蒸温度t 1和最佳蒸发温度t 01的计算方法既相同,又互相关联。
即:闪蒸系统最佳闪蒸温度:273111-==T t T T T cg (1)图2闪蒸系统热力循环图图3双工质热力循环图双工质循环最佳蒸发温度:27311101-==o o oc T t T T T (2)由式(2)可知,工质的最佳蒸发温度t o1与最佳闪蒸温度t 1有关联。
第三节 闪蒸过程的计算2.3 等温闪蒸和部分冷凝过程流程示意图:闪蒸过程的计算方程(MESH ) ⑴物料衡算----M 方程: C 个⑵相平衡--------E 方程: C 个⑶摩尔分率加和式---S 方程: 2个⑷热量平衡式-------H 方程: 1个变量数:3C+8个 (F, F T ,F P ,T,P,V ,L,Q,i i i x y z ,,)方程总数:2C+3个 需规定变量数:C+5个其中进料变量数:C+3个(F, F T ,F P ,i z )根据其余2个变量的规定方法可将闪蒸计算分为如下五类:11=∑=Ci ix11=∑=Ci iy,...C,i Vy Lx Fz i i i 21 =+=Ci x K y i i i ,...2,1 ==LV F LH VH Q FH +=+表2-4闪蒸计算类型2.3.1 等温闪蒸规定:p 、T计算:Q, V , L,i i x y ,一、汽液平衡常数与组成无关 ()P T f K i ,=已知闪蒸温度和压力,i K 值容易确定,所以联立求解上述(2C+3)个方程比较简单。
具体步骤如下: 1. 输出变量求解将E---方程:代入M —方程: 消去i y ,得到: 将L=F-V 代入上式:汽化率代入(2-66)式,得到:Ci VK V F Fz x iii ,...2,1 =+-=(2-66))1(1-+=i ii K z x ψ(2-67) Ci x K y i i i ,...2,1 ==,...C ,i Vy Lx Fz i i i 21 =+=C i x VK Lx Fz i i i i ,...2,1 =+=FV /=ψ将(2-67)和(2-68)式代入S---方程,得到:两式相减,得:0)1(1)1()(=-+-=∑i ii K z K f ψψ--------------------------闪蒸方程0)1(1)1()(=-+-=∑i ii K z K f ψψ (2-71))1(1-+=i ii K z x ψ i i i x K y = F=V+L L V F LH VH Q FH +=+通过闪蒸方程(2-71)求出汽化率ψ后,由(2-67)和(2-68)式可分别求出i i y x 和,进而由总物料衡算式(2-64)可求出V 和L,由热量衡算式(2-65)可求出Q汽化率ψ的迭代: 设ψ初值,计算:)(ψf可采用Newton-Raphson 法迭代ψ:(2-68))1(1-+==i ii i i i K z K x K y ψ1)1(11=-+∑=Ci i iK z ψ(2-69)(2-70)1)1(11=-+∑=Ci i ii K z K ψ0)1(1)1()(1=-+-=∑=Ci i ii K z K f ψψ(2-71)2. Q 的计算L V F LH VH Q FH +=+Q-----吸热为正,移热为负H-----混合物的摩尔焓对于理想混合:3. 判断闪蒸过程是否可行的方法 方法一:已知T 、P对i Z 进行泡点计算:∑==-=Ci i i B Z K T f 101)( 试差泡点B T对i Z 进行露点计算:∑=⎪⎪⎭⎫⎝⎛=-=Ci i i D K Z T f 101)( 试差露点D T 判断:若D B T T T 闪蒸问题成立方法二:对i Z 在T 、P 下进行露点计算:对i Z 在T 、P 下进行泡点计算:—i Ci P T Li iL Ci P T Vi iV H Hx H Hy H ∑∑====1),(1),(纯组分摩尔焓判断:若 同时成立,闪蒸问题有解闪蒸过程计算框图:开始打印 BD BT T T T --=ψ输入T,P,F,Z ()()∑-+-=)1(11i i i k k Z f ψψ计算计算泡点B T []打印,结束−→−<YF εψ)(计算露点D T []22)1(1)1()('-+-∑-=i i i k k Z f ψψ)(')(1ψψψψf f k k -=+汽液平衡常数与组成有关的闪蒸计算 对i i y x ,,ψ分层迭代:开始给定F,Z,P,T估计初值x,y ψ计算()i i i i y x P T k K ,,,=),(p T F k i =打印过冷液体−→−>YB T T 过热蒸汽−→−<YD T T 由(2-67),(2-68)计算x,y 归一化i i y x ,比较:估计和归一化值 比较:k k ψψ和)1(+如果不直接迭代,重新估计x,y 值 由Rachford-Rice 方程迭代()1+k ψ思考题1、相平衡关系可用几种方法来表达。
基于模糊控制的闪蒸罐PID控制器设计与仿真
张曼玉;贺高红;李新华;高成
【期刊名称】《化工自动化及仪表》
【年(卷),期】2024(51)1
【摘要】PID控制器依照经验进行整定的方式需要花费大量时间和精力,而工业被控对象大都存在随时间变化、非线性等特性,PID控制的效果并不理想。
以闪蒸罐压力控制为研究对象设计FUZZY-PID控制器。
仿真结果表明:在PID调节后有超调情况下,FUZZY-PID控制器调节时间缩短约341.80 s,超调量减小约4.62%;在PID调节后无超调情况下,FUZZY-PID控制器调节时间缩短约395.60 s。
抗干扰实验结果表明:在加入白噪声后,FUZZY-PID控制器与PID控制器控制效果差距不甚明显,都比较稳定,在同一时刻加入脉冲扰动后,FUZZY-PID控制器所需调节时间较PID控制器缩短约70.70 s,调节时间更短,更加稳定。
说明相较于传统PID控制器,FUZZY-PID控制器调节时间更短、超调量更小、更加稳定。
【总页数】8页(P48-55)
【作者】张曼玉;贺高红;李新华;高成
【作者单位】沈阳工业大学化工过程自动化学院;大连理工大学盘锦产业技术研究院
【正文语种】中文
【中图分类】TP273
【相关文献】
1.基于FCA-CMAC模糊神经网络的PID控制器设计与仿真
2.基于模糊PID的球平衡机器人控制器设计与仿真
3.基于模糊PID控制的ARUAV姿态角控制器的设计与仿真
4.基于模糊控制理论的一种PID参数自整定控制器的设计与仿真
5.基于模糊PID控制的船闸闸门同步控制器设计与仿真
因版权原因,仅展示原文概要,查看原文内容请购买。
旋流喷嘴内超临界流体闪蒸过程的数值模拟冯留海;王江云;赵凡;孙中卫;王娟;毛羽【摘要】旋流喷嘴内超临界流体中沥青溶质的体积分数分布对颗粒成形有重要影响.根据减压相变传质传热理论开发了闪蒸相变模型,采用自定义函数(UDF)的方式植入到CFD软件Fluent中.将闪蒸相变模型耦合多相流混合模型用于研究旋流喷嘴内超临界流体的闪蒸相变过程,分析旋流喷嘴内压力、速度、温度和各相浓度分布,以预测旋流喷嘴对颗粒成形的影响.结果表明,旋流喷嘴内三相介质分层流动,从而实现戊烷溶剂与沥青溶质的预分离,有利于形成粒径较小且密实的沥青颗粒.【期刊名称】《石油学报(石油加工)》【年(卷),期】2016(032)004【总页数】7页(P741-747)【关键词】旋流喷嘴;数值模拟;闪蒸相变;非平衡热力学【作者】冯留海;王江云;赵凡;孙中卫;王娟;毛羽【作者单位】中国石油大学重质油国家重点实验室,北京102249;北京低碳清洁能源研究所,北京102209;中国石油大学重质油国家重点实验室,北京102249;中国石油大学重质油国家重点实验室,北京102249;兰州兰石能源装备工程研究院有限公司,甘肃兰州730314;中国石油大学重质油国家重点实验室,北京102249;新奥科技发展有限公司,河北廊坊065001;中国石油大学重质油国家重点实验室,北京102249;中国石油大学重质油国家重点实验室,北京102249【正文语种】中文【中图分类】TE65超临界流体溶剂脱沥青技术是重质油梯级分离工艺中的重要组成部分。
利用超临界戊烷溶剂可以选择性去除渣油中的沥青质、稠环化合物和重金属等杂质,分离得到加工性能较好的脱沥青油和高软化点的脱油沥青[1-2]。
戊烷-沥青超临界流体从喷嘴内闪蒸喷出,并快速膨胀造粒[3],在喷雾造粒塔内实现重组分造粒与分离。
闪蒸相变喷嘴是决定造粒质量的核心部件。
研究超临界沥青造粒中喷嘴内戊烷的闪蒸相变及流动过程,对优化喷嘴结构、改进工艺流程具有十分重要的意义[4-5]。