桁架机械手控制系统资料
- 格式:pdf
- 大小:544.33 KB
- 文档页数:14
桁架机械手结构和设计分析桁架机械手是一种利用桁架结构设计的机械手臂,具有轻量化、高强度和高稳定性的特点,被广泛应用于工业机器人、航空航天、汽车制造等领域。
在本文中,我们将对桁架机械手的结构和设计进行分析,探讨其优点和应用前景。
一、桁架机械手结构分析1. 桁架结构桁架结构是由多个横竖交错的杆件和节点连接构成的空间结构,能够承受较大的受力,并且具有较高的刚度和稳定性。
采用桁架结构设计的机械手臂能够具有较高的承载能力和较好的运动稳定性。
2. 关节连接桁架机械手的关节连接采用智能化设计,可以实现多自由度的运动,并且具有较大的工作空间。
关节连接的结构设计也决定了机械手的精度和灵活性,因此需要进行精细的设计和优化。
3. 轨迹规划桁架机械手的轨迹规划采用先进的控制算法和传感器技术,可以实现高精度、高速度的运动控制,并且能够适应复杂的工作环境和任务需求。
桁架机械手在实际生产中具有较大的应用前景。
1. 轻量化设计桁架机械手的设计采用轻量化材料和结构设计,能够实现机械手的轻盈、高强度和高稳定性。
轻量化设计也能够减小机械手的能耗和成本,提高其工作效率和经济性。
2. 结构优化3. 控制系统三、桁架机械手的应用前景1. 工业机器人2. 航空航天桁架机械手在航空航天领域具有较大的应用前景,能够实现飞机部件的装配和维护工作,提高生产效率和质量。
桁架机械手也能够适应复杂的空间环境和任务需求,因此具有较大的市场潜力。
3. 汽车制造桁架机械手具有较高的优点和应用前景,能够满足复杂生产环境和任务需求,因此在工业自动化领域具有较大的市场需求和发展空间。
相信随着科技的不断进步和创新,桁架机械手将会在未来的工业自动化中发挥越来越重要的作用。
浅谈一下桁架机械手的电控系统设计规范特鲁门桁架机械手的电控设计、安装、调试等严格按照国家颁布的有关标准:•对各电机及设备控制总体要求:“安全、可靠、灵活、高效”;•特鲁门桁架机械手所用电器元件选用国内外优质名牌;•可编程序控制器具备上位机通讯功能,使用工业以太网通讯协议;•PLC输入、输出预留各10%以上点;•往复式提升机相应安全设计:紧急急停安全系统;•控制系统的硬件设备(如电控柜、布线等)根据布局图合理安排,不占用合理的物流处理空间与物流动线;•桁架机械手控制系统充分考虑节能措施,杜绝长时间运行、空载运行以及过载运行;•系统设备上位机和触摸屏有相应的故障提示和通讯记录,其中触摸屏有密码保护,防止外人随意操作;二.桁架机械手电控系统设计标准特鲁门电气设备和电缆的选用满足下述标准与工作环境:•周围环境温度:室内:-15℃ —+45℃•相对湿度:最大90%(+25℃)•桁架机械手所有电气装置的防护等级达到室内IP30•电气设备的设计、选择和安装符合IEC标准,特鲁门设备主要电气设备采用稳定、成熟、可靠的产品。
•所有电线两端均采用铜镀银接头,接线板上有永久清晰的编号和与接线图一致的标志。
所有电线电缆从底部进入箱、柜,柜间配线敷设在柜的上部。
填料在入口处密封,以适应粉尘环境。
•桁架机械手通过重型橡套挠性电缆经电缆拖链供电,供电电源为三相交流380V 50Hz(±10%)。
本机各辅助回路采用施耐德自动开关保护,柜内设置相应继电器和接触器。
•所有电气设备,通常不带电的金属外壳和电缆金属护套都可靠地接地或接零。
•箱、柜内电器元件排列整齐,出线端子安装在便于维修的屏(箱)内,并固定牢固,其型号、规格与设计图纸一致。
•所有机柜中的电缆将检测线、数据线、控制线和电源线分开。
通过多个设备(端子、节点)的电源接线是按照电路图的顺序进行的。
操作面板的布线也将遵循检测、数据和控制线与电源线分开的布线原则。
•盖板便于下部锁扣,也容易打开。
桁架机械手结构和设计分析1. 引言1.1 桁架机械手结构和设计分析介绍桁架机械手是一种具有高度灵活性和精准性的工业机器人,其设计和结构分析对于提高生产效率和质量具有重要意义。
本文将对桁架机械手的结构和设计进行深入分析,并探讨其工作原理、结构组成、设计要点、性能优势和应用领域。
桁架机械手通过桁架结构实现多自由度运动,可以完成复杂的工业任务。
其结构由横梁、立柱、关节和执行器等组成,通过精密的控制系统实现精准定位和操作。
设计要点包括结构刚度、负载能力、运动速度和精度等方面,关乎机器人的稳定性和性能表现。
桁架机械手具有快速响应、高精度、重复性好、节能环保等优势,适用于各种制造业领域,如汽车制造、电子设备组装、航空航天等。
通过优化设计和控制算法,桁架机械手在现代工业生产中发挥着不可替代的作用。
在深入分析和研究桁架机械手的结构和设计特点的基础上,可以更好地理解其工作原理和性能优势,为其在工业生产中的应用提供更有效的支持和指导。
2. 正文2.1 桁架机械手的工作原理分析桁架机械手是一种常用于工业生产线上的自动化装配机器人,其工作原理可以分为三个主要部分:控制系统、传动系统和执行系统。
控制系统是桁架机械手的大脑,负责接收并处理来自外部的指令,以实现机械手的各项动作。
控制系统通常由PLC(可编程逻辑控制器)或者工控机组成,通过编程来实现机械手的自动化操作。
控制系统可以根据预先设定的程序来指导机械手进行各种动作,包括抓取、放置、旋转等。
传动系统是桁架机械手的动力来源,主要由伺服电机、减速器、传动链条等组成。
伺服电机可以提供足够的力和速度,减速器可以将电机提供的高速度降低到合适的速度,传动链条将力传递给机械手各部件,使其进行相应动作。
执行系统是桁架机械手的动作执行部分,包括各种执行器、传感器等。
执行系统根据控制系统发出的指令,利用传动系统提供的动力,实现机械手的各项动作。
传感器可以监测机械手的位置、速度、力度等参数,确保机械手的准确运行。
桁架机械手的结构组成和动作原理桁架机械手主要实现机床制造过程的自动化,并采用了集成加工技术,适用于生产线的上下料、工件翻转、工件转序等。
桁架机械手由主体、驱动系统和控制系统三个基本部分组成。
按机器人结构分类为直角坐标型,机械手沿二维直角坐标系移动。
主体部分通常采用龙门式结构,由y向横梁与导轨、z向滑枕、十字滑座、立柱、过渡连接板和基座等部分组成,z向的直线运动皆为交流伺服电动机通过蜗轮减速器驱动齿轮与y向横梁、z向滑枕上固定的齿条作滚动,驱动移动部件沿导轨快速运动。
移动部件为质量较轻的十字滑座和z向滑枕,滑枕采用由铝合金拉制的型材。
横梁采用方钢型材,在横梁上安装有导轨和齿条,通过滚轮与导轨接触,整个机械手都悬挂在其上。
桁架机械手的控制核心通过工业控制器(如:PLC,运动控制,单片机等)实现。
通过控制器对各种输入(各种传感器,按钮等)信号的分析处理,做出一定的逻辑判断后,对各个输出元件(继电器,电机驱动器,指示灯等)下达执行命令,完成X,Y,Z三轴之间的联合运动,以此实现一整套的全自动作业流程。
在国内的机械加工,目前很多都是使用专机或人工进行机床上下料的方式,但是随着社会的进步和发展,科技的日益进步,产品更新换代加快,专机和人工有很多不足,占地面积大,柔性不够,生存效率低下,等等已经不能满足大批量生产的需求。
由于桁架机械手输送的速度快,加速度大,加减速时间短。
当输送较重的工件时,惯量大,因此,伺服驱动电机要有足够的驱动和制动的能力,支撑元件也要有足够的刚度及强度。
只有这样,才能使伺服电动机满足桁架机械手输送的高响应、高刚度及高精度要求。
在选择合适伺服电动机的情况下,根据物料运动的距离和运行节拍,计算出伺服系统的位移和轨迹,对驱动器PID参数进行动态调整。
桁架机械手根据接收到的位移、速度指令,经变化、放大并调整处理后,传递给运动单元,通过光纤传感器对运行状态进行实时检测,在高速搬运过程中,运动部件在极短的时间内到达给定的速度,并能在高速行程中瞬间准停,通过高分辩率式编码器的插补运算,控制机械误差和测量误差对运动精度的影响。
桁架上下料机械手使用说明书一、上下料机械手的用途本机械手为机床上下料所用。
它负责将机械手上下料轨道上的待加工工件移至机床内,待加工完毕后将加工后的工件从机床内取出,返回至机械手上下料轨道上。
二、上下料机械手的组成及作用本上下料机械手由两部分组成:1.机械手它负责将输送线上的待加工工件送到机床内,将加工完的工件从机床内取出,放回最初上料位置。
其动作有:爪开合;升降运动;左右移动。
其中手爪开合为汽缸驱动,升降运动、左右移动分别由伺服电机驱动。
2.顶升定位装置本装置附在机械手上下料轨道上,它负责将任意姿态放在上下料轨道上的曲轴以2、3拐径向上的姿态定位。
其动作有:两V型板上升,下降。
其中上升、下降动作分别位汽缸驱动。
本文所涉及的左、右方向规定:机械手在机床一侧为左方向,机械手在上料一侧为右方向。
三、上下料机械手的控制1、下料机械手信号的布置及定义(图一)图 1 上下料机械手信号布置图2、机械手控制过程(1)上料动作机械手的初始位置设定在上下料轨道的上方发出初位信号,就绪灯(HL2)亮,且手爪处于打开的状态。
当机床需要上料时,向机械手发出上料信号,升降汽缸得信号(YV2),两V型块上升,将曲轴2、3拐径顶起,然后机械手执行下降,机械手下降到右下位手爪闭合(抓取工件)、机械手上升、上升到右上位、左行、左行到左上位然后下降、下降的同时发给机床机械手运行区域信号(KA3),下降到左下位,PLC发出手爪打开信号(YV1),手爪打开将工件放到机床内。
机械手上升到左上位,同时发给机床机械手下料就绪信号(KA2),就绪灯(绿灯)亮,等待机床发给下料指令。
(2)下料动作当机床加工结束并打开机床门后,机床向机械手发出下料指令。
机械手下降的同时发给机床机械手运行区域信号(KA3),下降到左下位手爪闭合(抓取工件)、机械手上升、上升到左上位,右行,右行到右上位,升降汽缸得信号(YV2),两V型块下降至初始状态,同时机械手下降,下降到右下位发出手爪阀打开信号(YV1),手爪打开,将工件放到上下料轨道上。
桁架上下料机械手使用说明书一、上下料机械手的用途本机械手为机床上下料所用。
它负责将机械手上下料轨道上的待加工工件移至机床内,待加工完毕后将加工后的工件从机床内取出,返回至机械手上下料轨道上。
二、上下料机械手的组成及作用本上下料机械手由两部分组成:1.机械手它负责将输送线上的待加工工件送到机床内,将加工完的工件从机床内取出,放回最初上料位置。
其动作有:爪开合;升降运动;左右移动。
其中手爪开合为汽缸驱动,升降运动、左右移动分别由伺服电机驱动。
2.顶升定位装置本装置附在机械手上下料轨道上,它负责将任意姿态放在上下料轨道上的曲轴以2、3拐径向上的姿态定位。
其动作有:两V型板上升,下降。
其中上升、下降动作分别位汽缸驱动。
本文所涉及的左、右方向规定:机械手在机床一侧为左方向,机械手在上料一侧为右方向。
三、上下料机械手的控制1、下料机械手信号的布置及定义(图一)图 1 上下料机械手信号布置图2、机械手控制过程(1)上料动作机械手的初始位置设定在上下料轨道的上方发出初位信号,就绪灯(HL2)亮,且手爪处于打开的状态。
当机床需要上料时,向机械手发出上料信号,升降汽缸得信号(YV2),两V型块上升,将曲轴2、3拐径顶起,然后机械手执行下降,机械手下降到右下位手爪闭合(抓取工件)、机械手上升、上升到右上位、左行、左行到左上位然后下降、下降的同时发给机床机械手运行区域信号(KA3),下降到左下位,PLC发出手爪打开信号(YV1),手爪打开将工件放到机床内。
机械手上升到左上位,同时发给机床机械手下料就绪信号(KA2),就绪灯(绿灯)亮,等待机床发给下料指令。
(2)下料动作当机床加工结束并打开机床门后,机床向机械手发出下料指令。
机械手下降的同时发给机床机械手运行区域信号(KA3),下降到左下位手爪闭合(抓取工件)、机械手上升、上升到左上位,右行,右行到右上位,升降汽缸得信号(YV2),两V型块下降至初始状态,同时机械手下降,下降到右下位发出手爪阀打开信号(YV1),手爪打开,将工件放到上下料轨道上。
桁架机械手技术参数1. 引言桁架机械手是一种常用于工业生产线的自动化设备,用于搬运、装配和加工物体。
它具有高速、高精度和高可靠性等优点,在现代制造业中发挥着重要作用。
本文将详细介绍桁架机械手的技术参数,包括结构参数、运动参数和控制参数等内容。
2. 结构参数桁架机械手的结构参数主要包括外形尺寸、自由度和负载能力等。
2.1 外形尺寸外形尺寸是指桁架机械手在空间中的占据尺寸,通常由长度、宽度和高度来描述。
不同型号的桁架机械手具有不同的外形尺寸,根据实际需求选择合适的尺寸可以提高生产效率。
2.2 自由度自由度是指桁架机械手能够独立运动的方向数量。
常见的自由度包括平移自由度和旋转自由度。
平移自由度通常表示机械手在三维空间中沿X、Y、Z轴的运动能力,而旋转自由度表示机械手绕各轴旋转的能力。
2.3 负载能力负载能力是指桁架机械手能够承受的最大负载重量。
负载能力是选择机械手时需要考虑的重要参数,它决定了机械手可以处理的物体大小和重量范围。
3. 运动参数桁架机械手的运动参数主要包括速度、加速度和定位精度等。
3.1 速度速度是指桁架机械手在运动过程中的移动速率。
根据实际需求,可以分别设置各个自由度的线性速度和角速度。
线性速度通常以米/秒为单位表示,角速度通常以弧度/秒为单位表示。
3.2 加速度加速度是指桁架机械手在从静止状态到达最大运动速率时所需时间内的加速率。
加速度直接影响到机械手的响应时间和生产效率。
通常以米/秒^2为单位表示。
3.3 定位精度定位精度是指桁架机械手在执行任务时所能达到的位置精确程度。
它受到多种因素的影响,包括机械结构、传感器精度和控制系统的稳定性等。
定位精度通常以毫米为单位表示。
4. 控制参数桁架机械手的控制参数主要包括控制方式、控制精度和编程方式等。
4.1 控制方式控制方式是指桁架机械手的运动控制方法。
常见的控制方式包括手动操作、远程遥控和自动化程序控制等。
根据实际需求选择合适的控制方式可以提高工作效率和安全性。
桁架机械手的结构设计一、引言介绍桁架机械手的定义和应用领域,阐述桁架机械手结构设计的重要性。
二、桁架机械手的基本结构1. 桁架机械手的组成部分:支撑结构、运动机构、末端执行器。
2. 支撑结构:固定在地面上,承受整个系统的重量和力矩,保证系统稳定。
3. 运动机构:由电机、减速器、传动装置等组成,控制桁架机械手在三维空间内的运动。
4. 末端执行器:根据不同应用场景选择不同的执行器,如夹爪、喷嘴等。
三、桁架机械手的运动方式1. 平移运动:通过水平方向上的移动实现物体在平面内的移动。
2. 提升运动:通过垂直方向上移动实现物体在竖直方向上的变化。
3. 回转运动:通过旋转实现物体在水平面内或竖直平面内旋转。
四、桁架机械手关节设计1. 关节类型:旋转关节和直线关节。
2. 关节传动方式:齿轮传动、同步带传动、蜗轮蜗杆传动等。
3. 关节驱动方式:电机驱动、液压驱动、气压驱动等。
五、桁架机械手的控制系统1. 控制系统的组成部分:控制器、编码器、传感器等。
2. 控制系统的工作原理:通过编程实现对机械手的运动控制。
3. 控制系统的分类:开环控制和闭环控制。
六、桁架机械手结构设计中需要考虑的因素1. 负载能力:根据实际应用需求确定负载能力,选择合适的支撑结构和执行器。
2. 运动速度和精度:根据应用场景确定运动速度和精度要求,选择合适的电机和传感器。
3. 系统稳定性:保证整个系统在运行过程中稳定可靠,避免因失稳而导致事故发生。
七、桁架机械手结构设计案例分析以某厂家生产的桁架机械手为例,介绍其具体结构设计方案,包括支撑结构、运动机构、执行器等。
八、桁架机械手结构设计的未来发展趋势1. 智能化:引入人工智能技术,实现自主学习和自主决策。
2. 模块化:将桁架机械手模块化,方便维护和升级。
3. 轻量化:采用新型材料和结构设计,减轻整个系统的重量。
九、结论总结桁架机械手的结构设计要点和发展趋势,强调其在工业生产中的重要作用。
桁架机械手工作原理
桁架机械手是一种多关节并联机器人,由支架、执行器、关节和末端执行器等组成。
工作原理如下:
1. 结构:桁架机械手采用类似桥梁桁架结构,通过众多连接件和连接杆件组成支架,形成一个空间框架结构。
2. 关节:桁架机械手通常有多个关节,在每个关节处设置执行器,可以控制关节的转动。
关节的旋转在三维空间内构建出机械手的工作区域。
3. 传动:执行器通过传动装置将动力传递给关节,使关节能够做出相应的运动。
传动方式可以有齿轮传动、链条传动、皮带传动等多种方式。
4. 控制系统:桁架机械手的关节运动由控制系统控制。
控制系统接收输入信号,经过处理后,将控制信号发送给执行器,从而实现机械手的运动。
控制系统可以采用编程控制、传感器反馈控制等方式。
5. 末端执行器:桁架机械手的末端通常安装有执行器,可以用于抓取、搬运、装配等操作。
末端执行器可以是夹具、机械手爪、吸盘等。
总体来说,桁架机械手通过关节的连续旋转和末端执行器的操作,完成各种工业生产任务。
工作原理是通过控制系统控制关节运动,从而实现末端执行器对物体的操作。
桁架机械手具有结构简单、运动灵活和可扩展性强等特点,广泛应用于物流、装配、焊接、喷涂等领域。