减速器主动轴
- 格式:ppt
- 大小:373.50 KB
- 文档页数:10
一级减速器设计说明书课题:一级直齿圆柱齿轮减速器设计学院:机电工程班级:2015机电一体化(机械制造一班)姓名:***学号:*************指导老师:***目录一、设计任务书——————————————————————二、电动机的选择—————————————————————三、传动装置运动和动力参数计算——————————————四、V带的设计——————————————————————五、齿轮传动设计与校核——————————————————六、轴的设计与校核————————————————————七、滚动轴承选择与校核计算————————————————八、键连接选择与校核计算—————————————————九、联轴器选择与校核计算—————————————————十、润滑方式与密封件类型选择———————————————十一、设计小结—————————————————————十二、参考资料—————————————————————一、设计任务说明书1、减速器装配图1张;2、主要零件工作图2张;3、设计计算说明书原始数据:(p10表1-4)1-A输送带的工作拉力;F=2000输送带工作速度:V=1.3m/s滚筒直径:D=180工作条件:连续单向运载,载荷平稳,空载起动,使用期限15年,每年300个工作日,每日工作16小时,两班制工作,运输带速度允许误差为5%传动简图:二、电动机的选择工作现场有三相交流电源,因无特殊要求,一般选用三相交流异步电动机。
最常用的电动机为Y系列鼠笼式三相异步交流电动机,其效率高,工作可靠,结构简单,维护方便,价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。
本装置的工作场合属一般情况,无特殊要求。
故采用此系列电动机。
1.电动机功率选择1选择电动机所需的功率:工作机所需输出功率Pw=1000FV故Pw=10008.12000⨯= 3.60 kw工作机实际需要的电动机输入功率Pd=ηwp其中54321ηηηηηη=查表得:1η为联轴器的效率为0.982η 为直齿齿轮的传动效率为0.97 3η 为V 带轮的传动效率为0.96 54.ηη 为滚动轴承的效率为0.99 故输入功率Pd=98.099.099.096.097.098.0 3.60⨯⨯⨯⨯⨯=4.09KW2. 选择电动机的转速 76.4345014.310008.16010060n =⨯⨯⨯=⨯⨯=D V π卷卷 r/min按《机械设计手册》推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围2~5i =减速器,取V 带传动比4~3=带i ,则总传动比合理范围为I总=6~20。
蜗轮蜗杆减速机使用说明书一、减速器的安装、使用与维护1、减速器主动轴直接与电机联接时推荐采用弹性联轴器,减速器被动轴直接与工作机联接时推荐采用齿式联轴器或其他非刚性联轴器。
2、减速器的主动轴线和被动轴线必须与相联接部分的轴线保证同心,其误差不得大于所有联轴器的允许值。
3、减速器安装使用手转动必须灵活,无卡住现象,蜗杆轴承和蜗轮轴承的轴向间隙应符合技术要求的规定。
4、减速器安装及在25﹪额定负荷下,蜗轮齿面接触斑点,按齿高不小于55﹪,按齿长不小于60﹪.5、安装好的减速器在正式使用前,应进行空载部分额定载荷间歇运转1-3小时后方可正是运转,运转应平稳无冲击,无异常振动和噪声及漏油等现象,最高油温不得超过85℃.如发现故障应及时排除。
6、减速器的润滑a.蜗杆涡轮齿合一般采用浸油润滑,浸油深度,对蜗杆在蜗轮之下和之侧的蜗杆全齿高,对蜗杆在蜗轮之上的为蜗轮外径1/3。
b.减速器推荐采用兰炼33﹟润滑油。
c.减速器的润滑油油量按油标加注,并参照下表所列油量备油。
新减速器(或新更换蜗杆副)第一次使用时,当运转7-14天后需更换新油,在以后的使用中应定期检查油的质量,对于混入杂质或老化变质的油必须随时更换。
但一般情况下,对于长期连续工作的减速器,须每2-3个月更换油一次,对于每天工作时间不超过8小时的减速器,须每4-6个月换油一次。
在工作中当发现油温显著升高,温升超过60℃或油温超过85℃,油的质量下降以及产生不正常的噪音等现象时,应停止使用,检查原因,如因齿面胶合等原因所致,必须修复排除故障,更换润滑油后再用。
7、减速器应半年一次或定期检修,发现擦伤胶合及显著磨损,必须采用有限措施制止。
备件必须按图样制造,保证质量,更换新的备件后必须经过跑合和负荷试车后再正式使用。
二、润滑油的选择本减速机在投入运行前必须力II入合适的润滑油至油标中心,油位过高或过低都可能导致运转温度升高。
首次使用24小时左右,必须将润滑油放掉,用轻油(柴油或煤油)冲洗干净,然后重新加入新的润滑油,以后每隔2000至2500小时必须重新冲洗和加入新的润滑油。
滚动轴承计算题题 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】滚动轴承30题(当量动载荷、寿命计算等)1.有一轴由一对角接触球轴承支承,如图所示。
已知:齿轮的分度圆直径d =200mm ,作用在齿轮上的载荷为T F =1890N, =700N, =360N.轴承的内部轴向力S 与径向载荷的关系式为:S=T F 。
求两轴承所承受的轴向载荷。
题1图解:受力分析如图示。
题1答图1S 、2S 方向如图示所以轴承2被“压紧”,轴承1“放松”。
2.如图所示,某轴用一对30307圆锥滚子轴承,轴承上所受的径向负荷R 1=2500N ,R 2=5000N ,作用在轴上的向外负荷F a1=400N,F a2=2400N 。
轴在常温下工作,载荷平稳f P =1。
试计算轴承当量动负载大小,并判断哪个轴承寿命短些(注:30307轴承的Y=,e=,S=R/(2Y);当A/R>e 时,X=,Y=;当A/R<=e 时,X=1,Y=0)题2图解:受力分析如图示。
题2答图所以轴承2被“压紧”,轴承1“放松”。
所以11111()2500PN f P X R Y A =+=因为1P < 2P 所以轴承2寿命短些3.某齿轮轴由一对30212/P6X 轴承支承,其径向载荷分别为1r F =5200N,2r F =3800N ,方向如图所示。
取载荷系数f p =。
试计算: 两轴承的当量动负荷P 1、P 2:1)当该对轴承的预期寿命L h =18000h 时,齿轮轴所允许的最大工作转速N max =?附30212/P6X 轴承的有关参数如下: C r =59250N,e=,X=, Y=,S=Fr/(2Y)题3图解:受力分析如图示。
题3答图(1)115200152922 1.7r N YFS ===⨯ 1S 、2S 方向如图示所以轴承2被“压紧”,轴承1“放松”。
滚动轴承30题(当量动载荷、寿命计算等)1.有一轴由一对角接触球轴承支承,如图所示。
已知:齿轮的分度圆直径d =200mm ,作用在齿轮上的载荷为T F =1890N, =700N, =360N.轴承的内部轴向力S 与径向载荷的关系式为:S=0.4T F 。
求两轴承所承受的轴向载荷。
题1图解:受力分析如图示。
2V题1答图1150100300700150360100470300rA vNFF R⨯+⨯=⨯+⨯== 21700470230vrvN R FR=-=-=2111189094522HH rN R R F ===⨯=1R =2R =110.4S R = 220.4S R =1S、2S 方向如图示12400360782A N SS F +=+=>所以轴承2被“压紧”,轴承1“放松”。
1211422,782A N N SS A A F ===+=2.如图所示,某轴用一对30307圆锥滚子轴承,轴承上所受的径向负荷R 1=2500N ,R 2=5000N ,作用在轴上的向外负荷F a1=400N,F a2=2400N 。
轴在常温下工作,载荷平稳f P =1。
试计算轴承当量动负载大小,并判断哪个轴承寿命短些?(注:30307轴承的Y=1.6,e=0.37,S=R/(2Y);当A/R>e 时,X=0.4,Y=1.6;当A/R<=e 时,X=1,Y=0)题2图解:受力分析如图示。
题2答图11250078122 1.6N YRS ===⨯ 225000156322 1.6N Y R S ===⨯211278124004002781a a N S S F F+-=+-=>所以轴承2被“压紧”,轴承1“放松”。
112111781,2781a a N N SS A A F F ===+-=117810.312500e AR==< 2227810.565000e A R==< 所以11111()2500PN f PX R Y A =+=22222()6450PN f PX R Y A =+=因为1P < 2P 所以轴承2寿命短些3.某齿轮轴由一对30212/P6X 轴承支承,其径向载荷分别为1r F =5200N,2r F =3800N ,方向如图所示。
机械设计基础课程设计设计人:班级:学号:指导老师:设计要求设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。
运输机连续工作,单向运转,载荷变化不大,空载起动。
减速器小批量生产。
使用期限10年,两班制工作。
运输带容许速度误差为5%。
原始数据(所给数据的第六小组)已知条件数据输送带工作拉力Fw=2800N 输送带速度Vw=1.4m/s 卷筒轴直径D=400mm目录一.确定传动方案二.选择电动机(1)选择电动机(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动力参数三.传动零件的设计计算(1)普通V带传动(2)圆柱齿轮设计四.低速轴的结构设计(1)轴的结构设计(2)确定各轴段的尺寸(3)确定联轴器的型号(4)按扭转和弯曲组合进行强度校核五.高速轴的结构设计六.键的选择及强度校核七.选择轴承及计算轴承寿命八.选择轴承润滑与密封方式九.箱体及附件的设计(1)箱体的选择(2)选择轴承端盖(3)确定检查孔与孔盖(4)通气器(5)油标装置(6)骡塞(7)定位销(8)起吊装置十.设计小结十一.参考书目设计项目计算及说明主要结果一.确定传动方案二.选择电动机(1)选择电动机设计一用于带式运输机上的单级圆柱齿轮减速器,如图所示。
运输机连续工作,单向运转,载荷变化不大,空载起动。
减速器小批量生产。
使用期限10年,两班制工作。
运输带容许速度误差为5%。
图A-11)选择电动机类型和结构形式根据工作要求和条件,选用一般用途的Y系列三相异步电动机,结构形式为卧式封闭结构2)确定电动机功率工作机所要的功率Pw(kw)按下式计算Pw=wFwVwη1000式中,Fw=2800,Vw=1.4m/s,带式输送机的效率ηw=0.94,代入上式得:Pw =Kw=4.17Kw电动机所需功率Po(Kw)按下式计算Po=ηPw Pw=4.17Kw(2)计算传动装置的总传动比并分配各级传动比(3)计算传动装置的运动参数和动式中,η为电动机到滚筒工作轴的传动装置总效率,根据传动特点,由表2-4查得:V带传动η带=0.96 ,一对齿轮传动η齿轮=0.97,一对滚动轴承η轴承=0.99,弹性联轴器η联轴器=0.98,因此总效率η=η带η齿轮η2轴承η联轴器,即η=η带η齿轮η2轴承η联轴器=0.96x0.97x0.99x0.982=0.89Po=ηPw=Kw=4.69Kw确定电动机额定功率Pm(Kw),使Pm=(1~1.3)Po=5.12(1~1.3)=5.12~6.66Kw,查表2-1取Pm=5.5 Kw3)确定电动机转速工作机卷筒轴的转速nw为nw=DVwπ100060⨯==66.87r/min根据表2-3推存的各类转动比范围,取V带转动比i带=2~4,一级齿轮减速器i齿轮=3~5,传动装置的总传动比i总=6~20,故电动机的转速可取范围为nm=i总nm=(6~20)⨯84.93=509.58~1698.6r/min符合此转速要求的同步转速有750r/min,1000r/min,1500r/min三种,考虑综合因素,查表2-1,选择同步转速为1000r/min的Y系列电动机Y132M2-6,其满载转速为nm=960r/min电动机的参数见表A-1。
一级减速器工作原理一级减速器是机械传动系统中的重要组成部分,主要用于将高速旋转的主动轴的转速降低到所需的工作转速。
在工业生产中,一级减速器被广泛应用于各种机械设备,如汽车、风力发电机、船舶等。
下面将详细介绍一级减速器的工作原理。
首先是传递动力。
一级减速器通常由连接主动轴和被动轴的传动装置组成,主要包括齿轮和轴承等。
当主动轴以一定的转速旋转时,在减速器的作用下,传递到被动轴上,使其也以相应的转速旋转,并驱动相应的机械设备进行工作。
其次是减小转速。
一级减速器通过齿轮的传动来实现转速的减小。
其中,主动轴装有一对齿轮,分别是主动齿轮和从动齿轮。
主动齿轮固定在主动轴上,从动齿轮则与被动轴相连接。
当主动轴旋转时,主动齿轮传递动力到从动齿轮,从动齿轮再将动力传递到被动轴上。
由于齿轮的设计,主动齿轮的齿数较大,从动齿轮的齿数较小,因此从动轴的转速会比主动轴的转速小,实现了转速的减小。
最后是增大扭矩。
一级减速器通过齿轮的传动来实现扭矩的增大。
在减速器中,主动齿轮和从动齿轮的直径尺寸不同,即主动齿轮的直径较大,从动齿轮的直径较小。
由于齿轮的设计,在齿轮传动过程中,主动齿轮的转动力矩会通过齿面作用到从动齿轮上,由于从动齿轮的直径较小,因此从动轴所受到的转动力矩会比主动轴所受到的转动力矩大,实现了扭矩的增大。
在实际工作中,一级减速器还需要注意以下几个问题:齿轮配对的问题、齿轮的材料选择、润滑和散热等。
首先,齿轮配对的问题。
在设计一级减速器时,需要选择合适的齿轮配对。
齿轮传动中,要求齿轮的齿面接触充分、齿轮传动的传递效率高,并且要避免齿轮出现损伤和噪音等问题。
因此,在设计过程中需根据实际工作条件选择合适的齿轮配对。
其次,齿轮的材料选择。
齿轮通常采用高硬度和高强度的金属材料,如合金钢、硬质铸铁等。
选择适当的材料可以提高齿轮的耐磨性和抗疲劳性能,延长减速器的使用寿命。
另外,润滑和散热也是一级减速器中需要注意的问题。
在高速旋转过程中,齿轮需要进行润滑以减小摩擦和磨损,同时还需要进行热量散发以保持齿轮的正常工作温度。
1.减速器的概述减速器原理减速器是指原动机与工作机之间独立封闭式传动装置。
此外,减速器也是一种动力传达机构,利用齿轮的速度转换器,将马达的问转数减速到所要的回转数,并得到较大转矩的机构。
降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速器额定扭矩。
减速器的作用减速器的作用就是减速增矩,这个功能完全靠齿轮与齿轮之间的啮合完成,比较容易理解。
减速器的种类很多,按照传动类型可分为齿轮减速器、蜗杆减速器和行星减速器以及它们互相组合起来的减速器;按照传动的级数可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥一圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。
(1)蜗轮蜗杆减速器的土要特点是具有反向自锁功能,可以有较大的减速比,输人轴和输出轴不在同一轴线上,也不在同一平面上。
但是一般体积较大,传动效率不高,精度不高。
(2)谐波减速器的谐波传动是利用柔性元件可控的弹性变形来传递运动和动力的,体积不大、精度很高,但缺点是柔轮寿命有限、不耐冲击,刚性与金属件相比较差。
输入转速不能太高。
(3)行星齿轮减速器行星减速器一般用于在有限的空间里需要较高的转矩时,即小体积大转矩,而且它的可靠性和寿命都比正齿轮减速器要好。
(4)展开式两级圆柱齿轮减速器展开式两级圆柱齿轮减速器是两级减速器中最简单、应用最广泛的一种。
(5)两级圆锥-圆柱齿轮减速器单级圆锥齿轮减速器及两级圆锥-圆柱齿轮减速器用于需要输人轴与输出轴成90D配置的传动中。
(6)同轴式两级圆柱减速器同轴式两级圆柱减速器的径向尺寸紧凑,但径向尺寸较大。
减速器的种类繁多,如今应用于各个领域,总体的发展趋势如下:①高水平、高性能。
圆柱齿轮普遍采用渗碳淬火、磨齿,承载能力提高4倍以上,体积小、重量轻、噪声低、效率高、可靠性高。
②积木式组合设计。
基本参数采用优先数,尺寸规格整齐,零件通用性和互换性强,系列容易扩充和花样翻新,利于组织批量生产和降低成本。