第22页/共29页
2 .有心力场,对力心角动量守恒.
例: 质量为m的小球系在绳的一端,另一端通过圆孔向
下,水平面光滑,开始小球作圆周运动(r1,v1)然
后向下拉绳,使小球的运动轨迹为r2的圆周
求:v2=?
解: 作用在小球的力始
v2
终通过O点(有 心力)由质点角
v1
动量守恒:
r r O
1
2
mv1r1 mv2r2
第28页/共29页
谢谢您的观看!
第29页/共29页
r
0!
第11页/共29页
二、角动量守恒定律
质点角动量守恒
当M 0
,
L r (mv)
=恒矢量
当质点所受对参考点O的合力矩为零时,质点
对该参考点O的角动量为一恒矢量。
例:
L
v
m r
行星对太阳的径矢在相等的时间内扫过相等的面积. —–开普勒第二定律 Kepler laws
第12页/共29页
讨论:行星受力方向与矢径在一条直线(中心力),
第19页/共29页
1.孤立系.
第20页/共29页
1.孤立系.
为什么星系是扁状,盘型结构?
第21页/共29页
18世纪哲学家提出星云说,认为太阳系是由气云组 成的。气云原来很大,由自身引力而收缩,最后聚 集成一个个行星、卫星及太阳本身。但是万有引力 为什么不能把所有的天体吸引在一起而是形成一个 扁平的盘状?康德认为除了引力还有斥力,把向心 加速的天体散射到个方向。19世纪数学家拉普拉斯 完善了康德的星云说,指出旋转盘状结构的成因是 角动量守恒。我们可以把天体系统看成是不受外力 的孤立系统。原始气云弥漫在很大的范围内具有一 定的初始角动量J,当r变小的时,在垂直J的横方 向速度要增大,而平行J方向没有这个问题,所以 天体就形成了朝同一个方向旋转的盘状结构。 数学推导