北航基础物理实验报告---拉伸法测量钢丝弹性模量
- 格式:docx
- 大小:877.79 KB
- 文档页数:23
拉伸法测钢丝的弹性模量实验报告拉伸法测钢丝的弹性模量实验报告引言:弹性模量是描述材料抵抗变形能力的重要指标之一。
在工程中,了解材料的弹性模量对于设计和计算结构的稳定性和可靠性至关重要。
本实验旨在通过拉伸法测定钢丝的弹性模量,并探讨实验结果的可靠性和误差来源。
实验原理:拉伸法是一种常用的测定材料弹性模量的方法。
根据胡克定律,当材料受到拉伸力时,其应变与应力呈线性关系。
应变可以通过测量材料的长度变化来计算,而应力则可以通过施加的拉力除以截面积来计算。
根据胡克定律的线性关系,可以得到材料的弹性模量。
实验步骤:1. 准备工作:清洁实验台、准备所需的钢丝样品和测量工具。
2. 测量钢丝的直径:使用卡尺或显微镜测量钢丝的直径,并记录下来。
为了提高测量的准确性,可以多次测量并取平均值。
3. 量取钢丝的长度:使用卡尺或显微镜测量钢丝的初始长度,并记录下来。
4. 固定钢丝样品:将钢丝样品固定在拉伸装置上,并确保样品的两端平整且垂直于拉伸方向。
5. 施加拉力:通过拉伸装置施加逐渐增加的拉力,同时记录下拉力和相应的伸长量。
6. 计算应变和应力:根据实验数据计算钢丝的应变和应力,并绘制应力-应变曲线。
7. 计算弹性模量:根据应力-应变曲线的斜率计算钢丝的弹性模量。
实验结果:根据实验数据计算得到的钢丝的弹性模量为XXX。
通过绘制应力-应变曲线可以看出,在小应力范围内,钢丝的应变与应力呈线性关系,符合胡克定律。
然而,在较大应力范围内,应变开始出现非线性变化,这可能是由于材料的屈服点或断裂点的影响。
实验讨论:在实验过程中,可能存在一些误差来源。
首先,测量钢丝直径的准确性会影响到应力的计算。
如果直径测量不准确,将导致应力的计算结果有一定的偏差。
其次,钢丝的固定和拉力的施加也可能引入误差。
如果钢丝没有完全固定或拉力施加不均匀,将导致实验结果的不准确性。
此外,钢丝在拉伸过程中可能发生局部塑性变形,也会对实验结果产生影响。
为了提高实验结果的准确性,可以采取一些改进措施。
拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。
本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。
实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。
实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。
实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。
当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。
根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。
通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。
实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。
实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。
根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。
实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。
根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。
实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。
例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。
2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。
3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。
大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称 拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
实验中测定E , 只需测得F 、S 、l 和l ∆即可, 前三者可以用常用方法测得, 而l ∆的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长l ∆以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=∆。
Δn 与l ∆呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到n Bbl ∆⋅=∆2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
基础物理实验研究性报告拉伸法测量钢丝弹性模量----利用左右调节调节光杠杆2015年12月一、摘要在本实验中我们需要使用光杠杆来测量钢丝受力拉伸时的伸长量,以此数据计算钢弹性模量。
然而在这个实验中光杠杆的调节是最重要的一环。
我们调节时候多注重光杠杆的上下调节而忽视了左右调节。
本文通过探讨光杠杆的左右调节来寻找一种快速调节光杠杆的方法。
二、实验原理1、一条各向同性的金属丝,原长为L,截面积为A,在外力F作用下伸长。
在平衡状态时,忽视金属丝重力,则丝中任意界面上,恢复力必与外力相等。
在弹性限度内,由胡克定律知应力与应变成正比,即。
E为该金属的弹性模量,其中E与外力F、金属丝长度L,金属丝截面积A均无关,取决于材料性质。
若金属丝为圆柱形,直径为D,金属丝上作用拉力为F,则,其中F,L,D可用一般方法测量。
测量难点:很小,不易测出。
2、开始时,标尺读数为r0,当后足下降,产生微小偏转角,此时读到的标尺示数为r2,放大后c i=r i-r0,则(1),其中b为光杠杆前后足垂直距离。
由于经光杠杆反射光线方向不变,故平面镜旋转θ,入射到光杠杆的光线方向偏转,由于极小,也极小,故,故,所以,(2)。
联立(1)(2)三、实验仪器(钢丝、光杠杆、望远镜、标尺及拉力测量装置)——弹性模量测定仪、钢卷尺、游标卡尺、螺旋测微器。
四、主要步骤1、调整测量系统①首先使望远镜与光杠杆反射镜等高, 然后把望远镜光轴调节到和光杠杆镜面法线大致水平, 将眼睛从望远镜外沿着准星方向观测反射镜中是否有标尺的像, 若没有, 可以把望远镜镜筒上下转动去寻找标尺的像,当标尺的像出现在反射镜中,微调光杠杆镜面, 使人眼能看到标尺零刻度线位置。
当望远镜低于光杠杆水平轴线时, 可以微微向上转动望远镜的镜筒。
当望远镜镜筒高于光杠杆水平轴线时, 可以微微向下转动望远镜的镜筒。
以上调节过程中忽略了望远镜和标尺以及光杠杆平面镜三者应满足光的空间反射定律, 因此调节过程显得有时无头绪, 标尺的像有可能在望远镜视场左右以外, 上下转动望远镜和光杠杆镜面寻找不到标尺像。
清华大学实验报告系别:航天航空学院班号:航04班姓名:张大曦(同组姓名:) 作实验日期:2020年9月28日教师评定:实验拉伸法测弹性模量一、 实验目的(1)学习用拉伸法测量弹性模量的方式; (2)把握螺旋测微计和读数显微镜的利用; (3)学习用逐差法处置数据。
二、实验原理1.弹性模量及其测量方式弹性形变范围内,正应力与线应变成正比,即F L E S Lδ= 式中的比例系数//F SE L Lδ=称作材料的弹性模量利用本实验中直接测量的数据,可将上式进一步写为24FLE D Lπδ=测量钢丝的弹性模量的方式是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F ,测出钢丝相应的伸长量L δ,即可求出E 。
2.逐差法处置数据为了充分利用实验中取得的数据,利用下式计算L δ,()()()617210555y y y y y y L δ-+-++-=⨯该方式称为逐差法,能够减小测量的随机误差和测量仪器带来的误差。
三、实验仪器包括支架、读数显微镜、底座、钢尺和螺旋测微计(别离用来测量钢丝长度和直径)。
四、实验步骤与注意事项(1)调整钢丝竖直。
(2)调剂读数显微镜。
先粗调再细调。
(3)测量。
测量钢丝长度L 及其伸长量L δ。
再用螺旋测微计在钢丝的不同地址测量其直径D ,测6次,并在测量前跋文录螺旋测微计的零点d 各3次。
五、 数据表格及数据处置1. 测量钢丝长度L 及其伸长量L δ仪器编号;钢丝长度L=mm 。
利用测量值i l 与平均值l 及标准误差公式l S =取得:l S == mml 的仪器误差:=∆仪ll 的不确信度:l ∆== mm5l L δ=,进一步求出L δ及其不确信度l δ∆:0.2654mm 5lL δ== 0.03951580.0079mm 55l l δ∆∆=== ()0.26540.0079mm l L δδ∴+∆=+2. 测定钢丝直径D测定螺旋测微计的零点d 测量前____,___,____ 测量后____,____,____平均值=d mm钢丝的平均直径=D mm0.2310.0070.224mm D D d =-=-=利用测量值i D 与平均值D 及标准误差公式D S =取得:D S ==0.001414mm =0.004mm ∆≈仪D 0.004243∴∆===3. 总不确信度计算由计算公式推导出E 的相对不确信度的公式E E ∆=实验室给出0.5%FF∆=,3mm L ∆≈,其余的D ∆、L δ∆项按上述数据处置进程所得值代入,计算出EE∆=0.04853= 24FL E D Lπδ= ()31123340.29.899910 1.8710Pa 0.224100.265410E π---⨯⨯⨯⨯∴==⨯⨯⨯⨯11110.047640.04853 1.87100.09110Pa E E ∴∆=⨯=⨯⨯=⨯()111.870.0910Pa E ∴=±⨯结论:拉伸法能够测量钢丝的弹性模量,由于实验仪器的周密程度有限,所得的弹性模量的不确信度较大。
用拉伸法测金属丝的弹性模量实验报告
实验目的:
学习拉伸法测定金属丝弹性模量的原理和方法;掌握实验操作技能。
实验原理:
拉伸法是指在金属丝两端施加张力,通过测量金属丝的伸长量和所施育的张力之间的关系,求出金属丝的弹性模量。
实验器材和试剂:
弹簧秤、金属丝、游标卡尺、数显米林卡片
实验步骤:
1.量取一段长约40cm的金属丝,将其端头用小钳子夹住。
2.将一端的金属丝固定在实验室的万能拉伸机上,另一端通过测力计和弹簧秤连接起来。
3.调整好万能拉伸机的速度和距离,开始进行拉伸测试。
4.当金属丝被拉伸到一定程度后,用游标卡尺测量金属丝的直径,在伸长期间记录金属丝被拉伸的长度与拉力的关系,并记录数据。
5.测试完毕后,将金属丝取下,并用米林卡片量取其直径,将直径数据代入计算公式中计算弹性模量。
实验结果:
按照上述实验步骤,得到的实验数据如下表所示:
拉力(N)伸长量(mm)
1200 0.5
1800 0.8
2400 1.2
3000 1.3
3600 1.4
4200 1.5
4800 1.6
计算弹性模量:
根据多组实验数据,可以计算出金属丝的弹性模量为189.23GPa。
实验结论:
通过拉伸法测定金属丝的弹性模量,这种方法简单实用。
在实验过程中,为了取得更加精确的数据。
我们需要对实验过程中所使用的仪器进行校验,并且尽量保证实验条件的稳定性。
通过实验可以得知,应变与应力成正比关系,金属丝材料的弹性模量是一个重要的材料力学性能参数,在工程设计,实验研究等方面有广泛的应用。
实验名称用拉伸法测材料的弹性模量实验目的用拉伸法测量钢丝弹性模量实验仪器弹性模量仪(包括实验架、望远镜、数字拉力计等)、千分尺(25mm ,0.0lmm)、游标卡尺(13cm ,0.02mm)、钢卷尺(3m ,1mm)、钢丝。
实验原理通过公式LL AF E ∆=计算钢丝弹性模量,代入钢丝的数据得 L d mgL E ∆=24π其中mg 为钢丝上拉力,m 为钢丝下数字拉力计示数,L 为钢丝长度,由钢尺测量,d 为钢丝直径,由千分尺测量,钢丝伸长量L ∆数值很小,一般在十分之几毫米量级,用一般量具不易测出,本实验将采用光杠杆方法来测量。
光杠杆放大原理光杠杆动足搭在钢丝下夹头平面上,当钢丝受力产生微小伸长量L ∆,光杠杆动足尖便随着下夹头上表面一起下降,从而带动光杠杆平面镜转动角度θ,根据光的反射定律--入射角等于反射角--可知, 在出射光线(即进入望远镜的光线)不变的情况下,入射光线转动了 2θ,在标尺上对应刻度为 2x用l 表示平面镜转轴与动足尖之间的水平距离。
由于 l >>L ∆,所以θ 和2θ很小。
即H O x ≈2(Ox ₂垂直于观测面) θ⋅≈∆l L θ2⋅≈∆H x所以x HlL ∆⋅=∆2 得到最终伸长量L ∆实验步骤①仪器调节 实验架调节:确保上下夹头均夹紧钢丝,防止钢丝在受力过程中与夹头发生相对滑移,且平面镜能自由转动。
将光杠杆动足尖自由地放置在下夹头上表面,使动足尖能随之一起上下移动,但不能碰触钢丝。
将 LED 灯箱电源线连接到数字拉力计面板上的直流电源插孔上, 将拉力传感器信号线接入拉力计传感器接口上。
打开数字拉力计,LED 灯箱点亮呈黄绿色,标尺刻度清晰可见。
数字拉力计面板上显示此时加到钢丝上的力。
旋转施力螺母,给钢丝施加一定的预拉力 m₀(2.00 kg 左右),将钢丝原本可能存在弯折的地方拉直。
望远镜调节: 粗调望远镜使望远镜镜筒大致水平,且望远镜镜筒中心线与平面镜转轴等高;使望远镜前沿与平台板边缘的水平距离约 20~30cm 。