solidworks实例教程
- 格式:docx
- 大小:1.44 MB
- 文档页数:8
SOLIDWORKS2024机械设计实例教程教程本教程包含各种机械设计实例,涵盖了不同的设计领域和应用场景。
下面介绍五个实例:1.桥梁设计:本实例详细介绍了如何使用SOLIDWORKS进行桥梁设计。
从桥梁的草图到实际建模,再到材料选择和分析,读者将学习如何利用SOLIDWORKS进行桥梁设计的全部过程。
2.机械手臂设计:本实例引导读者通过使用SOLIDWORKS进行机械手臂建模和运动分析。
读者将学习如何使用SOLIDWORKS的装配功能组装机械手臂,并使用运动分析工具模拟机械手臂的运动。
3.汽车底盘设计:本实例介绍了如何使用SOLIDWORKS进行汽车底盘设计。
读者将学习如何制作汽车底盘的草图和建模,并使用SOLIDWORKS的模拟功能进行底盘的力学分析。
4.简单机械系统设计:本实例介绍了如何使用SOLIDWORKS设计简单的机械系统,比如螺旋传动和齿轮传动。
读者将学习如何通过使用SOLIDWORKS的装配和运动分析功能进行机械系统的建模和仿真。
5.管道系统设计:此实例详细介绍了如何使用SOLIDWORKS设计复杂的管道系统。
读者将学习如何使用SOLIDWORKS的管道和测量工具进行管道系统的建模和分析。
本教程不仅提供案例的详细步骤和示意图,还提供了一系列实用技巧和注意事项,以帮助读者更好地理解和掌握SOLIDWORKS的使用方法。
此外,也提供了相关的习题和练习,方便读者巩固所学知识。
总结,SOLIDWORKS2024机械设计实例教程是一本全面介绍SOLIDWORKS软件的机械设计实例的教程。
通过实际的案例和详细的步骤,读者可以快速掌握SOLIDWORKS的使用技巧,并将其应用于各种机械设计项目中。
这本教程对于机械设计师和工程师来说是一本非常有用的资料。
solidworks simulation 工程实例详解Solidworks Simulation 工程实例详解Solidworks Simulation 是一款领先的工程仿真软件,可以帮助工程师进行各种力学仿真,分析和优化设计。
本文将以Solidworks Simulation 为主题,介绍一个工程实例,详细讲解如何使用Solidworks Simulation 进行力学仿真,并分析和优化设计。
第一步:准备工作和模型建立在开始仿真之前,我们需要准备好所需的CAD模型和设计文件。
在Solidworks 中,我们可以轻松地创建3D 模型,并添加材料属性和边界条件。
以某汽车制造商为例,我们准备仿真某车辆的车身结构。
第二步:加载模型和设置材料属性在Solidworks 中,我们首先加载车身模型,并设置材料属性。
在此示例中,我们假设车身采用铝合金,因此我们选择适当的铝合金材料,并输入其材料特性,例如杨氏模量和屈服强度。
第三步:施加边界条件和加载条件接下来,我们需要施加边界条件和加载条件,以模拟实际工作条件。
在这个案例中,我们将车轮的重力和外部荷载作为加载条件。
我们可以通过创建一组静态分析来模拟这些条件,并定义相应的加载和支撑条件。
第四步:网格生成和参数设置在进行仿真之前,我们需要生成模型的网格化表示。
这个步骤是为了使仿真更精确和准确。
Solidworks 提供了强大的网格生成工具,可以根据需要进行自动或手动网格划分。
在网格生成后,我们需要设置仿真的参数。
这些参数将决定仿真的准确性和计算时间。
我们可以设置精度,收敛准则和最大迭代次数等参数。
第五步:运行仿真和分析结果一旦完成参数设置,我们就可以运行仿真并分析结果了。
Solidworks Simulation 将根据所设定的参数和加载条件进行计算并生成结果。
在完成仿真后,我们将得到车身结构在加载条件下的应力、应变和变形分布结果。
这些结果可以用来评估设计的强度和可靠性。
solidworks热力分析实例教程Solidworks是一款流行的三维CAD软件,广泛应用于机械设计领域。
它提供了多种功能和工具,可以帮助工程师设计和分析各种产品。
其中热力分析是Solidworks的重要功能之一,可以用来模拟产品在热载荷下的温度分布和流体流动情况。
本文将介绍一个实例教程,详细说明如何使用Solidworks进行热力分析。
首先,我们需要打开Solidworks软件并创建一个新的模型。
选择“文件”-“新建”-“零件”,然后选择适当的单位和模板,点击“确定”开始创建新的零件。
接下来,我们需要绘制模型的几何形状。
选择“草图”工具栏上的“草图”命令,并选择一个平面作为草图平面。
使用绘图工具创建所需的几何形状,例如直线、弧线和圆。
完成时,点击“完成草图”。
接下来,我们需要进行材料定义。
选择“特征”工具栏上的“材料”命令,并选择适当的材料类型。
在弹出的对话框中,输入材料的相关参数,例如热导率和比热容。
完成后,点击“确定”以应用材料。
现在,我们可以进行热力分析的设置。
选择“评估”工具栏上的“热力分析”命令。
在弹出的对话框中,选择适当的分析类型,例如“静态热分析”或“流体流动热分析”。
根据需要选择其他设置,例如边界条件和初始条件。
点击“运行分析”开始进行热力分析。
完成热力分析后,我们可以查看结果。
选择“评估”工具栏上的“结果”命令。
在结果面板中选择适当的结果类型,例如温度分布和流体速度。
选择要显示的结果图表并设置图表属性。
点击“应用”以显示结果。
此外,我们还可以对热力分析结果进行后处理。
选择“评估”工具栏上的“后处理”命令。
在后处理面板中选择适当的后处理操作,例如温度剖面、流体路径和热力分析报告。
点击“应用”以进行后处理。
通过以上步骤,我们可以使用Solidworks进行热力分析并获得相关结果。
这些结果可以帮助工程师评估产品在热载荷下的性能和可靠性。
同时,Solidworks还提供了进一步的功能和工具,例如优化设计和模拟变化条件的能力,以支持更复杂的热力分析需求。
图 i ia2图i提示:①拉伸圆柱一倒内外角一拉伸切槽;。
②拉伸带槽柱体一倒内外角;。
@旋转带倒角圆套_切伸切槽。
图2提示:①拉伸带孔的六边形_倒内角_倒外角;。
② 拉伸圆柱套一倒内角一倒外角一拉伸切六边;。
③ 旋转带倒角圆柱寶一拉伸切六边。
图3 图4图3提示:①拉伸带孔的六边形一倒内角一倒外角一拉伸切顶槽;② 拉伸圆柱套一倒内角_倒外角一拉伸切六边形_拉伸切顶槽;③ 旋转带倒角的圆柱赛一拉伸切六边_拉伸切顶槽。
图4提示:①拉伸圆锥衮一拉伸侧耳一切除多余部分一圆角;②旋转圆锥套_拉伸侧耳一切除多余部分_圆角。
图5 图6图5提示:旋转生成主体一拉伸切横槽一阵列横槽。
图6提示:①拉伸圆柱一倒角一拉伸切除圆柱孔;②旋转带倒角圆柱_拉伸切除圆柱孔。
图7 图8图7提示:旋转法。
图8示:①旋转阶梯轴(带大端孔)一拉伸切内六角一拉伸切外六角一切小端圆孔;②拉伸阶梯轴一拉伸切圆柱孔一拉伸切内六角一拉伸切外六角一切小端圆图9m lo图9提示:①旋转带球阶梯轴一拉伸切屮孔一拉伸切横孔一拉伸切球部槽。
图10提示:①旋转法。
图11 图12图11示:旋转生成轮土体一拉伸切轮幅一拉伸切键槽。
图12提示:旋转主体一切除拉伸孔一切除拉伸槽。
2m i3图14图13提示:①旋转。
图14提示:①旋转生成带皮带槽的轮主体一拉伸切轮幅一拉伸切键槽。
m 15m i6图15提示:①画一个方块一切除拉伸内侧面一拉伸两个柱一切除拉伸外侧而一切除拉 伸孔。
图16提示:①旋转生成齿轮主体一切除拉伸键槽_画一个齿的曲线_扫描生成一个齿 _阵列其它齿。
②从庳屮提取一保存零件。
图17m is阁17提示:旋转主体一切除拉伸孔。
3图18提示:旋转主体_切除拉伸孔。
图 19 20图19提示:旋转主体_拉伸切除六边形。
图20提示:旋转上体一拉伸切除六边形^图21图22图21提示:旋转主体1 —旋转主体2—圆角一拉伸屮间方块一切除方块屮孔3图22提示:旋转主体1 —旋转主体圆角_拉伸中间方块_切除方块屮孔。
小汽车设计一、车体设计1)打开solidworks软件,进入界面以后点击新建,选择新建“零件”单一设计学即件的30属现2)选择前视基准面,在草图上绘制车体轮廓,使用直线工具,样条曲线工具,并使用智能尺寸设定尺寸,形成的草图如下:3)使用圆角工具,对草图添加圆角,大小为R=5尺寸。
4)退出草图,使用特征工具中的拉伸命令,设置拉伸深度为200mm, 拉伸后如图;5)使用特征工具栏中的抽壳命令,使车体抽壳后如图:抽壳抽壳 1会参数(P)0.00mm6)选择车体侧面,绘制如下草图,两个D=66 的圆,并约束两圆间距为198mm。
7)使用特征工具中的拉伸,设置为完全贯穿。
8)在车体面上使用矩形工具绘制如图大小的矩形,并添加圆角R10:9)使用特征工具中的拉伸切除命令,设置深度为10mm。
10)在车体上绘制如图大小的多边形:11)使用拉伸切除,选择完全贯穿,车体完成,如下图:二、车轮设计1)新建零件图,选择前视基准面,在草图上绘制R=56 的圆,并拉伸,形成如下圆柱:2)在圆柱底面上绘制如下几个同心圆,尺寸如下;3)使用直线工具,添加延长线过圆心的两条线段。
4)选择线性草图阵列圆周草图阵列选择圆心为阵列中心,选择两条线段为阵列元素。
形成如下草图:5)选择草图工具栏中的,对草图进行裁剪,如下图:6)使用特征工具栏中的拉伸切除。
如下图:7)选择上视准面,在些面上使用直线工具和圆弧工具绘制如下图的草图,并约束直线与圆柱素线重合:8)选择特征工具栏中的旋转凸台,中心线选择圆柱的轴线,轮廓选择上步中的草图。
形成薄壁如下图:三、 轮胎的设计:1) 新建零件图,选择前视基准面,在草图上使用直线、圆角、智能尺寸等工具,绘制如下草图:和旋转-薄壁1× 旋转参数(R)基准轴<1> 单 向 360.00deg 合并结果(M 薄壁特征① 单向 1.00mm所选轮廓(S公公公?2)选择右视基准面,绘制D=56的圆:3 ) 使用特征工具中的扫描扫描,轮廓选择草图1中的封闭多边形,路径选择圆。
SolidWorks三维建模及实例教程SolidWorks是一种流行的三维建模软件,广泛用于工程设计和制造领域。
它提供了强大的建模功能和直观的用户界面,使用户能够轻松创建复杂的三维模型。
本文将介绍SolidWorks的基本建模工具和提供一些实例教程,以帮助读者更好地理解和使用该软件。
首先,我们将介绍SolidWorks的基本建模工具。
SolidWorks提供了多种创建几何形状的工具,包括绘制线条、创建圆和矩形、拉伸、旋转和剪切等。
通过将这些基本操作组合起来,用户可以创建各种复杂的三维模型。
首先,打开SolidWorks并新建一个零件。
然后,选择绘图工具栏上的“圆”工具,并在绘图平面上绘制一个圆。
接下来,选择绘图工具栏上的“矩形”工具,并在绘图平面上绘制一个矩形。
然后,选择拉伸工具,并选择要拉伸的图形以及拉伸的距离。
在我们的例子中,我们选择矩形,并拉伸它以创建一个立方体。
接下来,选择“旋转”工具,并选择要旋转的图形以及旋转轴。
在我们的例子中,我们选择立方体,并选择一个垂直于绘图平面的轴来旋转它。
通过这个简单的实例教程,我们可以看到SolidWorks的基本建模工具是如何工作的。
这些工具提供了一种直观且高效的方法,可以轻松地创建各种复杂的三维模型。
除了基本建模工具之外,SolidWorks还提供了一些高级功能,如装配和渲染。
这些功能可以进一步增强设计和展示效果。
例如,通过使用装配功能,用户可以将多个零件组合成一个完整的装配体,并对其进行运动和碰撞分析。
而渲染功能可以将模型呈现为逼真的图像,以达到更好的视觉效果。
综上所述,SolidWorks是一种功能强大的三维建模软件,可广泛应用于工程设计和制造领域。
通过掌握其基本建模工具和高级功能,用户可以轻松创建复杂的三维模型,并进一步增强设计和展示效果。
希望这篇文章对读者理解和学习SolidWorks有所帮助。
图1提示:①拉伸圆柱T倒内外角T拉伸切槽;。
②拉伸带槽柱体T倒内外角;。
③旋转带倒角圆套T切伸切槽。
图2提示:①拉伸带孔的六边形T倒内角T倒外角;。
②拉伸圆柱套T倒内角T倒外角T拉伸切六边;③旋转带倒角圆柱套T拉伸切六边。
图3提示:①拉伸带孔的六边形T倒内角T倒外角T拉伸切顶槽;②拉伸圆柱套T倒内角T倒外角T拉伸切六边形T拉伸切顶槽;③旋转带倒角的圆柱套T拉伸切六边T拉伸切顶槽。
图4提示:①拉伸圆锥套T拉伸侧耳T切除多余部分T圆角;②旋转圆锥套T拉伸侧耳T切除多余部分T圆角。
图5提示:旋转生成主体T拉伸切横槽T阵列横槽。
图1 图2图5 图6图3 图412图6提示:①拉伸圆柱T 倒角T 拉伸切除圆柱孔;②旋转带倒角圆柱T 拉伸切除圆柱孔。
图7提示:旋转法。
图8示:①旋转阶梯轴(带大端孔)T 拉伸切内六角T 拉伸切外六角T 切小端圆孔;②拉伸阶梯轴T 拉伸切圆柱孔T 拉伸切内六角T 拉伸切外六角T 切小端圆 孔。
图9 图10图9提示:①旋转带球阶梯轴T 拉伸切中孔T 拉伸切横孔T 拉伸切球部槽。
图10提示:①旋转法。
图7 图8图11 图12 图11示:旋转生成轮主体T拉伸切轮幅T拉伸切键槽。
图12提示:旋转主体T切除拉伸孔T切除拉伸槽。
3图13 图14 图13提示:①旋转。
图14提示:①旋转生成带皮带槽的轮主体T拉伸切轮幅T拉伸切键槽。
图15 图16图15提示:①画一个方块T切除拉伸内侧面T拉伸两个柱T切除拉伸外侧面T切除拉伸孔。
图16提示:①旋转生成齿轮主体T切除拉伸键槽T画一个齿的曲线T扫描生成一个齿T阵列其它齿。
②从库中提取T保存零件。
图17 图18 图17提示:旋转主体T切除拉伸孔。
4图18提示:旋转主体T切除拉伸孔。
图19 图20 图19提示:旋转主体T拉伸切除六边形。
图20提示:旋转主体T拉伸切除六边形。
图21 图22图21提示:旋转主体1 T旋转主体2T圆角T拉伸中间方块T切除方块中孔。
目录实例1:平行四通 (3)实例2:六通管 (11)实例3:重型吊钩 (20)Solidworks曲面实例教程实例1:平行四通1.前视基准面建立如下草图。
退出草图。
2.在其上端点建立基准面3.在上面建立的基准面上建立如下草图。
4.在右视基准面上建立如下草图圆弧。
5.在上视基准面上建立如下草图圆弧6.对步骤3的草图,深度20mm,如下图.7.前视基准面上建立草图,转化引用其中的一段圆弧,如下图。
然后,深度20mm,效果如下图。
8.重复上面的相似步骤,分别,深度20mm,形成如下的3个曲面。
9.,将上面形成的空间闭合边界用曲面填充满。
10. 展开设计树上的曲面文件夹,将下图中的几个工具曲面删除。
依次选中前后相连的5条边线确保填充面与初始面(蓝面)相切做这几个面的目的就是为了形成与面相切或曲率相等的条件,用完后就可以删除了11.镜像完成的曲面实体。
连续3次镜像,效果分别如下。
12. 用,把上下四个口封堵住。
13.缝合曲面。
选中曲面文件夹下所有的曲面,进行缝合。
14. 最终效果如下图。
2个半圆弧组成一个闭合区域若缝合后的曲面形成封闭的空间腔体,软件会自动填充,形成实体实例2:六通管1.在某个默认基准面上,建立Φ60mm的圆,然后等距50mm,拉伸曲面,如下图。
管段开始处距草图平面50mm管段长度100mm2.在三个默认基准面上依次重复上面的操作,最后形成如下的模型。
3.在三个默认基准面上依次建立如下的草图。
4. 分割管壁面。
草图线穿过管壁,以便分割管壁面5.重复步骤3、4,对6个管段进行分割,完成结果如下。
6.新开一个3D草图,用样条曲线,连接下图中两点,之后添加几何关系。
相切依照上面的做法,最终完成下面的空间线条。
7.分别选择3D草图中的部分线段,拉伸曲面,形成下面的3个蓝色面8.选择3D草图中心封闭轮廓,进行。
形成下面的红色面9.选择一个空间闭环进行填充,完成效果如下图123410.重复上面的操作,对剩余的两个轮廓进行填充,最后形成下面的图形。
1.打开solidworks2014软件,新建一个零件模型文件,点击拉伸命令,选择前视图,绘制草图,利用中心矩形以及相等约束矩形,然后拉伸矩形,为两侧对称。
如图。
2.在前视图基准面,绘制图形,绘制完毕后,拉伸切除,两侧对称,如下图所示。
在上视图绘制一个圆形,拉伸凸台。
3.在上述拉伸出来的圆柱的上表面,绘制矩形,利用中心矩形的工具,绘制图形,然后拉伸矩形,如图。
4.在右视图基准面绘制草图,绘制一条直线,设置相关的距离参数,完成后选择特征筋,然后进行镜像,镜像该筋。
5.在特征拉伸1的上表面,绘制圆形,拉伸类型为切除,选择完
全贯穿。
在特征拉伸3的上表面,绘制圆形,同样为拉伸切除。
6.倒圆角,圆角的大小为5,在特征拉伸1的上表面绘制4个圆,拉伸切除,成为4个通孔。
在如下图所示的位置继续拉伸切除通孔。