自动化专业英语unit3
- 格式:ppt
- 大小:324.50 KB
- 文档页数:39
Semiconductor switches are very important and crucial components in power electronic systems.these switches are meant to be the substitutions of the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing. 在电力电子系统,中半导体开关是非常重要和关键部件。
半导体开关将要替换机械开关,但半导体材料的性质和生产过程严重限制了他们。
Switching losses开关损耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses. 电力电子转换器的功率损耗分为开关损耗和寄生损耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses of capacitors,the eddy and the hysteresis losses. 寄生损失的绕组电感器、变压器的阻力、介电损耗的电容器,涡流和磁滞损耗the switching losses are significant and can be managed. 这个开关损耗是非常重要的,可以被处理。
they can be further divided into three components:(a)the on-state losses,(b)the off-state losses and the losses in the transition states. 他们可以分为三个部分: 通态损耗,断态损耗和转换过程中产生的损耗。
自动化专业常用英语词汇自动化是一门涉及机械、电子、计算机和控制系统等多个领域的学科,它致力于研究和开辟能够自动执行任务的系统和设备。
在自动化专业的学习和工作中,熟悉和掌握常用的英语词汇是非常重要的。
下面是自动化专业常用英语词汇的详细介绍。
1. Automation - 自动化Automation refers to the use of technology to control and operate a system or process without human intervention. It involves the use of various control systems, such as computers and robots, to perform tasks automatically.2. Control system - 控制系统A control system is a set of devices or software that manages and regulates the behavior of a system. It includes sensors, actuators, controllers, and communication networks that work together to maintain the desired performance of the system.3. Robotics - 机器人技术Robotics is the branch of technology that deals with the design, construction, and operation of robots. It involves the use of mechanical, electrical, and computer engineering principles to create machines that can perform tasks autonomously or with human assistance.4. Sensor - 传感器A sensor is a device that detects and responds to physical inputs, such as light, temperature, pressure, or motion. It converts these inputs into electrical signals that can be processed by a control system.5. Actuator - 执行器An actuator is a device that converts electrical, hydraulic, or pneumatic energy into mechanical motion. It is used to control or move a mechanism or system, such as opening or closing a valve or moving a robotic arm.6. Programmable Logic Controller (PLC) - 可编程逻辑控制器A programmable logic controller (PLC) is a specialized computer used to control and automate industrial processes. It is programmable and can be easily reconfigured to adapt to different tasks or requirements.7. Human-Machine Interface (HMI) - 人机界面The human-machine interface (HMI) is the user interface through which an operator interacts with a control system. It typically consists of a graphical display, buttons, and other input/output devices that allow the operator to monitor and control the system.8. Supervisory Control and Data Acquisition (SCADA) - 监控与数据采集系统Supervisory Control and Data Acquisition (SCADA) is a system used to monitor and control industrial processes. It collects real-time data from various sensors and devices and provides a graphical interface for operators to monitor and control the system.9. Industrial Internet of Things (IIoT) - 工业物联网The Industrial Internet of Things (IIoT) refers to the use of internet-connected devices and sensors in industrial settings to collect and exchange data. It enables real-time monitoring, analysis, and control of industrial processes, leading to improved efficiency and productivity.10. Machine Learning - 机器学习Machine learning is a subset of artificial intelligence that focuses on the development of algorithms and models that allow computers to learn and make predictions or decisions without being explicitly programmed. It is widely used in automation to improve system performance and decision-making.11. Control loop - 控制回路A control loop is a closed-loop system that continuously monitors and adjusts the output of a process to maintain a desired setpoint. It typically consists of a sensor, controller, and actuator that work together to regulate the system.12. Feedback - 反馈Feedback is the process of returning a portion of the output of a system back to the input for comparison and adjustment. It is used in control systems to continuously monitor and correct deviations from the desired performance.13. PID controller - 比例-积分-微分控制器A PID controller is a type of control algorithm that uses proportional, integral, and derivative actions to control a system. It is widely used in automation to achieve accurate and stable control of processes.14. Fault diagnosis - 故障诊断Fault diagnosis is the process of identifying and diagnosing faults or malfunctions in a system. It involves analyzing sensor data, system behavior, and performance to determine the cause of the problem and take appropriate corrective actions.15. Safety system - 安全系统A safety system is a set of measures and devices designed to prevent accidents and ensure the safety of personnel and equipment. It includes emergency stop buttons, safety interlocks, and protective barriers to minimize the risk of injury or damage.以上是自动化专业常用英语词汇的详细介绍。
可再生能源可再生能源的说明燃烧矿物质燃料提供能源是造成气候变化的主要的原因。
煤,油,天然气的燃烧产生的二氧化碳是其中主要的造成全球气候变暖的温室气体。
为了解决气候变化,找到一种将来使用的可持续的能源,我们急需采取更加有效的技术降低能源消耗,从能释放更少的甚至没有二氧化碳到大气中的可再生能源中获得能源。
可再生能源技术(像风,海浪,潮汐,水电,生物能——栽培和燃烧农作物所产生的能量)能提供清洁的无碳的能源作为矿物燃料(天然气,油,煤)的替代品。
他们通常用来加热和发电。
(生物能除外,尽管它释放二氧化碳,但它只是把植物一生光当中合作用所吸收的二氧化碳释放到空气中)。
与此相反,燃烧化石燃料会释放出地壳中锁藏了几十亿年的二氧化碳到大气中。
矿石能源的供给是有限的,也因此它们的持续利用是无法支撑到底的。
可再生技术是一种持可持续能源的产生办法,事实上,像风,海浪,太阳能等是不可能被耗尽的。
可再生能源可再生能源包括以下:太阳能太阳能给所有生命体提供最基本形式的能量。
太阳能是免费的,用之不竭的。
将太阳能转化成人类可以消耗的能源将产生成本。
几千年以来,太阳能一直被人们用来晒粮食或者为水,建筑物加热。
二十世纪采用的是将阳光直接转换为电能的光电技术。
风能空气的运动自古以来就被用作一种能源。
今天,先进的空气动力学研究已经研究出可以非常经济发电的风力涡轮机。
风力涡轮机常常被成组的放在位于乡间宽阔地带或沿海,山顶等常年有盛行风的农场。
地热能地壳下面的岩石包含了一直在衰减的放射性材料,像铀和钾。
这些材料持续不断的提高热能,在地球表面一万米以下的热能比世界上的所有的油气资源所含的能量多50000倍多。
地热能是发掘地壳下面的热量来加热水。
之后热水用来驱动电涡轮机加热建筑,具有最高地热的区域常位于活跃的或新形成的火山周围。
这些“热点”位于地壳构造边缘,这里的地壳很薄,足够热量通过。
许多这样的“热点”分布在太平洋沿岸。
水电在地球上,水既不能被创造,也不能被毁灭。
PART2 Control TheoryUNIT3The Frequency Response Methods:Nyquist DiagramsIntroductionThere are times when it is necessary or advantageous to work in the frequency domain rather than in the Laplace domain of the root locus.For system analysis, the root locus method requires a transfer function,which may be difficult or even impossible to obtain for certain components,subsystems.In many of these cases,the frequency response can be determined experimentally for sinusoidal test inputs of known frequency and amplitude.The nature of the input also influences the choice of techniques to be used for system analysis and design.Many command inputs merely instruct asystem, to move from one steady-state condition to a second steady-state condition.This type of input can be described adequately by suitable steps in position,velocity,and acceleration,and the Laplace domain is appropriate for this purpose.If,however,the interval between such step inputs is decreased so that the system never has time to reach the corresponding steady state,the step representation and Laplace domain are no longer adequate.Such rapidly varying command inputs (or disturbance) may be periodic (adj.周期性的),random (adj.随机性的),or a combination thereof.The wind loading of a tracking radar antenna,for example,results from a mean velocity component that varies with plus superimposed random gusts. If the frequency distribution of these inputs can be calculated, measured, or even estimated, the frequency response can be used to determine their effects upon the system output. The frequency response is a steady-state response .Although some information can be obtained about the transient response, it is only approximate and is subject to misinterpretation(n.曲解,误议).The Frequency Transfer FunctionIt is necessary to develop (v.导出,引入) an input-output relationship that can be used in the frequency domain, i.e., a frequency transfer function. Consider a linear system with a known transfer function G(s) and apply the sinusoidal inputr (t)=0γsin 0ωt or R(s)=02200ωγω+swhere 0γ is the amplitude and 0ω the input or forcing frequency (强制频率) .The transformed output is C(s)=G(s)02200ωγω+sThe partial fraction expansion (部分分式展开式)of C(s) yieldsC(s)=01ωj s C - +02ωj s C ++13γ+s C +243γ+s C +…Where -1γ,-2γ, … are the roots of the characteristic equation of the transfer function.The inverse transform isc(t)=t j e C 01ω+ t j e C 02ω-+t r e C 13-+t r e C 24-+...where the first two terms represent an undamped oscillation resulting from the sinusoidal input, and the transient response. If the system is stable, the transient response will disappear with time, leaving as the steady-state responset j ss e C c 01ω=+t j e C 02ω-The coefficients 1C and 2C are evaluated by the Heaviside expansion theorem asj j G s s G j s C j s 2)(])()([0002200010γωωγωωω=+-=+=; jj G s s G j s C j s 2)(])()([0020200020γωωγωωω--=+-=-= With these values for 1C and 2C ,Eq.(2-3B-1) becomest j t j ss e j G jr e j G j c 00)(2)(20000ωωωωγ---= Since they are complex functions,φωωj e j G G j G j G )(Im Re )(00=+=;φωωj e j G G j G j G -=-=-)(Im Re )(00Where the angle φ is the argument of )(0ωj G and is equal to arctg(ImG/ReG).Eq.(2-3B-2) can now be written as)2()(0000je e j G r c tj t j ss ωωω--= Since the bracketed (v.加括号) terms are equal to )sin(0φω+t ,the steady-state response can be written as)sin()(000φωω+=t c j c ss where 000)(r j G c ω=From these equations we see that sinusoidal input to a linear stable system produces a steady-state response that is also sinusoidal, having the same frequency as the inputbut displaced through a phase angle Φ and having an amplitude that may be different. This steady-state sinusoidal response is called the frequency response of the system. Since the phase angle is the angle associated with the complex function )(0ωj G and the amplitude ratio (c 0/r 0) is the magnitude of )(0ωj G , knowledge of )(0ωj G specifies the steady-state input-output relationship in the frequency domain. )(0ωj G is called the frequency transfer function and can be obtained from the transfer function G(s) by replacing the Laplace variable s by j ω0 . Consequently, if )(0ωj G can be determined from experimental data, G(s) can also be found by replacing j ω0 by s.For a given system, the frequency response is completely specified if the amplitude ratio and phase angle are known for the rage of input frequencies from 0 to +∞ radians per unit time. Consider the stable first-order system of Fig. 2-3B-1 with a transfer function G(s) =1/(τs+1), the frequency transfer function is )1/(1)(+=ωτωj j G , where ω can be arbitrary(n.任意的) frequency. The amplitude ratio is1)(1)()(200+===ωτωωj G r c j M and the phase angle is ωτωτωωφcot )1(1)()(-=+∠-∠=∠=j j G jAs input frequency ω is increased from 0to +∞, we can draw the plot of M and φ, and a polar plot (极坐标图) that traces the tip (n.顶端) of the vector representing the frequency transfer function. Polar plots and M and φ versus (prep …对...) ω plots are used to represent different types of complex functions in the frequency domain. Notice that the constant term in each factor is set equal to unity when working in the frequency domain for convenience, whereas in the Laplace domain the coefficient of the highest power of s is set equal to unity.The Nyquist Stability CriterionIn the frequency domain, the theory of residues (余数定理) can be used to detect any roots in the right half of a plane. As with the root locus method, the characteristic function in the form 1+ KZ(s)/P(s) is used, where again the function KZ (s)/P(s) may or may not be the open-loop transfer function. To develop the Nyquist criterion , the characteristic function itself is written as a ratio of polynomials so that D(s)=1+0)...)(()...)((')()()()()(2121=++++=+=p s p s r s r s K s P s KZ s P s P s Z K Comparing the identities (n.一致性,等式)of Eq.(2-3A-2), we see that 1r -,2r -,…are the rootsof the characteristic equation and that 1p -,2p -,…are the poles of both the characteristic function and KZ(s)/P(s).Poles and roots at the origin have been omitted (v.省略)in the interests of simplicity (n.简单). In many cases, however, it is difficult to factor the denominator polynomial of lose-loop transfer function D(s) to find the location of poles in the s-plane.To prove stability for D(s), it is necessary and sufficient to show that no zeros (for the closed-loop transfer function is poles) i r - are inside the right half of the s-plane. We introduce the Nyquist contour (n.轮廓,外形) D shown in Fig.2-3B-2, which encloses (v.围绕) the entire right half of the s-plane. D consists of the imaginary axis from ∞-j to ∞+j and a semicircle (n.半圆形)of radius (n.半径) R ∞→. In principle, stability analysis is based on plotting[1+KZ(s)/P(s)] in a complex plane as s travels once clockwise around the closed contour D. The factors (s+i r ) and (s+i p ) are vectors from i r - and i p - to s, and for any value of s the magnitude and phase of [1+KZ(s)/P(s)] can be determined graphically by measuring the vector lengths and angles in Fig.2-3B-2, if the i r were known.Note that on the imaginary axis ωj s =. The plot of [1+KZ(s)/P(s)] for s traveling up the imaginary axis from +=0ω to ∞→ω is effect just the polar plot of the frequency response function [1+KZ(ωj )/P(ωj )]. Hence frequency response function indicated in Fig.2-3B-3 by measurement from the pole-zero pattern.Fig.2-3B-2 shows that if s moves once clockwise around D, vectors (s+i r ) and (s+i p ) rotate 360。
自动化专业英语自动化专业英语是指在自动化领域中使用的英语专业术语和表达方式。
随着自动化技术的快速发展,自动化专业英语的学习和掌握对于从事自动化工作的专业人士来说至关重要。
本文将介绍自动化专业英语的标准格式,包括词汇、句型和常用表达。
一、自动化专业英语词汇1. Automation - 自动化2. Control system - 控制系统3. Programmable logic controller (PLC) - 可编程逻辑控制器4. Human-machine interface (HMI) - 人机界面5. Sensor - 传感器6. Actuator - 执行器7. Feedback - 反馈8. Process variable - 过程变量9. Supervisory control and data acquisition (SCADA) - 监控与数据采集系统10. Industrial Internet of Things (IIoT) - 工业物联网二、自动化专业英语句型1. The automation system consists of a control system, sensors, actuators, and a human-machine interface.自动化系统由控制系统、传感器、执行器和人机界面组成。
2. The programmable logic controller (PLC) is widely used in industrial automation.可编程逻辑控制器(PLC)广泛应用于工业自动化。
3. The human-machine interface (HMI) allows operators to monitor and control the automation process.人机界面(HMI)允许操作员监控和控制自动化过程。
《自动化专业英语教程》-王宏文主编-全文翻译PART 1Electrical and Electronic Engineering BasicsUNIT 1A Electrical Networks ————————————3B Three-phase CircuitsUNIT 2A The Operational Amplifier ———————————5B TransistorsUNIT 3A Logical Variables and Flip-flop ——————————8B Binary Number SystemUNIT 4A Power Semiconductor Devices ——————————11B Power Electronic ConvertersUNIT 5A Types of DC Motors —————————————15B Closed-loop Control of DC DriversUNIT 6A AC Machines ———————————————19B Induction Motor DriveUNIT 7A Electric Power System ————————————22B Power System AutomationPART 2Control TheoryUNIT 1A The World of Control ————————————27B The Transfer Function and the Laplace Transformation —————29 UNIT 2A Stability and the Time Response —————————30B Steady State—————————————————31 UNIT 3A The Root Locus —————————————32B The Frequency Response Methods: Nyquist Diagrams —————33 UNIT 4A The Frequency Response Methods: Bode Piots —————34B Nonlinear Control System 37UNIT 5 A Introduction to Modern Control Theory 38B State Equations 40UNIT 6 A Controllability, Observability, and StabilityB Optimum Control SystemsUNIT 7 A Conventional and Intelligent ControlB Artificial Neural NetworkPART 3 Computer Control TechnologyUNIT 1 A Computer Structure and Function 42B Fundamentals of Computer and Networks 43UNIT 2 A Interfaces to External Signals and Devices 44B The Applications of Computers 46UNIT 3 A PLC OverviewB PACs for Industrial Control, the Future of ControlUNIT 4 A Fundamentals of Single-chip Microcomputer 49B Understanding DSP and Its UsesUNIT 5 A A First Look at Embedded SystemsB Embedded Systems DesignPART 4 Process ControlUNIT 1 A A Process Control System 50B Fundamentals of Process Control 52UNIT 2 A Sensors and Transmitters 53B Final Control Elements and ControllersUNIT 3 A P Controllers and PI ControllersB PID Controllers and Other ControllersUNIT 4 A Indicating InstrumentsB Control PanelsPART 5 Control Based on Network and InformationUNIT 1 A Automation Networking Application AreasB Evolution of Control System ArchitectureUNIT 2 A Fundamental Issues in Networked Control SystemsB Stability of NCSs with Network-induced DelayUNIT 3 A Fundamentals of the Database SystemB Virtual Manufacturing—A Growing Trend in AutomationUNIT 4 A Concepts of Computer Integrated ManufacturingB Enterprise Resources Planning and BeyondPART 6 Synthetic Applications of Automatic TechnologyUNIT 1 A Recent Advances and Future Trends in Electrical Machine DriversB System Evolution in Intelligent BuildingsUNIT 2 A Industrial RobotB A General Introduction to Pattern RecognitionUNIT 3 A Renewable EnergyB Electric VehiclesUNIT 1A 电路电路或电网络由以某种方式连接的电阻器、电感器和电容器等元件组成。
自动化专业英语原文和翻译引言概述:自动化专业是现代工程技术领域中的重要学科,涵盖了自动控制系统、机器人技术、工业自动化等多个方面。
在学习和实践中,掌握和理解自动化专业的英文术语和翻译是非常重要的。
本文将从五个大点出发,详细阐述自动化专业英语原文和翻译的相关内容。
正文内容:1. 自动控制系统(Automatic Control System)1.1 控制器(Controller)1.2 传感器(Sensor)1.3 执行器(Actuator)1.4 反馈(Feedback)1.5 稳定性(Stability)2. 机器人技术(Robotics)2.1 机器人(Robot)2.2 机械臂(Manipulator)2.3 传感器(Sensor)2.4 视觉系统(Vision System)2.5 自主导航(Autonomous Navigation)3. 工业自动化(Industrial Automation)3.1 自动化生产线(Automated Production Line)3.2 人机界面(Human-Machine Interface)3.3 传感器网络(Sensor Network)3.4 电气控制(Electrical Control)3.5 数据采集(Data Acquisition)4. 自动化软件(Automation Software)4.1 PLC编程(PLC Programming)4.2 HMI设计(HMI Design)4.3 数据分析(Data Analysis)4.4 模拟仿真(Simulation)4.5 系统集成(System Integration)5. 自动化工程(Automation Engineering)5.1 项目管理(Project Management)5.2 自动化设计(Automation Design)5.3 系统调试(System Debugging)5.4 故障诊断(Fault Diagnosis)5.5 性能优化(Performance Optimization)总结:综上所述,自动化专业英语原文和翻译是自动化工程师必备的技能之一。
自动化专业常用英语词汇引言概述:自动化专业是现代工程技术领域中的重要学科,涵盖了自动控制、机器人技术、电气工程等多个方面。
在学习和工作中,掌握一些常用的英语词汇对于自动化专业的学生和从业人员来说非常重要。
本文将介绍自动化专业常用的英语词汇,并按照一、二、三、四、五五个部份进行详细阐述。
一、自动控制(Automatic Control)1.1 控制系统(Control System):用于监测、测量和调节工业过程的设备和技术。
1.2 反馈控制(Feedback Control):通过监测输出信号并与期望值进行比较,调整输入信号以实现稳定控制的方法。
1.3 开环控制(Open-loop Control):无需反馈信号,通过预设的输入信号来控制系统。
二、机器人技术(Robotics)2.1 机器人(Robot):一种能够自动执行任务的复杂机械设备。
2.2 传感器(Sensor):用于感知环境和获取信息的装置,如视觉传感器、力传感器等。
2.3 人机交互(Human-Machine Interaction):机器人与人类之间的信息交流和合作。
三、电气工程(Electrical Engineering)3.1 电路(Circuit):电气元件按照一定连接方式形成的路径,用于传输电流。
3.2 机电(Motor):将电能转换为机械能的装置,如直流机电、交流机电等。
3.3 电力系统(Power System):用于生成、传输和分配电能的设备和网络。
四、工业自动化(Industrial Automation)4.1 自动化生产线(Automated Production Line):利用计算机控制和机械设备实现产品自动创造的生产线。
4.2 传输系统(Conveyor System):用于自动输送物料和产品的系统,如传送带、输送机等。
4.3 过程控制(Process Control):对工业过程中的物理和化学变化进行监测和调节的技术。