现代控制理论第四章
- 格式:ppt
- 大小:1.64 MB
- 文档页数:8
第四章 控制系统的稳定性3-4-1 试确定下列二次型是否正定。
(1)3123212322212624)(x x x x x x x x x x v --+++= (2)232123222126410)(x x x x x x x x v ++---= (3)312321232221422410)(x x x x x x x x x x v --+++= 【解】: (1)04131341111,034111,01,131341111<-=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数不定。
(2)034101103031,0110331,01,4101103031<-=--->=--<-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P二次型函数为负定。
(3)017112141211003941110,010,1121412110>=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数正定。
3-4-2 试确定下列二次型为正定时,待定常数的取值范围。
312321231221211242)(x x x x x x x c x b x a x v --+++=【解】:312321231221211242)(x x x x x x x c x b x a x v --+++=x c b a x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1112121110212111,011,0111111>---->>c b a b aa 满足正定的条件为:⎪⎩⎪⎨⎧++>+>>1111111114410ca b c b a b a a3-4-3 试用李亚普诺夫第二法判断下列线性系统的稳定性。
;1001)4(;1111)3(;3211)2(;1110)1(x x x x x x x x ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=【解】: (1)设22215.05.0)(x x x v +=⎩⎨⎧≠≤==-=--=+=)0(0)0(0222221212211)(x x x x x x x x x x x x x v为半负定。
现代控制理论基础Elements of Modern Control Theory主讲:董霞 西安交通大学机械工程学院第四章 控制系统的李亚普诺夫稳定性分析控制系统的稳定性分析是系统分析的重要组成部分。
系统稳 定是控制系统正常工作的前提条件。
对单输入-单输出的线性定常系统,以传递函数或频率特性为 其数学模型,采用劳斯-胡尔维茨(Routh-Hurwitz)判据和乃 奎斯特(Nyquist)判据等来判别系统的稳定性是比较简便的。
对于多变量系统,特别是时变系统和非线性系统,以状态空间 表达式为数学模型,分析其稳定性采用的方法是李亚普诺夫 (A.M. Lyapunov)提出的稳定性理论。
1本章主要内容4.1 引言 4.2 李亚普诺夫意义下的稳定性 4.3 判别系统稳定的李亚普诺夫方法 4.4 线性系统的Lyapunov稳定性分析24.1 引言对于线性定常SISO系统,其稳定性分析可以通过经典控制理 论的Routh-Hurwitz判据和Nyquist判据来解决。
在航空、航天以及其它科技领域发展中,控制系统日益向非线 性、时变、MIMO系统延伸,其稳定性分析无法利用经典控制理论 解决,于是李亚普诺夫稳定性分析理论诞生。
1892年,李亚普诺夫发表了《运动稳定性一般问题》论文, 建立了运动稳定性的一般理论和方法。
他把稳定性分析方法归纳为两种:3一种是通过求出微分方程的解来分析系统的稳定性,是一 种间接方法,由于求解非线性时变微分方程的解是非常困难 甚至不可能的,因而此方法的应用受到一定限制。
另一种是不需要求解微分方程而给出系统稳定性的信息, 是一种直接方法。
它根据系统在其平衡状态渐近稳定时,其 能量必将随时间的增长而衰减,直至达到平衡状态而使能量 趋于最小值的原理,只要找到这样的能量函数(李亚普诺夫 函数)即可判断系统的稳定性。
由于李亚普诺夫第二法可以避开求解微分方程的困难,因而 更具重要性。
4现以一机械系统为例来说明李亚普诺夫第二法: 如图所示弹簧-质量-阻尼系统,在没有外加 控制作用时,其运动微分方程如下:kmx(t )Bmx + Bx + kx = 0弹簧-质量-阻尼系统式中,m 为质量,B 为阻尼系数,k 为弹簧刚度, x (t )为位移。