第二章双曲型方程资料
- 格式:ppt
- 大小:3.52 MB
- 文档页数:10
双曲型偏微分方程
双曲型偏微分方程是描述振动或波动现象的一类重要的偏微分方程。
双曲型偏微分方程解可以分解为振动与振动相乘,或指数函数与指数函数相乘的形式,一般能量无穷。
基本介绍
双曲型偏微分方程简称双曲型方程,是偏微分方程的一种类型。
它主要用于描述振动、波动现象与相应的运动过程。
它的一个典型特例是波动方程和n=1时的波动方程。
可用来描述弦的微小横振动,称为弦振动方程。
这是最早得到系统研究的一个偏微分方程。
介定
双曲型方程主要是按偏微分方程的系数特性来介定的。
当自变量个数或方程的阶数不同时,双曲型方程可以有不同的定义方式。
二阶线性偏微分方程
对于二阶线性偏微分方程
有m 个不同的实根,则称上述高阶方程为双曲型方程。
相应地,可以通过自变量的坐标可以定义关于任意方向的双曲型方程。
按上述方式定义的双曲型方程强调了特征方程有n 个单重实根,它也称为严格双曲型方程(strictly hyperbolic equation)或称完全双曲型方程,彼得洛夫斯基意义下单双曲方程。
性质。
双曲面方程及其应用1. 引言双曲面是数学中的一种常见的曲面形式,它具有许多有趣的性质和应用。
本文将介绍双曲面的方程形式以及它们在现实生活中的一些应用。
2. 双曲面方程的形式双曲面的一般方程形式为:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$其中$a$、$b$和$c$是双曲面的参数,决定了曲面的形状和大小。
当$a=b=c$时,双曲面成为一个旋转双曲面。
3. 双曲面的特性双曲面具有几个重要的特性:- 双曲线截痕:当我们在双曲面上选择一个平面与之相交,所得到的交线是一个双曲线。
这个性质使得双曲面在几何学中有着广泛的应用。
双曲线截痕:当我们在双曲面上选择一个平面与之相交,所得到的交线是一个双曲线。
这个性质使得双曲面在几何学中有着广泛的应用。
- 非正弧度曲率:在双曲面上,曲率并不是处处相等,而是依赖于曲面上任一点的切线方向。
这使得双曲面在物体建模、光学等领域中有重要的应用。
非正弧度曲率:在双曲面上,曲率并不是处处相等,而是依赖于曲面上任一点的切线方向。
这使得双曲面在物体建模、光学等领域中有重要的应用。
- 双曲面类型:根据$a^2+b^2$和$c^2$的大小关系,双曲面可以分为椭圆双曲面、抛物双曲面和双曲双曲面三种类型。
双曲面类型:根据$a^2+b^2$和$c^2$的大小关系,双曲面可以分为椭圆双曲面、抛物双曲面和双曲双曲面三种类型。
4. 双曲面的应用双曲面在许多科学和工程领域中都有广泛的应用。
以下是其中几个常见的应用:- 物体建模:双曲面可以用于建模具有特殊形状的物体,如飞机机翼、汽车车身等。
双曲面的形状可以通过调整参数$a$、$b$和$c$来实现。
物体建模:双曲面可以用于建模具有特殊形状的物体,如飞机机翼、汽车车身等。
双曲面的形状可以通过调整参数$a$、$b$和$c$来实现。
- 无线通信:双曲面是电磁波的重要的反射面之一,可以用于折射、传播和定向无线信号。
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一双曲线的几何性质 (1)范围、对称性由标准方程12222=-b y a x 可得22a x ≥,当a x ≥时,y 才有实数值;对于y 的任何值,x 都有实数值。
这说明从横的方向来看,直线a x a x =-=,之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。
双曲线不封闭,但仍称其对称中心为双曲线的中心。
(2)顶点顶点:()()0,,0,21a A a A -,特殊点:()()b B b B ,0,,021-。
实轴:21A A 长为a 2,a 叫做半实轴长;虚轴:21B B 长为b 2,b 叫做虚半轴长。
如右图所示,在双曲线方程12222=-by a x 中,令0=y 得a x ±=,故它与x 轴有两个交点()0,1a A -,()0,2a A ,且x 轴为双曲线12222=-b y a x 的对称轴,所以()0,1a A -与()0,2a A 其对称轴的交点,称为双曲线的顶点(一般而言,曲线的顶点均指与其对称轴的交点),而对称轴上位于两顶点间的线段21A A 叫做双曲线12222=-by a x 的实轴长,它的长是a 2。
在方程12222=-by a x 中,令0=x ,得22b y -=,这个方程没有实数根,说明双曲线和y y 轴没有交点。
但y 轴上的两个特殊点()()b B b B ,0,,021-,这两个点在双曲线中也有非常重要的作用把线段21B B 叫做双曲线的虚轴,它的长是b 2,要特别注意不要把虚轴与椭圆的短轴混淆。
双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。
(3)渐近线如上图所示,过双曲线12222=-by a x 的两顶点21,A A ,作y 轴的平行线a x ±=,经过21,B B 作x 轴的平行线b y ±=,四条直线围成一个矩形,矩形的两条对角线所在直线方程是⎪⎭⎫⎝⎛=±±=0b y a x x a b y ,这两条直线就是双曲线的渐近线。
双曲型方程求解方法及其应用一、双曲型方程简介双曲型方程是一类二阶偏微分方程,其基本形式为:$$\dfrac{\partial^2 u}{\partial t^2}-\dfrac{\partial^2 u}{\partial x^2}=0$$双曲型方程的特点是存在两个独立的传播方向,解的形式通常是由两个波的叠加而成。
由于双曲型方程与空间和时间的关系有关,因此在物理、工程和科学领域中有着广泛的应用。
其中,双曲型方程的求解方法是求解偏微分方程的重要研究内容之一。
二、双曲型方程的求解方法对于双曲型方程,我们需要采取适当的数学工具来解决。
下面介绍几种常用的双曲型方程求解方法。
1. 分离变量法分离变量法是求解偏微分方程的常用方法之一,对于双曲型方程也可以采用分离变量法求解。
例如,我们可以假设$u(x,t)=X(x)T(t)$,将偏微分方程代入得到:$$\dfrac{T''}{T}=\dfrac{X''}{X}=-k^2$$这是两个常微分方程,可以通过求解得到$T(t)$和$X(x)$的通解,再合并得到$u(x,t)$的通解。
其中,使用的边界条件和初值条件对应具体问题的不同而有所不同。
2. 特征线法特征线法是一种求解双曲型偏微分方程的有效方法。
其基本思想是沿着方程组的特征线进行积分,将原方程转化为一维常微分方程。
例如,对于双曲型方程$\dfrac{\partial^2 u}{\partial t^2}-\dfrac{\partial^2 u}{\partial x^2}=0$,经过变换得到:$$\dfrac{\mathrm{d}u}{\mathrm{d}t}+\dfrac{\mathrm{d}u}{\mathrm{d}x}=0$$将$\dfrac{\mathrm{d}x}{\mathrm{d}t}=1$和$\dfrac{\mathrm{d}t}{\mathrm{d}u}=1$代入得到方程:$$\dfrac{\mathrm{d}x}{\mathrm{d}u}=\dfrac{1}{2},\dfrac{\mathrm{d}t}{\mathrm{ d}u}=-\dfrac{1}{2}$$由此可以得到$x=t+c_1,u=c_2$为特征线,设$u=f(x-t)$,则原方程变成$\dfrac{\mathrm{d}^2 f}{\mathrm{d} x^2}=0$,通解为$f(x-t)=k_1 x+k_2$,因此原方程的通解为$u(x,t)=k_1 x+k_2$。
案例(二)——精析精练课堂 合作 探究重点难点突破知识点一 双曲线的定义平面内与两个定点1F ,2F 的距离的差的绝对值等于常数(小于21F F 且不等于零)的点 的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。
注意 (1)在此定义中“常数要大于0且小于21F F ”这一限制条件十分重要,不可去 掉。
(2)如果定义中常数改为等于21F F ,此时动点轨迹是以1F 、2F 为端点的两条射线(包 括端点)。
(3)如果定义中常数为0,此时动点轨迹为线段1F 2F 的垂直平分线。
(4)如果定义中常数改为大于21F F ,此时动点轨迹不存在。
(5)若定义中“差的绝对值”中的“绝对值”去掉的话,点的轨迹成为双面线的一支。
(6)设()y x M ,为双曲线上的任意一点,若M 点在双曲线右支上,则()02,2121>=->a a MF MF MF MF ;若M 在双曲线的左支上,则a MF MF MF MF 2,2121-=-<,因此得a MF MF 221±=-,这是与椭圆不同的地方。
知识点二 双曲线的标准方程1.如何正确理解双曲线的标准方程的两种形式(1)通过比较两种不同类型的双曲线方程()0,12222>>=-b a by a x (焦点在x 轴上)和()0,12222>>=-b a b x a y (焦点在y 轴上),可以看出,如果2x 项的系数是正的,那么焦点就在 x 轴上;如果2y 项的系数是正的,那么焦点就在y 轴上。
对于双曲线,a 不一定大于b ,因此不能像椭圆那样通过比较分母的大小来判定焦点在哪一条 坐标轴上。
焦点在x 轴上的方程,只要将y x ,互换就能得到 焦点在y 轴上的方程。
(2)无论双曲线的焦点在哪个坐标轴上,标准方程中的c b a ,,三个量都满足222b ac +=所以c b a ,,恰好构成一个直角三角形的三边,且c 为斜边,如图所示。