中医药统计学第1章题解知识讲解
- 格式:doc
- 大小:323.00 KB
- 文档页数:6
中医药统计学十四五课后题答案练习题答案第一章医学统计中的基本概念练习题一、单向选择题1. 医学统计学研究的对象是A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 疾病的预防与治疗E.有变异的医学事件2. 用样本推论总体,具有代表性的样本指的是A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用配对方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于等级资料的是A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是A. 测量不准引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由偶然因素引起的误差5. 收集资料不可避免的误差是A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差答案: E E D E A二、简答题1.常见的三类误差是什么?应采取什么措施和方法加以控制?[参考答案]常见的三类误差是:(1)系统误差:在收集资料过程中,由于仪器初始状态未调整到零、标准试剂未经校正、医生掌握疗效标准偏高或偏低等原因,可造成观察结果倾向性的偏大或偏小,这叫系统误差。
要尽量查明其原因,必须克服。
(2)随机测量误差:在收集原始资料过程中,即使仪器初始状态及标准试剂已经校正,但是,由于各种偶然因素的影响也会造成同一对象多次测定的结果不完全一致。
譬如,实验操作员操作技术不稳定,不同实验操作员之间的操作差异,电压不稳及环境温度差异等因素造成测量结果的误差。
对于这种误差应采取相应的措施加以控制,至少应控制在一定的允许范围内。
一般可以用技术培训、指定固定实验操作员、加强责任感教育及购置一定精度的稳压器、恒温装置等措施,从而达到控制的目的。
(3)抽样误差:即使在消除了系统误差,并把随机测量误差控制在允许范围内,样本均数(或其它统计量)与总体均数(或其它参数)之间仍可能有差异。
《中医药统计学》习题解答1 总体分布题解习题1.1解答1. 对三人做舌诊算一次试验。
设A ={3人正常}、B ={至少1人不正常}、C ={只有1人正常}、D ={只有1人不正常}。
分析这四个事件中的互斥事件、对立事件,描述事件A +D 、BD 各表示什么意思?解 设A i ={第i 人正常},用A i 表示A 、B 、C 、D 得到A ={三人正常}=321A A AB ={至少一人不正常} =321321321321321321321A A A A A A A A A A A A A A A A A A A A A ++++++C ={只有一人正常}=321321321A A A A A A A A A ++D ={只有一人不正常}=321321321A A A A A A A A A ++可以看出,互斥事件有A 与B ,A 与C ,A 与D ,C 与D ,A 与C 、D ;对立事件有A 与B 。
A +D =321A A A +321321321A A A A A A A A A ++={至少2人正常}={至多1人不正常}BD =321321321A A A A A A A A A ++={只有1人不正常}={只有2人正常}=D2. 我国四个地区一年的生育情况如表1-2所示,求生男孩的概率。
解 设A ={生男孩},计算得到)()(A f A P n ≈9645731022811994101990993496986528072514765513654++++++==0.5169 3. 在40个药丸中有3丸失效,任取5丸,求其中有2丸失效的概率。
解 这是古典概率模型。
在40个药丸中任取5丸,每一个药丸均可能被取到,且被取到表1-2 四个地区生育情况地区编号生育总数 生男孩数 1990 993 513 654 2994 101 514 765 31 022 811 528 072 4 964 573 496 986的可能性相等,可能结果有540C 个基本事件。
表1-1 ××病感染按性别、年龄整理表(问题表) 性别 年龄(岁) 合计 男 女 0~ 5~ 10~ 15~ 调查人数感染人数表1-2 ××病感染按性别、年龄整理表(正确表) 年龄组 男 女 调查人数 感染人数 调查人数 感染人数0~ 5~ 10~ 15~ 合计 第一节 中医药统计学的意义和内容中医药统计学(Statistics for Traditional Chinese Medicine )是将数理统计的原理和方法应用于生物医药特别是中医中药科研,收集、整理和分析资料,推断和表达不确定现象客观数量规律的一门应用学科。
中医药统计学的主要内容包括统计学基本理论和统计分析方法,统计分析方法包括统计设计(statistical design )、统计描述(statistical description )和统计推断(statistical inference ),表达因素间的关系、生存分析、多元分析等。
例如,表1-1,由于将性别与年龄这两个有联系的项目分割开来,计算不出不同性别、年龄的感染率,丧失了有价值的信息,为了克服上述缺点,应采用表1-2的整理表。
又如,第六章例6-1表6-2两种疗法的疗效资料,治愈率按治愈数/治疗数计算,从病情重、中、轻三种情形来看,都是甲疗法治愈率低于乙疗法。
但是,合计起来却是乙疗法治愈率低于甲疗法。
不作统计处理,就不能得到正确的疗效结论。
再如,第九章例9- 表9- 资料,怎样判断降压宁的疗效,需要一定的理论和方法,才能从表9- 的观测数据推理到任何高血压患者服用降压宁后的疗效。
因此,国家中医药管理局规定,未经统计处理的数据是无效数据。
中医药科研的基本步骤包括立题,设计,实施试验,收集整理分析试验所得信息和资料,均需用到中医药统计学的思维和方法。
我国的《药品注册管理办法》规定,新药临床试验必须自始至终有统计学人员参与;生物医药实验室研究、临床研究和医药公共事业管理都要寻求统计学家的帮助。
医学统计学知到章节测试答案智慧树2023年最新湖南中医药大学第一章测试1.参数是指总体的统计指标。
()参考答案:对2.概率的取值范围为[-1,1]。
()参考答案:错3.统计学中资料类型包括()参考答案:等级资料;计数资料;计量资料4.医学统计学的研究内容包括研究设计和研究分析两个方面。
()参考答案:对5.样本应该对总体具有代表性。
()参考答案:对第二章测试1.抽样单位的数目越大,抽样误差越大。
()参考答案:错2.以下不属于概率抽样的是()参考答案:雪球抽样3.整群抽样的优点()参考答案:易于理解,简单易行4.概率抽样主要包括简单随机抽样、分层抽样、系统抽样、整群抽样和便利抽样。
()参考答案:错5.进行分层抽样时要求()参考答案:各群内差异越小越好第三章测试1.在正态性检验中,P>0.05时可认为资料服从正态分布。
()参考答案:对2.在两样本均数比较的t检验中,无效假设是()参考答案:两总体均数相等3.在两样本率比较的卡方检验中,无效假设是()参考答案:两总体率相等4.配对设计资料,若满足正态性和方差齐性。
要对两样本均数的差别作比较,可选择()参考答案:配对t检验5.用最小二乘法确定直线回归方程的原则是各观测点距直线纵向距离平方和最小。
()参考答案:对第四章测试1.定量数据即计量资料()参考答案:对2.定量数据的统计描述包括集中趋势、离散趋势和频数分布特征。
()参考答案:对3.定量数据的总体均数的估计只有点估计这一种方法。
()参考答案:错4.定性数据是指计数资料。
()参考答案:错5.动态数列是以系统按照时间顺序排列起来的统计指标。
()参考答案:对第五章测试1.单个样本t检验要求样本所代表的总体服从正态分布、()参考答案:对2.配对t检验要求差值d服从正态分布。
()参考答案:对3.Wilcoxon符号秩和检验属于非参数检验。
()参考答案:对4.配对设计可以用于控制研究误差。
()参考答案:对5.配对t检验中,P<0.05时说明两处理组差异无统计学意义。
医学统计学(安徽中医药大学)智慧树知到课后章节答案2023年下安徽中医药大学第一章测试1.医学统计工作的步骤为( )A:统计研究调查、统计描述、统计推断、统计图表B:统计资料收集、整理资料、统计描述、统计推断 C:统计研究设计、统计描述、统计推断、统计图表 D:统计研究调查、搜集资料、整理资料、分析资料 E:统计研究设计、搜集资料、整理资料、分析资料答案:统计研究设计、统计描述、统计推断、统计图表2.统计分析的主要内容有( )A:区间估计与假设检验 B:统计图表和统计报告 C:统计描述和统计推断 D:统计描述和统计图表 E:统计描述和统计学检验答案:统计描述和统计推断3.医学统计学研究的对象是( )A:医学中的小概率事件 B:疾病的预防与治疗 C:动物和人的本质 D:有变异的医学事件 E:各种类型的数据答案:疾病的预防与治疗4.用样本推论总体,具有代表性的样本指的是( )A:总体中最容易获得的部分个体 B:在总体中随意抽取任意个体 C:用配对方法抽取的部分个体 D:依照随机原则抽取总体中的部分个体 E:挑选总体中的有代表性的部分个体答案:依照随机原则抽取总体中的部分个体5.下列观测结果属于等级资料的是( )A:病情程度 B:四种血型 C:住院天数 D:脉搏数 E:收缩压测量值答案:收缩压测量值6.对于无限总体我们采用抽样方式进行研究,而对于有限总体,不用抽样()A:对 B:错答案:错7.统计量是随机的,会随着抽样方法、样本量和测量方法而发生变化()A:对B:错答案:对8.系统误差不可以避免,也没有倾向性()A:错 B:对答案:错9.随机误差因为随机而没有规律,因此无法估计和控制()A:错 B:对答案:对10.小概率事件原理是统计推断的基础,基于其推断的结果,依然会出错的可能性()A:错 B:对答案:对11.同一变量的不同数据类型是可以转换的()A:对 B:错答案:对12.只要进行随机化抽样,得到的样本统计量就有很好的代表性A:对 B:错答案:对第二章测试1.从偏态总体抽样,当n足够大时(比如n > 60),样本均数的分布()A:近似正态分布 B: 近似对称分布 C:仍为偏态分布 D: 近似对数正态分布答案:仍为偏态分布2.医学中确定参考值范围时应注意()A:正态分布资料不能用均数标准差法 B:偏态分布资料不能用百分位数法 C:正态分布资料不能用百分位数法 D:偏态分布资料不能用均数标准差法答案:偏态分布资料不能用百分位数法3.计算样本资料的标准差这个指标()A:不会比均数小 B:不会比均数大 C:决定于均数 D:不决定于均数答案:决定于均数4.中位数永远等于均数A:错 B:对答案:对5.中位数永远等于P50A:对 B:错答案:错6.标准差大于标准误A:对 B:错答案:错7.标准误大,则抽样误差大A:错 B:对答案:对8.数值变量分布包括集中趋势和离散趋势两方面A:对 B:错答案:错第三章测试1.影响总体率估计的抽样误差大小的因素是()A: 检验的把握度和样本含量 B:总体率估计的容许误差 C:总体率和样本含量 D: 样本率估计的容许误差 E: 检验水准和样本含量答案: 检验的把握度和样本含量2.检验效能是指如果总体间确实存在差异,按照检验水准α能够发现该差异的能力()A:错 B:对答案:错3.如果H0假设为μ1=μ2,那么H1假设可能为( )A:μ1 B:μ1>μ2 C:μ1≠μ2D:μ1≥μ2 E:μ1≤μ2 答案:μ1;μ1≠μ2;μ1≥μ24.假设检验中α和β是跷跷板的关系A:错 B:对答案:错5.参数估计和假设检验均可以进行总体参数是否有差异的判定方法()A:对 B:错答案:错6.总体率参数估计肯定可以用正态分布法A:对 B:错答案:错7.在抽样研究中,当样本例数逐渐增多时()A:标准误逐渐减小 B:标准误逐渐加大 C:标准差逐渐加大 D:标准差逐渐减小答案:标准误逐渐减小8.当n足够大,且np和n(1-p)均大于5时,总体率的95%可信区间用()式求出。
医学统计学知识点整理第一节统计学中基本概念一、同质与变异同质:统计研究中,给观察单位规定一些相同得因素情况。
如儿童得生长发育,规定同性别、同年龄、健康得儿童即为同质得儿童。
变异:同质得基础上个体间得差异。
“同质”就是相对得,就是客观事物在特定条件下得相对一致性,而“变异”则就是绝对得二、总体与样本1、总体:就是根据研究目得所确定得,同质观察对象(个体)所构成得全体。
2、样本:就是从总体中随机抽取得部分观察单位变量值得集合。
三、参数与统计量总体参数:根据总体个体值统计计算出来得描述总体得特征量。
用希腊字母表示。
μ、δ、π 样本统计量:根据样本个体值统计计算出来得描述样本得特征量。
用拉丁字母表示。
X、S、p 总体参数一般就是不知道得,抽样研究得目得就就是用样本统计量来推断总体参数,包括区间估计与假设检验四、误差:实测值与真值之差★1、随机误差:就是一类不恒定得、随机变化得误差,由多种尚无法控制得因素引起。
随机测量误差、抽样误差。
2、系统误差:就是一类恒定不变或遵循一定变化规律得误差,其产生原因往往就是可知得或可能掌握得。
3、非系统误差:过失误差,可以避免或清除。
五、概率就是用来描述事件发生可能性大小得一个量值,常用P表示。
概率取值0~1。
统计上一般将P≤0、05或P≤0、01得事件称为小概率事件,表示其发生得概率很小,可以认为在一次抽样中不会发生。
第二节统计资料得类型★变量:确定总体之后,研究者应对每个观察单位得某项特征进行观察或测量,这种特征能表现观察单位得变异性,称为变量。
一、数值变量资料又称为计量资料、定量资料:观测每个观察单位某项指标得大小而获得得资料。
表现为数值大小,带有度、量、衡单位。
如身高(cm)、体重(kg)、血红蛋白(g)等。
二、无序分类变量资料又称为定性资料或计数资料:将观察对象按观察对象得某种类别或属性进行分组计数,分组汇总各组观察单位后得到得资料。
分类:二分类:+ -;有效,无效; 多分类:ABO血型系统特点:没有度量衡单位,多为间断性资料【例题单选】某地A、B、O、AB血型人数分布得数据资料就是( )A、定量资料B、计量资料C、计数资料D、等级资料【答案】C【解析】ABO血型系统人数分布资料属于无序分类变量资料,又称为计数资料。
中医统计学习题与答案《中医统计学》练习题第一部分绪论一、最佳选择题1.抽样研究是一种科学、高效的方法,目的是研究(B )A.样本B.总体C.抽样误差D.概率2.由样本推断总体,样本应该是(D )A.总体中的典型部分B.总体中有意义的部分C.总体中有价值的部分D.总体中有代表性的部分3.统计上所说的系统误差、过失误差、测量误差和抽样误差四种误差,在实际工作中(C )A.四种误差都不可避免B.过失误差和测量误差不可避免C.测量误差和抽样误差不可避免D.系统误差和抽样误差不可避免4.统计描述是指(C )A.比较指标的差别有无显著性B.估计参数C.用统计指标描述事物的特征D.判断无效假设是否成立5.统计推断是指(D )A.从总体推断样本特征B.从总体推断总体特征C.从样本推断样本特征D.从样本推断总体特征6.对某样品进行测量时,由于仪器事先未校正,造成测量结果普遍偏高,这种误差属于(A )A.系统误差B.随机测量误差C.抽样误差D.过失误差7.随机抽样的目的是(D )A.消除系统误差B.消除测量误差C.消除抽样误差D.减小样本偏性8.对某地200名16岁中学生口腔检查,发现患龋齿的人数为54人,该资料属于(B )A.数值变量资料B.无序分类变量资料C.有序分类变量资料D.三个都不是9.数值变量资料是(C )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料10.无序分类变量资料是(B )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料11.有序分类变量资料是(D )A.用仪器测量出来的资料B.按观察单位的类别,清点各类观察单位数的资料C.用定量方法测定观察单位某个变量的大小的资料D.按观察单位的等级,清点各等级观察单位数的资料12.下列哪种不属于数值变量资料(C )A.红细胞数B.血钙浓度C.阳性人数D.脉搏13.下列哪种属于有序分类变量资料(A )A.治疗痊愈、有效、无效人数B.各血型人数C.白细胞分类百分比D.贫血和不贫血人数二、判断题1.统计工作的主要内容是对资料进行统计分析。
中医药统计学与软件应用笔记重点绪论统计学家 C.R.劳先生在《统计与真理——怎样运用偶然性》中指出:在终极的分析中,一切知识都是历史;在抽象的意义下,一切科学都是数学;在理性的基础上,所有的判断都是统计学。
一、统计学的概念、发展简史及主要内容1.统计学:是以概率论和数理统计为基础,对研究对象的数据进行搜集、整理和分析,揭示事物总体特征和规律的方法论科学。
2.中医统计学:是以概率论和数理统计的原理和方法为基础,以中医理论与实践为主体,通过对数据的搜集、整理和分析,达到探讨中医理论与方法内在规律的目的。
3.统计学的发展趋势:①依赖数学。
②与计算机技术结合。
③与实质性学科、统计软件、现代信息相结合,所发挥的功效日益增强。
④从描述事物现状、反映事物规律,向抽样推断、预测未来变化方向发展。
4.统计学的主要内容⑴研究设计:专业设计、统计学设计⑵统计学的基本概念、原理和思维方法⑶统计描述:统计指标、统计图表⑷统计推断:参数估计、假设检验二、统计工作的基本步骤和特点1.统计工作的基本步骤(1)统计学设计(2)搜集资料:①常规保存的记录;②现场调查记录;③实验/试验记录;④医学文献/网络信息。
(3)整理资料:①检查;②审核;③计算机检查;④分组。
(4)分析资料2.统计学认识现象的特点(1)数量性:(2)群体性:(3)具体性:(4)概率性:三、统计学中常用的概念1.总体(population):是根据研究目的确定的同质观察单位的集合。
例①河北省18岁男性的身高和体重分布②某性红地2005年健康成年男细胞数③河北省18岁身高在170-175cm男性的体重分布⑴有限总体:指总体限定于特定的空间、时间范围内有限个观察单位。
⑵无限总体:指没有空间和时间范围限制的总体。
2.样本(sample):从总体中随机抽取的有代表性的一部分观察单位的集合。
样本的可靠性:指总体确定后,样本中的每一个观察单位确属预先规定的同质总体。
样本的代表性:即样本能够充分反映总体的真实情况。
《中医药统计学》习题解答1 总体分布题解习题1.1解答1. 对三人做舌诊算一次试验。
设A ={3人正常}、B ={至少1人不正常}、C ={只有1人正常}、D ={只有1人不正常}。
分析这四个事件中的互斥事件、对立事件,描述事件A +D 、BD 各表示什么意思?解 设A i ={第i 人正常},用A i 表示A 、B 、C 、D 得到A ={三人正常}=321A A AB ={至少一人不正常}=321321321321321321321A A A A A A A A A A A A A A A A A A A A A ++++++ C ={只有一人正常}=321321321A A A A A A A A A ++ D ={只有一人不正常}=321321321A A A A A A A A A ++可以看出,互斥事件有A 与B ,A 与C ,A 与D ,C 与D ,A 与C 、D ;对立事件有A 与B 。
A +D =321A A A +321321321A A A A A A A A A ++={至少2人正常}={至多1人不正常}BD =321321321A A A A A A A A A ++={只有1人不正常}={只有2人正常}=D2. 我国四个地区一年的生育情况如表1-2所示,求生男孩的概率。
解 设A ={生男孩},计算得到)()(A f A P n ≈9645731022811994101990993496986528072514765513654++++++==0.51693. 在40个药丸中有3丸失效,任取5丸,求其中有2丸失效的概率。
解 这是古典概率模型。
在40个药丸中任取5丸,每一个药丸均可能被取到,且被取到表1-2 四个地区生育情况 地区编号生育总数 生男孩数 1 990 993 513 654 2 994 101 514 765 3 1 022 811 528 072 4964 573496 986的可能性相等,可能结果有540C 个基本事件。
设A ={5丸取到2丸失效},则A 包含33723C C 个基本事件,由古典定义得到54033723)(C C C A P ==0.0354 4. 在100支针剂中有10支次品,任取5支,求全是次品的概率及有2支次品的概率。
解 这是古典概率模型。
在100支针剂中任取5支,可能结果有5100C 个基本事件。
设A ={5支全次品}、B ={5支取2支次品},则A 、B 包含510C 、390210C C 个基本事件,得5100510)(C C A P ==0.000003,5100390210)(C C C B P ==0.0702 5. 药房有包装相同的六味地黄丸100盒,其中5盒为去年产品、95盒为今年产品。
随机取出4盒,求有1盒或2盒陈药的概率,再求有陈药的概率。
解 这是古典概率模型。
在100盒六味地黄丸中任取4盒,可能结果有4100C 个基本事件。
设A k ={有k 盒陈药},A ={取4盒有1或2盒陈药}、B ={取4盒有陈药},得到4100295254100395152121)()()()(C CC C C C A P A P A A P A P +=+=+==0.1879 51004950501)(1)(C CC A P B P -=-==0.18816. 某人有两盒火柴,吸烟时从任一盒中取一根火柴。
经过若干时间以后发现一盒火柴已经用完。
如果最初两盒中各有n 根火柴,求这时另一盒中还有r 根火柴的概率。
解 这是古典概率模型。
在两盒2n 根火柴中,每次从任一盒中取一根火柴,取2n -r 次可能结果有r n -22个基本事件。
设A ={1盒用完另1盒有r 根火柴},则A 包含nr n C -2个基本事件,得到P (A )=rn nrn C --222习题1.2解答1. 上海虚证患者中气虚型占30%,抽查20名患者,分别求有0名、5名气虚型的概率。
解 设A ={气虚型患者},则)(A P =0.30,20名患者的气虚型人数X ~)30.0,20;(k B , 查统计用表1,得到20名患者有0名气虚型的概率为P (X =0)=)0(F =0.000820名患者有5名气虚型的概率为P (X =5)=)4()5(F F -=0.4164-0.2375=0.17892. 若一批出厂半年的人参营养丸的潮解率为 8%,抽取 20 丸,分别求恰有一丸潮解的概率、不超过一丸潮解的概率、有1~5丸潮解的概率。
解 设A ={潮解},则)(A P =0.08, 20 丸中潮解数X ~)08.0,20;(k B 。
查统计用表1,得到20 丸有一丸潮解的概率为P (X =1)=)0()1(F F -=0.5169-0.1887=0.328220 丸不超过一丸潮解的概率为P (X ≤1)=)1(F =0.516920 丸有1~5丸潮解的概率为P (1≤X ≤5)=)0()5(F F -=0.9962-0.1887=0.80753. 某种疾病自然痊愈率为 0.3,20 个病人服用一种新药后,若有半数以上痊愈,试说明可以认为这种药有效。
解 设这种药无效,A ={痊愈},则)(A P =0.3, 20 人中痊愈人数X ~)3.0,20;(k B 。
查统计用表1,得到20 个病人服用新药后半数以上痊愈的概率为P (X >10)=1-)10(F =1-0.9829=0.0171概率0.0171很小,说明事件{X >10}出现的可能性很小。
但现在事件{X >10}出现,则可以认为这种药无效的假定是值得怀疑的。
4. 若200 ml 当归浸液含某种颗粒 300 个,分别求 1 ml 浸液含 2 个、超过 2 个颗粒的概率。
解 由于200 ml 当归浸液平均每1 ml 含颗粒 300 /200=1.5个, 1 ml 浸液含颗粒的个数服从泊松分布,X ~)5.1;(k P 。
查统计用表2,得到1 ml 浸液含 2 个颗粒的概率为P (X =2)=)1()2(F F -=0.8088-0.5578=0.25101 ml 浸液超过2 个颗粒的概率为P (X >2)=1-)2(F =1-0.8088=0.19125. 150颗花粉孢子随机落入大小相同的 500 个格子里,分别计算约有多少个格子中没有孢子、有2个孢子、有多于2个的孢子。
解 由于500 个格子平均每1个格子落入 花粉孢子150 /500=0.3颗,1 个格子落入 花粉孢子的颗数服从泊松分布,X ~)3.0;(k P 。
查统计用表2,得到落入 零颗花粉孢子的概率及格子个数为P (X =0)=)0(F =0.7408,500 P (X =0)=370.4落入 2颗花粉孢子的概率及格子个数为P (X =2)=)1()2(F F -=0.9964-0.9631=0.0333,500P (X =2)=16.65落入 多于2颗花粉孢子的概率及格子个数为P (X >2)=1-)2(F =1-0.9964=0.0036,500P (X >2)=1.86. 甲乙两个篮球运动员,投篮命中率分别为0.7及0.6,每人投篮三次,求:⑴ 两人进球次数相等的概率;⑵ 运动员甲比乙进球数多的概率。
解 这是贝努里试验。
设A k ={两人进球相等},B k ={乙进球k 次}。
⑴ 设C ={两人进球次数相等},则得到P (C )=P (A 0B 0+A 1B 1+A 2B 2+A 3B 3)=P (A 0)P (B 0)+P (A 1)P (B 1)+P (A 2)P (B 2)+P (A 3)P (B 3)=0.33×0.43+(2133.07.0⨯⨯C )(2134.06.0⨯⨯C ) +(3.07.0223⨯⨯C )(4.06.0223⨯⨯C )+0.73×0.63=0.3208 ⑵ 设D ={甲比乙进球次数多},则得到P (D )=P (A 1B 0+A 2B 0+A 2B 1+A 3B 0+A 3B 1+A 3B 2)=P (A 1)P (B 0)+P (A 2)P (B 0)+P (A 2)P (B 1) +P (A 3)P (B 0)+P (A 3)P (B 1)+P (A 3)P (B 2)=(2133.07.0⨯⨯C )(34.0)+(3.07.0223⨯⨯C )(34.0) +(3.07.0223⨯⨯C )(2134.06.0⨯⨯C )+(37.0)(34.0) +(37.0)(2134.06.0⨯⨯C )+(37.0)(4.06.0223⨯⨯C )=0.4362 习题1.3解答1. X ~)2,5.0(N ,求)24.1(F 、)67.1(-F 、P (-0.02<X <2.43)。
解 μ=0.5、σ=2,查统计用表3得到)24.1(F =)37.0(25.024.1ΦΦ=⎪⎭⎫⎝⎛-=0.6443)67.1(-F =)085.1(25.067.1-=⎪⎭⎫⎝⎛--ΦΦ=2/)8621.08599.0(1+-=0.1390P (-0.02<X <2.43)=⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-25.002.025.043.2ΦΦ)26.0()965.0(--=ΦΦ=)6026.01(2/)8340.08315.0(--+=0.43532. 某市12岁男孩身高X (cm )~)67.5,10.143(N ,求X 的99%参考值范围并说明这范围的实际意义,再求身高在 140 cm ~145 cm 之间男孩所占百分比。
解 X 的99%参考值范围为143.10μ2.58×5.67=)7286.157,4714.128((cm )若某12岁男孩身高在这个范围之外,则可怀疑此男孩身高异常,判断失误的概率不超过1%。
身高在 140 cm ~145 cm 之间男孩所占百分比为 P (140<X <145)=⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-67.51.14314067.51.143145ΦΦ)547.0()335.0(--=ΦΦ=]}10/)7054.07088.0(77054.0[1{2/)6331.06293.0(-+--+ =0.3390=33. 90%3. 某地 101 例 30~39 岁健康男子血清胆固醇测定结果如表1-8所示,试作样本直方图及样本分布函数曲线。
解 这是随机误差概型。
⑴ 血清胆固醇数据最大值为278.8,最小值为104.2,区间]279,99(包含所有数据; ⑵ 把区间等分为10个左开右闭小区间,如表1-9的①、②列所示;⑶ 记录各小区间内血糖数据的频数,计算频率及频率密度填入表1-9的③、④、⑤列;⑷ 以小区间长为底、相应频率密度为高作矩形,绘制样本直方图及样本分布函数曲线,如图1-10所示。