组合网架结构的发展和应用
- 格式:ppt
- 大小:229.50 KB
- 文档页数:14
组合网架在结构设计中的特点及应用【摘要】组合网架是一种由钢网架和混凝土肋板组成的空间结构体系,这种结构体系既能发挥两种不同材料的强度优势,又能使结构的承重和围护功能合二为一,是近年来很有发展前景的一种结构形式。
【关键词】组合网架;结构设计特点;应用引言空间结构一直是备受瞩目的结构形式,它的主要特点就是能够充分利用不同材料的特性,来适应各种建筑功能及造型需要,它具有重量轻、受力合理、抗震性能突出、造价低、形式活泼新颖等优点。
基于这些优点,该结构在国内外得到了广泛的应用,尤其是大跨度空间结构在现今已经成为代表一个国家建筑技术水平的重要标志之一。
当前我国空间结构中以网架结构发展最快,应用最为广泛。
我国近年来在体育馆、练习房、俱乐部、展览馆、影剧院、商场、会场、食堂、候车室以及工业厂房、大型机库、采光天井等建筑中都可以采用。
网架是由很多杆件从两个或几个方向有规律地组成的高次超静定结构,它的特点是空间刚度大、整体性好、又有良好的抗震性能、能适应各种不同的建筑物造型要求;同时,还具有节省钢材,重量轻,制造和安装方便等优点。
一、组合网架的特点组合网架是从一般网架结构演变而来的,组合网架是将网架上弦杆改用钢筋混凝土平板或者带肋板来代替,下弦杆和腹杆则仍然采用钢材,以充分发挥钢材受拉和混凝土受压的有利条件,使两种不同材料充分发挥各自的强度优势;又使结构的承重和围护功能合二为一,既可应用于屋盖,也可应用于楼盖,故组合网架是今后值得广泛发展和大范围推广应用的新型结构体系。
在形式众多的空间结构中,网架结构是当前发展最快的结构形式,其中在国内外应用最为广泛的就属组合网架,这主要是由于它具有下列一系列的优点:(一)结构布置灵活多样但又有高度的规律性,便于采用,可以满足各种建筑平面的要求。
(二)节点连接简便可靠,便于推广。
网架节点及其部件的规格种类少,便于进行大批量生产,近年来己经逐渐的做到定型化、工厂化和商品化,不仅保证了其受力性能合理,质量可靠而且简化了节点连接的制作与安装。
网架结构建筑案例网架结构是一种由杆件和节点组成的空间结构,其特点是构件轻巧、构造简单、适应性强,因此在建筑领域得到了广泛的应用。
下面我们将介绍几个典型的网架结构建筑案例,以便更好地了解网架结构的设计和应用。
首先,让我们来看看北京鸟巢体育馆。
作为2008年北京奥运会的主要比赛场馆之一,鸟巢采用了大跨度网架结构,其外形犹如一个巨大的鸟巢,因此得名“鸟巢”。
整个建筑采用了约110,000吨的钢材,结构设计采用了网架结构,使得整个建筑具有了轻盈的外观,同时也满足了大跨度空间的要求。
鸟巢的设计不仅在结构上具有创新性,而且在建筑美学上也具有很高的艺术价值,成为了北京奥运会的标志性建筑之一。
接下来,我们来看看迪拜哈利法塔。
哈利法塔是世界上最高的建筑,其高度达828米,采用了网架结构设计。
在哈利法塔的设计中,网架结构被用于支撑建筑的高层结构,使得建筑在高度上能够保持稳定。
同时,网架结构也使得建筑在视觉上具有了轻盈的外观,给人一种飘逸的感觉。
哈利法塔的建筑结构设计充分展示了网架结构在超高层建筑中的应用价值。
最后,让我们来看看上海世博会中国馆。
中国馆是2010年上海世博会的标志性建筑,其外形采用了传统的“藕丝篮”造型,整个建筑采用了大跨度网架结构设计。
中国馆的网架结构设计不仅使得建筑具有了独特的外观,而且在功能上也具有了很高的灵活性,使得馆内空间得以合理利用。
中国馆的网架结构设计充分展示了网架结构在文化建筑中的应用潜力。
通过以上几个典型的网架结构建筑案例,我们可以看到,网架结构不仅具有轻盈、灵活的特点,而且在建筑美学上也具有很高的价值。
网架结构的应用不仅可以满足建筑的功能要求,而且可以赋予建筑更多的艺术魅力。
因此,我们相信,在未来的建筑设计中,网架结构将会得到更广泛的应用,为人们创造出更多美丽、实用的建筑作品。
网架结构已成为现代世界应用较普遍的新型结构之一。
我国从20世纪60年代开始研究和采用,近年来,由于电子计算技术的迅速发展,解决了网架结构高次超静定结构的计算问题,促使网架结构无论在型式方面以及实际工程应用方面,发展都很快。
网架在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。
网架结构的优点是用钢量小、整体性好、制作安装快捷,可用于复杂的平面形式。
适用于各种跨度的结构,尤其适用于复杂平面形状。
这些空间交汇的杆件又互为支撑,将受力杆件与支撑系统有机结合起来,因而用料经济。
网架主要用于大、中跨度的公共建筑中,例如体育馆、飞机库、俱乐部、展览馆和候车大厅等,中小型工业厂房也开始推广应用。
跨度越大,采用此种结构的优越性和经济效果也就越显著。
网架结构板型网架结构按组成形式主要分三类:第一类是由平面桁架系组成,有两向正交正放网架、两向正交斜放网架、两向斜交斜放网架及三向网架四种形式;第二类由四角锥体单元组成,有正放四角锥网架、正放抽空四角锥网架、斜放四角锥网架、棋盘形四角锥网架及星形四角锥网架五种形式;第三类由三角锥体单元组成,有三角锥网架、抽空三角锥网架及蜂窝形三角锥网架三种形式。
壳型网架结构按壳面形式分主要有柱面壳型网架、球面壳型网架及双曲抛物面壳型网架。
网架结构按所用材料分有钢网架、钢筋混凝土网架以及钢与钢筋混凝土组成的组合网架,其中以钢网架用得较多。
网架具有重量轻、强度高、整体刚性好、变形能力强等特点,目前对于网架的需求量也越来越大.结构屋顶全部采用冷弯薄壁钢构件体系组成,钢骨采用超级防腐高强冷轧镀锌板制造,有效避免钢板在施工和使用过程中的锈蚀的影响,增加了轻钢构件的使用寿命。
结构寿命可达100年。
(建筑工程管理)大跨度网架结构施工技术与应用大跨度网架结构施工技术和应用李文杨功臣第一章概论一、空间结构近年来迅速发展的原因近几十年来,随着生产的不断发展和人民社会活动的要求的提高,需要建设大跨度的工业厂房、展览馆、体育场馆、大会堂工程等建筑物和构筑物,以满足生产和人民生活日益增长的需求。
随着建筑结构跨度的增大,传统的平面结构,如梁、桁架、钢架等大跨度屋盖和承重构件已有许多的问题存于。
客观上要求必须用空间网架结构来代替平面结构,使之增加稳定性及安全性。
空间结构是壹种高次超静定结构,分析过程十分繁琐,手工计算几乎是不可能的,用近似的方法分析,除工作量非常大之外,往往需要加大安全度以弥补近似计算带来的偏差,因此造成材料的浪费和损失。
电子计算机技术的发展和完善为空间结构的精确计算提供了可能性,而且计算速度快、精度高。
同时仍能进行多种结构方案的比较和优化设计,为空间结构的发展创造了有利的条件和良好的工作环境。
网架结构所以能迅速发展,除上述原因外,仍有网架的空间节点得到了很好的解决,如空心球节点和螺栓球节点等,这些节点均具有安全可靠、施工方便等优点。
高强钢材的生产和广泛应用也为空间结构的发展创造了有利条件。
二、空间结构的分类空间结构大体可分为薄壳结构、悬索结构和网架结构三大类。
◆薄壳结构壹般泛指采用钢筋混凝土材料建造的薄壁壳体,它具有传递力比较直接的特点,有较好的受力性能。
◆悬索结构是以钢索为受拉的主要承重构件,由于钢索均是采用高强度的钢材制成,其受力性能合理,材料强度能够充分发挥。
◆网架结构是由许多杆件组成的空间结构,它又可分为平板型网架和网壳型俩大类。
其中平板型网架于我国发展很快,应用也比较广泛。
三、平板网架的优点平板网架结构(简称网架)所以能得到广泛的应用,为广大设计和施工及建设单位所青睐,主要是因为它具有较为突出的优点。
现将其主要优点分析如下:1、网架结构空间受力,每根杆件均参加工作,故能够节省钢材。
配电网架结构优化及对电网的影响摘要:配电网是电网的重要组成部分,是地区发展的重要基础设施。
随着社会经济的高速发展、人民生活水平的提高以及电力体制改革的不断深入,电力用户对配电网的供电可靠性、电能质量、工作效率和优质服务等方面的要求也越来越高。
供电企业亟需了解配电网架结构优化及对电网的影响,提升配电网规划管理水平,以满足电力用户日益提高的用电需求。
关键词:配电网,网架,结构优化,接线方式1配电网的特点配电网是由架空线路、电缆、杆塔、配电变压器、隔离开关、无功补偿电容以及一些附属设施等组成,它在电力网中起着重要的分配电能作用。
配电网的设计一般是按照满足高峰值负荷确定的,但是,在配电网中,由于配电网络用户使用电力的差异性,使不同的配电线路的负荷与功率都是不同的,此种情况是导致配电线路以及相应的配电设备的使用率大大降低。
在实际的使用中,配电网络的使用情况是较为灵活的,如果通过人员的计算管理具有很大滞后性,很难实现高效控制,不能及时有效地做出决策判断,改善网络的使用情况。
而配电网网架优化规划则可在很大程度上改变这种情况,将较高负荷转移到较低负荷的线路中去,改变输电的质量与稳定性,同时,通过计算机的优化,可以使网络快速的进行调节,增加配电线路与相关设备的使用率。
在输电线路发生故障时,第一时间得到通知、判断,在第一时间处理、恢复。
因此,配电网架结构优化可以减少停电、降低网络损耗、提高供电质量,是实施配电网自动化的一个重要环节[2]。
2 配电网优化配电网优化分析包括配电系统正常运作时的网架结构优化与故障情况下的网架结构优化。
在正常情况下,配电网的优化以增加网架线路及相关设备的使用率,以及使各个线路的负载较为均衡为主,同时提供更高的供电质量。
而在配电网发生故障时,网架结构优化则是快速寻找故障点,并快速通过其它线路解决问题,以求快速恢复供电[4]。
从近年来相关研究报导看,多数配电网优化规划研究仍采用与输电网相似的数学模型,将投资、网损、生产费用最优作为求解目标,相应采用的优化算法亦与输电网规划相似,只是部分文献在潮流求解算法中考虑了配电网的树状结构特点。
网架发展历程(一)日期:2008-12-16 17:57:14 人气:360网架的历程二十世纪以来,在全世界范围内空间结构都得到了很大的发展。
空间网架结构是空间网格结构的一种,所谓“空间结构”是相对“平面结构”而言,它具有三维作用的特性,空间结构也可以看作平面结构的扩展和深化。
空间结构问世以来,以其高效的受力性能、新颖美观的形式和快速方便的施工受到人们的欢迎。
在需要大跨度、大空间的体育场馆、会展中心、文化设施、交通枢纽乃至工业厂房,无不见到空间结构的踪影。
空间结构经过一个世纪的不断发展,在结构形式方面,除了网架、网壳之外,膜结构、张拉整体体系、开闭屋盖、可折叠结构等都是空间结构的新成员。
二十世纪初期,钢铁材料为网架结构的发展提供了条件,其后的铝合金则使得网架的杆件更轻巧。
近些年来的复合材料,特别是大量的新型建筑材料被开发出来,对空间结构的发展产生了强烈的影响。
材料应用方面由于钢材品种与强度的不断提升,空间结构也越多地采用了型钢、钢管、钢棒、缆索乃至铸钢制品。
在很大程度上,空间结构成了“空间钢结构”。
随着现代计算机的出现,一些新的理论和分析方法,如有限单元法、非线形分析、动力分析等,在空间结构中得到了广泛应用,以至空间结构的计算和设计更加方便和准确,使得空间结构现在千变万化,种类多样。
可以说空间结构已成为当代建筑结构最重要和最活跃的领域之一。
网架结构一般是以大致相同的格子或尺寸较小的单元(重复)组成的。
常应用在屋盖结构。
通常将平板型的空间网格结构称为网架,将曲面型的空间网格结构简称为网壳。
网架一般是双层的(以保证必要的刚度),在某些情况下也可做成三层,而网壳有单层和双层两种。
平板网架无论在设计、计算、构造还是施工制作等方面均较简便,因此是近乎“全能”的适用大、中、小跨度屋盖体系的一种良好的形式。
网架的形式较多。
按结构组成,通常分为双层或三层网架;按支承情况分,有周边支承、点支承、周边支承和点支承混合、三边支承一边开口等形式;按照网架组成情况,可分为由两向或三向平面桁架组成的交叉桁架体系、由三角锥体或四角锥体组成的空间桁架角锥体系等等。
浅谈平板网架结构的应用与优势平板网架结构主要是从连续体平板演化而来,可以帮助其在周边简支过程中发挥出作用,并通过其尺寸高度来确定屋面具体构造形式。
本文根据以往工作经验,对平板网架结构的应用形式进行总结,并从平面桁架系平板网架、空间桁架系平板网架、平板网架的抗震性能三方面,论述了平板网架结构形式及优势,希望可以对相关工作起到一定帮助作用。
标签:平板网架结构;抗震性能;空间桁架系在网架结构应用过程中,主要是由一系列杆件朝着几个方向有规律的进行组合合成,最终将网状空间杆系结构展示出来,这也是大跨度结构之中的主要形式。
站在外形角度来说,主要包括曲面网壳以及平面平板网架两种形式,平板網架结构应用最为常见。
除此之外,平板网架在应用过程中可以承受较高的动载荷,在构件规格化的同时,还能为制造和安装工作的开展奠定基础。
一、平板网架结构的应用形式(一)网格尺寸的确定在网格尺寸代销的确定上,可以对整个网架的经济性产生极大影响,由于网格较大,相应的节点数量也会降低,为整个施工工作的开展提供方便,如果网格较小,则会与上述情况刚好相反。
另外,如果在房屋建筑之中使用钢筋混凝土进行屋面设计,整个网架尺寸不能过大,否则将会引起整个屋面板的重量提升,增加节点载荷,让网架的耗钢量和吊装难度相应提升。
在使用压型锥板和预制铝合金等轻型屋面制作方案时,网格尺寸也要尽量增大,这样可以降低节点数量,让杆件断面发挥出更大作用,降低钢材的使用量。
总而言之,网格尺寸需要根据网架结构跨度情况和柱网尺寸等数据和要求,对整个网架进行综合设计,很多时候,这些因素与屋面板的规格和种类息息相关,具体表示形式如下:(1/20-1/6)L2其中,L2代表网架的短向跨度。
(二)网架高度的确定为了确保网架高度与应用要求相符,需要以实际工程做对比,选择合适的高度,一般来说,网架的短向跨度范围主要集中在1/20到1/10之间,具体大小与下列因素存在直接关系:首先是屋面荷载,当屋面荷载提升之后,整个网架的挠度数据将会全面提升,为了将网架的挠度数据保持在L2/200以下,所选择的网架需要具备一定高度。
大跨度建筑的类型及应用一、引言大跨度建筑是指横跨较大的空间距离的建筑,它具有广阔的空间感和独特的美学价值,广泛应用于各种场所,如体育场馆、会展中心、机场等。
本文将介绍大跨度建筑的类型及应用。
二、大跨度建筑的类型1.拱形结构拱形结构是一种最古老的大跨度结构形式之一,在古代就已经被广泛应用于建筑中。
它以弧线为基础,将重量分散到支撑点上,使得整个结构能够承受巨大的荷载。
拱形结构常见于教堂、桥梁和体育馆等建筑中。
2.网架结构网架结构是由多个小型杆件组成的框架结构,通过连接节点将这些杆件组合在一起。
网架结构具有轻质化、高强度和易于制造等优点,在现代建筑中得到了广泛应用。
例如,鸟巢体育馆就采用了网架结构。
3.空间桁架结构空间桁架结构是由多个杆件组成的三维框架,可以形成各种复杂的形状。
它具有高强度、轻质化和刚性好等优点,在大型建筑中得到了广泛应用。
例如,北京大兴国际机场就采用了空间桁架结构。
三、大跨度建筑的应用1.体育场馆体育场馆是大跨度建筑的主要应用领域之一,因为它需要提供足够的空间以容纳观众和比赛设备。
拱形结构、网架结构和空间桁架结构都被广泛应用于体育场馆建设中。
例如,鸟巢体育馆采用了网架结构,而上海东方体育中心则采用了空间桁架结构。
2.会展中心会展中心需要提供足够的展示空间以容纳各种展品和参观者。
拱形结构和网架结构都被广泛应用于会展中心建设中。
例如,北京国家会议中心采用了拱形结构。
3.机场机场需要提供足够的航站楼面积以容纳旅客和航班设备。
空间桁架结构是机场建筑中最常见的大跨度结构形式之一。
例如,北京大兴国际机场采用了空间桁架结构。
4.其他场所除了上述场所外,大跨度建筑还广泛应用于其他场所,如博物馆、音乐厅和商业中心等。
例如,广州塔采用了空间桁架结构。
四、结论大跨度建筑具有独特的美学价值和广泛的应用价值,它可以为人们提供舒适的空间体验和视觉享受。
不同类型的大跨度结构形式具有不同的优缺点,建筑设计者需要根据实际需求进行选择。
优化完善电网网架结构实施方案充分发挥市场在资源配置中的决定性作用,构建公平开放、有效竞争的市场体系,更好发挥作用,破除制约能源高质量发展的体制机制障碍,加强政策引导,强化市场监管,营造良好的发展环境。
一、基本原则坚持系统统筹,守牢安全底线。
处理好发展和减排、整体和局部、长远目标和短期目标和市场的关系,注重统筹谋划,合理布局。
筑牢底线思维,立足XX以煤炭消费为主的实际,坚持转型升级以立为先,传统能源逐步退出要建立在新能源安全可靠替代的基础上。
坚持需求导向,着力提高能源自给能力,预留充足安全保供裕度。
积极融入区域能源合作,着力增强能源产业链供应链安全性稳定性。
坚持绿色发展,着力创新引领。
坚持生态优先,能源开发与生态环境协调发展,加快调整能源结构,协同推进能源供给保障与绿色低碳转型。
坚持能源消费强度和总量双控制度,持续推进能源清洁高效利用,培育能源生产消费新模式新业态。
坚持创新驱动和技术进步引领,推动能源产业数字化智能化升级,推进能源产业链现代化。
坚持深化改革,激发市场活力。
充分发挥市场在资源配置中的决定性作用,构建公平开放、有效竞争的市场体系,更好发挥作用,破除制约能源高质量发展的体制机制障碍,加强政策引导,强化市场监管,营造良好的发展环境。
坚持民生优先,促进共享发展。
坚持以人民为中心,持续提升能源普遍服务水平,强化民生领域能源需求保障,推动能源发展成果更多更好惠及广大人民群众,为满足人民对美好生活的向往提供坚强能源保障。
二、优化完善电网网架结构加强500千伏主网架建设,推进新江等一批500千伏输变电工程、网架优化完善工程、大型主力电源配套送出工程建设,新建东部500千伏纵向通道,形成更加坚强的“四横两纵”主网架格局。
加强重点地区坚强局部电网建设。
重点加强负荷密集区域网架结构,建设利华等一批220千伏输变电工程,实现220千伏变电站县域全覆盖,各市基本形成以双环网和双链式结构为主的220千伏骨干网络结构。