交大复旦同济自主招生数学试题完美版
- 格式:doc
- 大小:914.00 KB
- 文档页数:36
/////////////////2015年复旦分校自主招生测试题数学试题1、若4,129x y z xy y +=+=+-,求32x y z ++。
2、若抛物线2y ax bx c =++与x 轴交于A B 、,与y 轴交于C ,且三角形ABC 是直角三角形,求ac 。
3、正方形DEFG EHLB NMKL 、、,边长分别为c a b 、、,求a b c 、、,满足的关系式。
4、若不等式组1252x x x a <->⎧⎪⎨-<<⎪⎩或只有整数2-一个解,求a 的取值范围。
5、若2(1)2(1)0a x x a -+-+=的根都是整数,则整数a 的取值范围?6、已知:Rt ABC ∆,3,4,BC AC D ==为AB 上一动点,作DE BC ⊥,求EF的最小值。
7、从1,2,...,100中取两个不同的数,使两数之和大于100,则有______种不同取法。
8、若12...n x x x 、、、只能取2,0,1-,且满足12...17,n x x x ++=-+22212...37,n x x x ++=+则33312..._______n x x x +++=。
9、已知:等腰ABC ∆,两圆外切且都与AB AC 、相切,两圆半径为1和2,求ABC ∆的面积。
10、已知:正五边形1AG =,_____FG JH DC ++=。
11、已知ABC ∆外接于O ,且AO BC ⊥,垂足为D ,且AB BC=(1)证明:ABC ∆是正三角形;(2)若1,=,,AB AE x PE y ==求y 关于x 的解析是及定义域;(3)在(2)的条件下,,PAC EPC αβ∠=∠=,当y 取何值时,22sin sin 1αβ+=。
12、(1)当04x <<,解22[]0x x x --=;(2)求所有实数x ,使3[]43x x =+。
2007年复旦大学自主招生考试数学试题选择题(每题5分,共150分,答对得5分,答错扣2分,不答得0分) 1.三边均为整数,且最大边长为11的三角形,共有 个. A .20B .26C .30D .362.若a>1,b>1且lg (a+b )=lga+lgb ,则lg (a −1)+lg (b −1)= . A .lg2B .1C .不是与a 、b 无关的常数D .03.已知z ∈C ,若∣z ∣=2-4i ,则z1的值是 . A .3+4i B .i 5453+ C .i 154153+ D .i 254253- 4.已知函数f (x )=cos (x k 2316++π)+cos (x k 2316--)=23sin (x 23+π),其中x 为实数且k 为整数.则f (x )的最小正周期为 .A .3πB .2π C .πD .2π5.已知A ={(x ,y )∣y ≥x 2},B={(x ,y )∣x 2+(y −a )2≤1}.则使A∩B=B 成立的充分必要条件为 .A .a=45B .a≥45 C .0<a<1 D .a≥16.已知平面上三角形ABC 为等边三角形且每边边长为a ,在AB 和BC 上分别取D ,E 两点使得AD =BE =3a,连接A ,E 两点以及C ,D 两点.则AE 和CD 之间的最小夹角为 . A .9πa B .3πa C .3π D .以上均不对7.已知数列{a n }满足3a n+1+a n =4,(n≥1),且a 1=9, 其前n 项之和为S n ,则满足不等式∣S n −n −6∣<1251的最小整数是45. A .6B .7C .8D .98.将一个四棱锥的每个顶点染上一种颜色,并使用一条棱的两端点异色,若只有五种颜色可供使用,则不同的染色方法的总数为 .A .120B .260C .340D .4209.设甲乙两个袋子中装有若干个均匀白球和红球,且甲乙两个袋子中的球数比为1∶3.已知从甲袋中摸到红球的概率为31,而将甲乙两个袋子中的球装在一起后,从中摸到红球的概率为32.则从乙袋中摸到红球率为 . A .97 B . 4519C .3013D .4522 10.方程f (x )=543423322212321---------x x x x x x x x x =0 的实根的个数是 .A .1个B . 2个C .3个D .无实根11.已知a ,b 为实数,满足(a+b )59=−1,(a −b )60=1,则∑=-601)(n n nb a= .A .0121B .−49C .0D .2312.a=21是“直线(a+2)x +3a y +1=0与直线(a −2)x +(a+2)y −3=0相互垂直”的 . A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件13.设函数y =f (x )对一切实数x 均满足f (2+x )=f (2−x ),且方程f (x )=0恰好有7个不同的实根,则这7个不同实根的和为 .A .0B .10C .12D .1414.已知α,β,γ分别为某三角形中的三个内角且满足tan 2βα+=sin γ,则下列四个表达式:(1)tan αtan β=1 (2)0<sin α+sin β≤2 (3)sin 2α+sin 2β=1 (4)cos 2α+cos 2β=sin 2γ中,恒成立的是 .A .(1)(3)B .(10(4)C .(2)(3)D .(2)(4)15.设S n =1+2+…+n,n ∈N .则∞→n lim1)32(2++n nS n nS = .A .2B .321C .161 D .6416.复数z =iia 212+-(a ∈R ,i=1-)在复平面上对应的点不可能位于 . A .第一象限B .第二象限C .第三象限D .第四象限17.已知f (x )=asin x +b 3x +4(a ,b 为实数)且f [lg (lg 310)]=5,则f [lg (lg3)]= .A .−5B .−3C .3D .随a ,b 取不同值而取不同值18.已知四棱锥P -ABCD ,底面ABCD 是菱形,∠DAB =3π,PD ⊥平面ABCD ,线段PD =AD ,点E 是AB 的中点,点F 是PD 的中点,则二面角P -AB -F 的平面角的余弦值= .A .21 B .552 C .1475D .1473 19.在(32-)50的展开式中有 项为有理数. A .10B .11C .12D .1320.棱长为a 的正方体内有两球互相外切,且两球各与正方体的三个面相切.则两球半径之和为为 .A .无法确定B .aC .a 233-D .a 255- 21.在集合{1,2,…11}中任选两个作为椭圆方程12222=+by a x 中的a 和b ,则能组成落在矩形区域{(x ,y )||x |<11,|y |<9}内的椭圆个数是 .A .70B .72C .80D .8822.设a ,b ,c 为非负实数,且满足方程02562684495495=+⨯-++++cb a cb a ,则a+b+c的最大值和最小值 .A .互为倒数B .其和为13C .其乘积为4D .均不存在23.给定正整数n 和正常数a ,对于满足不等式a 12+a n+12≤a 的所有等差数列a 1,a 2,a 3,…,和式∑++=1211n n i a的最大值= .A .)1(210+n aB .n a210 C .)1(25+n aD .n a 2524.设z 0(z 0≠0)为复平面上一定点,z 1为复平面上的动点,其轨迹方程为|z 1−z 0|=|z 1|,z 为复平面上另一个动点满足z 1z =−1.则z 在复平面上的轨迹形状是 .A .一条直线B .以01z -为圆心,01z 为半径的圆 C .焦距为012z 的双曲线 D .以上均不对25.一个球与正四面体的六条棱都相切,若正四面体的棱长为a ,则这个球的体积为 .A .3123a π B .343a π C .3242a π D .3243a π 26.已知函数f (x )的定义域为(0,2),则函数g (x )=f (x +c )+f (x −c ) 在 0<21时的定义域为 .A .(1−c ,2+c )B .(c ,2−c )C .(1−c ,2−c )D .(c ,2+c ) 27.设函数f (x )=sin (2x +ϕ),(−π<ϕ<0),y =f (x )图象的一条直线x =8π.则ϕ的值为 .A .4πB .43πC .-43πD .2π28.设f (x )是定义在实数集上的周期为2的周期函数,且是偶函数.已知当x ∈[2,3]时,f (x )=−x ,则当x ∈[-2,0]时,f (x )的表达式为 .A .−3+|x +1|B .2−|x +1|C .3−|x +1|D .2+|x +1|29.当a 和b 取遍所有实数时,则函数f (a ,b )=(a+5−3|cosb|)2+(a −2)|sinb|)2所能达到的最小值为 .A .1B .2C .3D .430.对任意实数x ,y ,定义运算x ºy 为x ºy =a x +b y +c xy ,其中a ,b ,c 为常数,且等式右端中的运算为通常的实数加法、乘法运算.已知1º2=3,2º3=4且有一个非零实数d ,使得对于任意实数x 均有x ºd=x ,则d= .A .-4B .-2C .1D .4历年自主招生考试数学试题大全专题下载链接:/a760682.html链接打开方法:1、按住ctrl键单击链接即可打开专题链接2、复制链接到网页。
1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。
A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。
A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。
复旦大学2021年自主招生数学试题1:命题p :“ABC ∆的内心与外心重合”是命题q :“ABC ∆是正三角形”的什么条件?,2:已知)(x f 周期为1,则命题p :“2)3()(=++x f x f ”是命题q :“)(x f 恒为1”的什么条件?3:AD 是的ABC ∆角平分线,3=AB ,8=AC ,7=BC ,求AD 的长.4:求824211(yy xy x +++的常数项.5:已知180≤≤n ,2022202119=+n m ,则=n ________.6:已知21,F F 分别是椭圆的左右焦点,B 为椭圆上的一点,延长B F 2到点A ,满足BA BF =1,1AF 的中点为H ,则下列两个结论是否正确:结论1:BH AF ⊥1;结论2:BH 为椭圆的切线.7:若[][]422)(-+-++=x x x x x g ,x x f 2log )(=,解不等式1))((0<<x f g .8:20219418=++z y x 的正整数解有多少组?9:确定曲线23)6()3(2++-=+y x y x 的类型.10:求由曲线2,22≥+≤+y x y x π围成的面积.11:求极坐标θρ=的曲线轨迹.12:若数列{}n a 满足041244121=⨯-++++n n n a a a ,求na n n +∞→lim .13:求展开式633)1(32xx x x --)(中的常数项.14:底面边长为a 的正三角锥,侧棱与底面所成角为3π,求过一条底边且与底面夹角为6π的截面面积。
15:xa x x f ln )(-=的极值点为m ,n (n m <),则()。
A .1≥a B.1>mn C.2>+n m D.以上都不对16:在三角锥ABC P -中,已知PB PA ⊥,PC PB ⊥,b AC a BA a BC PC PA ===⊥,,,,若以△ABC 为底面,则三角锥的高为________.17:下列数与113355最接近的是()A .1134 B.1135 C.722 D.72318:复系数方程033234=+++-b ix ax ix x 有一个根为1+i,求b a +的值为。
复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。
本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。
一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。
分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。
根据极值的定义,我们可以通过求解f'(x) = 0来得到。
2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。
求该商品的原价。
分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。
通过解这个方程,我们可以求出该商品的原价x。
二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。
Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。
2020年上海市复旦大学自主招生数学试卷一、解答题1.抛物线y2=2px,过焦点F作直线交抛物线于A、B两点,满足,过A作抛物线准线的垂线,垂足记为A',O为顶点,若,求p.2.抛物线y2=2px,过焦点F作直线交抛物线于A,B两点,满足,过A作抛物线准线的垂线,垂足记为A',准线交x轴于C点,若,求p.3.已知实数x,y满足x2+2xy=1,求x2+y2最小值.二、填空题4.已知f(x)=a sin(2πx)+b cos(2πx)+c sin(4πx)+d cos(4πx),若,则在a,b,c,d中能确定的参数是 .5.若三次方程x3+ax2+4x+5=0有一个根是纯虚数,则实数a= .6.展开式中,常数项为 .7.[++…+]= .8.点(4,5)绕点(1,1)顺时针旋转60度,所得的点的坐标为 .9.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是 .10.设,若,则cos(x+2y)= .11.当实数x、y满足x2+y2=1时,|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,则实数a 的取值范围是 .12.在△ABC中,,若O为内心,且满足,则x+y的最大值为 .三、选择题13.已知直线m:y=x cosα和n:3x+y=c,则( )A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对四、填空题14.抛物线3y2=x的焦点为F,A在抛物线上,A点处的切线与AF夹角为30°,则A点的横坐标为 .15.已知点P在直线上,且点P到A(2,5)、B(4,3)两点的距离相等,则点P的坐标是 .16.已知x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,连接原点O和A(x,y),B(y,x)两点,则∠AOB=2arctan的概率为 .17.arcsin+arcsin= .18.已知三棱锥P﹣ABC的体积为10.5,且AB=6,AC=BC=4,AP=BP=10,则CP长度为 .19.在△ABC中,AB=9,BC=6,CA=7,则BC边上中线长度为 .20.若f(x)=x2﹣1,则f(f(x))的图象大致为 .21.定义f M(x)=,M⊗N={x|f M(x)f N(x)=﹣1},已知A=,B={x|x(x+3)(x﹣3)>0},则A⊗B= .22.方程3x+4y+12z=2020的非负整数解的组数为 .23.已知m,n∈Z,且0≤n≤11,若满足22020+32021=12m+n,则n= .24.凸四边形ABCD,则∠BAC=∠BDC是∠DAC=∠DBC的 条件.25.设函数f(x)=3x﹣3﹣x的反函数为y=f﹣1(x),则g(x)=f﹣1(x﹣1)+1在[﹣3,5]上的最大值和最小值的和为 .26.若k>4,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是 .27.已知A、B、C、D四点共圆,且AB=1,CD=2,AD=4,BC=5,则PA的长度为 .28.给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为 .五、选择题29.下列不等式恒成立的是( )A.x2+≥x+B.C.|x﹣y|≥|x﹣z|+|y﹣z|D.六、填空题30.向量数列满足,且满足,令,则当S n取最大时,n的值为 .31.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有 种.32.直线l1,l2交于O点,M为平面上任意一点,若p,q分别为M点到直线l1,l2的距离,则称(p,q)为点M的距离坐标.已知非负常数p,q,下列三个命题正确的个数是 .(1)若p=q=0,则距离坐标为(0,0)的点有且仅有1个;(2)若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个;(3)若pq≠0,则距离坐标为(p,q)的点有且仅有4个.2020年上海市复旦大学自主招生数学试卷参考答案与试题解析一、解答题1.抛物线y2=2px,过焦点F作直线交抛物线于A、B两点,满足,过A作抛物线准线的垂线,垂足记为A',O为顶点,若,求p.【考点】抛物线的性质.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴(2p+)p=12,∴p=.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.2.抛物线y2=2px,过焦点F作直线交抛物线于A,B两点,满足,过A作抛物线准线的垂线,垂足记为A',准线交x轴于C点,若,求p.【考点】抛物线的性质.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴,∴p=2.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.3.已知实数x,y满足x2+2xy=1,求x2+y2最小值.【考点】函数的最值及其几何意义.【分析】先把y用x表示,问题转化为单变量问题,再利用基本不等式求最小值即可.【解答】解:因为x2+2xy=1(x≠0),故,所以,当且仅当等号成立,所以x2+y2最小值为.【点评】本题考查基本不等式的应用,属于基础题.二、填空题4.已知f(x)=a sin(2πx)+b cos(2πx)+c sin(4πx)+d cos(4πx),若,则在a,b,c,d中能确定的参数是 a=b=c=d=0 .【考点】抽象函数及其应用.【分析】先令x=0和x=可得b=d=0,再由得到a=c=0.【解答】解:令,令,,,所以sin4πx(2c﹣a﹣2c cos4πx)=0恒成立,所以2c﹣a=2c=0⇒a=c=0,综上所述a=b=c=d=0.故答案为:a=b=c=d=0.【点评】本题考查赋值法在抽象函数中的应用,考查二倍角公式,属于中档题.5.若三次方程x3+ax2+4x+5=0有一个根是纯虚数,则实数a= .【考点】实系数多项式虚根成对定理.【分析】设三次方程的纯虚数根为bi(b∈R,b≠0),代入三次方程,由复数的运算性质和复数为0的条件,解方程可得所求值.【解答】解:设三次方程的纯虚数根为bi(b∈R,b≠0),可得﹣b3i﹣ab2+4bi+5=0,即(5﹣ab2)+(4b﹣b3)i=0,可得5﹣ab2=0,且4b﹣b3=0,解得b=±2,a=.故答案为:.【点评】本题考查实系数高次方程的根的定义,以及复数的运算法则的运用,考查运算能力,是一道基础题.6.展开式中,常数项为 12600 .【考点】二项式定理.【分析】要使展开式中出现常数项,由题意可知,展开式中的常数项应符合以下特征:,且k+2k+m+3m=10,由此求出k,m的值即可.【解答】解:利用组合的知识可知,展开式中的常数项满足:,且k+2k+m+3m=10,k,m∈N.即3k+4m=10,m,k∈N.解得,故常数项为:.【点评】本题考查二项式展开式中特定项的求法,注意组合知识在解题中的应用.属于基础题.7.[++…+]= .【考点】数列的极限.【分析】通过裂项消项法,求解数列的和,然后利用数列的极限的运算法则求解即可.【解答】解:=++…+==(1++﹣﹣﹣).[++…+]=(1++﹣﹣﹣)==.故答案为:.【点评】本题考查数列求和以及数列的极限的运算法则的应用,是中档题.8.点(4,5)绕点(1,1)顺时针旋转60度,所得的点的坐标为 .【考点】旋转变换.【分析】不妨设A(1,1),B(4,5),则,在在复平面对应的复数求出来,并用三角表示,再结合复数乘法运算的几何意义即可求出所对应的复数z2,进而求出的坐标,再求C点坐标,即为答案.【解答】解:不妨设A(1,1),B(4,5),则,在复平面对应的复数为,则顺时针旋转60°,则,,,因此,从而可得点.【点评】本题考查复数乘法运算的几何意义,考查转化能力和计算能力,属于中档题.9.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是 两条射线 .【考点】简单曲线的极坐标方程.【分析】直接利用转换关系,消去ρ,整理成三角函数关系式,进一步求出结果.【解答】解:根据方程5ρcosθ=4ρ+3ρcos2θ,整理得5cosθ=4+3(2cos2θ﹣1),即6cos2θ﹣5cosθ+1=0,解得cos或cos.所以该曲线为两条射线.故答案为:两条射线.【点评】本题考查的知识要点:参数方程、极坐标方程和普通方程之间的转换,三角函数关系式的变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.设,若,则cos(x+2y)= 1 .【考点】函数与方程的综合运用.【分析】设f(x)=x3+sin x,把已知条件转化为f(x)+f(2y)=0,又因为函数f(x)在R上是单调递增的奇函数,故x+2y=0,进而求出cos(x+2y)=1.【解答】解:原式可得变形为,设f(x)=x3+sin x,因为f(﹣x)=(﹣x)3+sin(﹣x)=﹣(x3+sin x)=﹣f(x),所以f(x)为奇函数,当x>0 时,f(x)′=3x2+cos x①当0<x<时,cos x>0,所以f(x)′>0;②当x>时,3x2>3,cos x<1,所以f(x)′>0.所以f(x)在(0,+∞)上是单调递增函数,又因为奇函数关于原点对称,所以函数f(x)在R上是单调递增函数,因此f(x)+f(2y)=0,则x+2y=0,则cos(x+2y)=1.故答案为:1.【点评】本题考查函数的单调性与奇偶性的综合,考查学生的转化能力,是一道综合性的题目,属于中档题.11.当实数x、y满足x2+y2=1时,|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,则实数a 的取值范围是 .【考点】直线和圆的方程的应用.【分析】根据x,y满足的表达式可设x=cosθ,y=sinθ,进而求出x+2y的范围,再由条件可知x+2y﹣a≥0,且a+6﹣x﹣2y≥0,则可求出a的取值范围.【解答】解:因为实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=,其中α=arctan2,所以﹣≤x+2y≤,因为|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,所以|x+2y﹣a|+|a+6﹣x﹣2y|=x+2y﹣a+a+6﹣x﹣2y=6,即此时,所以x+2y﹣6≤a≤x+2y,则≤a≤﹣,故答案为:【点评】本题考查了圆的参数方程,涉及绝对值取值范围等知识点,属于中档题.12.在△ABC中,,若O为内心,且满足,则x+y的最大值为 .【考点】平面向量的基本定理.【分析】设=λ,根据共线向量的几何意义和二倍角公式解答.【解答】解:延长AO交BC于D,设BC与圆O相切于点E,AC与圆O相切于点F,则OE=OF,则OE≤OD,设=λ,因为B、C、D三点共线,所以λx+λy=1,即x+y======,因为cos A=1﹣2sin2=,所以sin=,所以x+y≤=.故答案是:.【点评】本题主要考查向量数量积的运算及几何意义,三角形的内心的概念,三角函数的转化关系,属于中档题.三、选择题13.已知直线m:y=x cosα和n:3x+y=c,则( )A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对【考点】确定直线位置的几何要素;直线的一般式方程与直线的平行关系.【分析】求出直线m与直线n的斜率,由斜率不能相等判断两直线不可能重合;由斜率之积为﹣1,得出两直线垂直;由两直线不平行,得出两直线相交,从而判断直线m以交点P为中心旋转后与n重合.【解答】解:直线m:y=x cosα,斜率为k1=cosα;直线n:3x+y=c,斜率为k2=﹣3;k1≠k2,所以m和n不可能重合,A错误;cosα=时,k1•k2=﹣1,m和n垂直,所以B错误;由k1≠k2知m和n不平行,设m、n相交于点P,则直线m以P为中心旋转后与n重合,所以C正确.故选:C.【点评】本题考查了两条直线的位置关系应用问题,是基础题.四、填空题14.抛物线3y2=x的焦点为F,A在抛物线上,A点处的切线与AF夹角为30°,则A点的横坐标为 .【考点】直线与抛物线的综合.【分析】设A的坐标求导可得A的切线的斜率,设切线的倾斜角为α,求出准线AF的斜率,由题意可得k AF=tan(30°+α),可得A的横坐标.【解答】解:抛物线3y2=x可得y2=,所以焦点F坐标(,0),设A(x0,y0),设y0>0y=,y'=,所以在A处的切线的斜率为:k=,设在A处的倾斜角为α,则k=tanα=,k AF===,tan(30°+α)===,由题意可得k AF=tan(30°+α),所以=,整理可得:(1﹣2)(12x 0+1)=0,解得:x0=,所以A的横坐标为:,故答案为:.【点评】本题考查抛物线的性质及由求导法求在点的切线的斜率,属于中档题.15.已知点P在直线上,且点P到A(2,5)、B(4,3)两点的距离相等,则点P的坐标是 (1,2) .【考点】行列式.【分析】由二项展开式性质得点P在直线4x+y﹣6=0,设P(a,﹣4a+6),由点P到A (2,5)、B(4,3)两点的距离相等,能求出点P的坐标.【解答】解:∵点P在直线上,∴点P在直线4x+y﹣6=0,设P(a,﹣4a+6),∵点P到A(2,5)、B(4,3)两点的距离相等,∴,解得a=1,∴点P的坐标是(1,2).故答案为:(1,2).【点评】本题考查点的坐标的求法,考查行列式、直线方程、两点间距离公式等基础知识,考查运算求解能力,是基础题.16.已知x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,连接原点O和A(x,y),B(y,x)两点,则∠AOB=2arctan的概率为 .【考点】古典概型及其概率计算公式.【分析】先由题设条件求出数对(x,y)总的个数,然后利用∠AOB=2arctan求出满足题意的数对(x,y)的个数,最后利用古典概型概率公式计算出结果.【解答】解:∵x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,∴数对(x,y)共有9×8=72个.∵∠AOB=2arctan,∴tan∠AOB==,cos∠AOB=,又连接原点O和A(x,y),B(y,x)两点,得=(x,y),=(y,x),则cos∠AOB===,即(2x﹣y)(x﹣2y)=0,即y=2x,或y=x,∴满足∠AOB=2arctan的数对有:(1,2),(2,4),(3,6),(4,8),(2,1),(4,2),(6,3),(8,4),共8个,∴∠AOB=2arctan的概率P==.故答案为:.【点评】本题主要以集合为背景考查满足古典概型的概率的计算及三角公式的简单应用,属于中档题.17.arcsin+arcsin= .【考点】反三角函数.【分析】由题意判断出<arcsin+arcsin<π,求出sin(arcsin+arcsin)的值,即可得出arcsin+arcsin的值.【解答】解:由arcsin<arcsin<arcsin1,所以<arcsin<,又arcsin<arcsin<arcsin1,所以<arcsin<,所以<arcsin+arcsin<π,所以sin(arcsin+arcsin)=sin(arcsin)cos(arcsin)+cos(arcsin)sin(arcsin)=×+×=×+×=+=,所以arcsin+arcsin=.故答案为:.【点评】本题考查了反三角函数值的计算问题,也考查了运算求解能力,是中档题.18.已知三棱锥P﹣ABC的体积为10.5,且AB=6,AC=BC=4,AP=BP=10,则CP长度为 7 或 .【考点】棱柱、棱锥、棱台的体积.【分析】先根据题意证明平面ABC⊥平面PCD,进而得到P点到CD的距离即P点到平面ABC的距离,再利用三棱锥P﹣ABC的体积为10.5,求出sin∠PDC,利用同角的三角函数关系求出cos∠PDC,在△PDC中运用余弦定理即可求出PC的长度.【解答】解:取AB中点D,因为AB⊥CD,AB⊥PD,又因为PD∩CD=D且PD,CD⊂平面PCD,则AB⊥面PDC,又因为AB⊂平面ABC,所以平面ABC⊥平面PCD,那么P点到CD的距离即P点到平面ABC的距离,依题意可得,所以,那么,由余弦定理可得或.故答案为:7 或.【点评】本题考查线面垂直及面面垂直的证明,三棱锥体积公式,余弦定理,考查学生的转化能力和运算能力,属于中档题.19.在△ABC中,AB=9,BC=6,CA=7,则BC边上中线长度为 2 .【考点】三角形中的几何计算.【分析】利用余弦定理求出cos∠BAC的值,再利用平面向量的线性表示,即可求出中线的长度.【解答】解:△ABC中,AB=9,BC=6,CA=7,如图所示;由余弦定理得cos∠BAC==;设AD是BC边上的中线,则=(+),所以=×(+2•+)=×(81+2×9×7×+49)=56,解得||=2,所以BC边上的中线长度为2.故答案为:2.【点评】本题考查了平面向量的数量积与解三角形的应用问题,是基础题.20.若f(x)=x2﹣1,则f(f(x))的图象大致为 .【考点】函数的图象与图象的变换.【分析】求出f(f(x))的解析式,并判断奇偶性,利用导数求出x>0时的单调性,由对称性即可作出大致图象.【解答】解:f(f(x))=(x2﹣1)2﹣1=x4﹣2x2,令g(x)=x4﹣2x2,g(x)=0,可得x=±或0,由g(﹣x)=g(x),可得g(x)为偶函数,当x≥0时,g′(x)=4x3﹣4x=4x(x+1)(x﹣1),x∈(0,1)时,g′(x)<0,g(x)单调递减,x∈(1,+∞)时,g′(x)>0,g(x)单调递增,由偶函数关于y轴对称,可得f(f(x))的图象大致为故答案为:.【点评】本题主要考查函数的图象的画法,属于基础题.21.定义f M(x)=,M⊗N={x|f M(x)f N(x)=﹣1},已知A=,B={x|x(x+3)(x﹣3)>0},则A⊗B= (﹣∞,﹣3]∪[0,1)∪(3,+∞). .【考点】子集与交集、并集运算的转换.【分析】求出集合A,B,利用新定义求出A⊗B即可.【解答】解:A=(﹣∞,1),B={x|x(x﹣3)(x+3)>0}=(﹣3,0)∪(3,+∞);∁R A=[1,+∞),∁R B=(﹣∞,﹣3]∪[0,3].因为f A(x)•f B(x)=﹣1,所以当f A(x)=﹣1,f B(x)=1,A⊗B=B∩∁R A={x|x>3},当f A(x)=1,f B(x)=﹣1,A⊗B=A∩∁R B={x|x≤﹣3或0≤x<1},故A⊗B=(﹣∞,﹣3]∪[0,1)∪(3,+∞).故答案为:(﹣∞,﹣3]∪[0,1)∪(3,+∞).【点评】考查集合的交并集的计算,集合概念的理解,属于基础题.22.方程3x+4y+12z=2020的非负整数解的组数为 14365 .【考点】计数原理的应用.【分析】利用非负整数这一条件结合题干中的3×4=12进行分析入手即可.【解答】解:因为3x+4y+12z=2020,所以,因为x,y,z均为整数,所以也是整数,所以设x=4k,则3k+y+3z=505,所以3(k+z)+y=505,易知505÷3=168…1,则k+z可取的值为0~168,当k+z=0时,k=z=0,当k+z=1时,或,当k+z=n时,k的取值集合为{0,1,2,…,n},对应z=n﹣k,故当k+z取遍0~168时,z的所有可能取值数为种,故所有的非负整数解为14365种,故答案为14365.【点评】本题考查逻辑分析能力,考查学生对于题中隐藏条件的判断,属于中档题.23.已知m,n∈Z,且0≤n≤11,若满足22020+32021=12m+n,则n= 7 .【考点】进行简单的合情推理.【分析】通过研究2n+3n+1除以12的余数的规律得到结果.【解答】解:归纳:21+32=12×0+11,22+33=12×2+7,23+34=12×7+5,24+35=12×21+7,25+36=12×63+5,26+37=12×187+7,27+38=12×557+5,…由以上过程可知,除去第一个式子之外,余数为7,5循环;易知2n中n为奇数对应余数为5,n为偶数对应余数为7;2020为偶数,故余数为7.故答案为7.【点评】本题考查归纳推理,属于中档题.24.凸四边形ABCD,则∠BAC=∠BDC是∠DAC=∠DBC的 充要 条件.【考点】充分条件、必要条件、充要条件.【分析】根据四点共圆的性质,对∠BAC=∠BDC,∠DAC=∠DBC进行逻辑判断即可.【解答】解:在凸四边形ABCD中,若∠BAC=∠BDC,则ABCD四点共圆,则必有∠DAC =∠DBC;在凸四边形ABCD中,若∠DAC=∠DBC,则ABCD四点共圆,则必有∠BAC=∠BDC;所以:∠BAC=∠BDC是∠DAC=∠DBC的充要条件.故答案为:充要.【点评】本题考查了四点共圆问题,充分必要条件的定义,属于基础题.25.设函数f(x)=3x﹣3﹣x的反函数为y=f﹣1(x),则g(x)=f﹣1(x﹣1)+1在[﹣3,5]上的最大值和最小值的和为 2 .【考点】函数的最值及其几何意义;反函数.【分析】由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,结合函数f(x)的单调性可得此时,再由反函数的性质即可得解.【解答】解:由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,由f(x))=3x﹣3﹣x单调递增可得,,∴,∴g(x)在[﹣3,5]上的最大值与最小值之和为,故答案为:2.【点评】本题主要考查反函数的性质,考查运算能力,属于中档题.26.若k>4,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是 (,+∞) .【考点】两条直线的交点坐标;三角形的面积公式.【分析】求出两直线经过的定点坐标,再求出直线与x轴的交点,与y轴的交点,得到所求的四边形,求出四边形的面积表达式,应用二次函数的知识求面积最小时的k值【解答】解:如图所示:直线L:kx﹣2y﹣2k+8=0 即k(x﹣2)﹣2y+8=0,过定点B(2,4),与y轴的交点D(0,4﹣k),与x轴的交点A(2﹣,0),直线M:2x+k2y﹣4k2﹣4=0,即2x+k2(y﹣4)﹣4=0,过定点B(2,4 ),与x轴的交点E(2k2+2,0),与y轴的交点C(0,4+),由题意,四边形OABC的面积等于△OCE面积﹣△ABE面积,∴所求四边形的面积为S=×(4+)(2k2+2)﹣×4×(2k2+2﹣2+)=﹣+8=4﹣8,∵k>4,∴0<则8>S>故k>4时,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是(,8).【点评】本题考查了直线过定点问题,以及二次函数的最值问题,是基础题.27.已知A、B、C、D四点共圆,且AB=1,CD=2,AD=4,BC=5,则PA的长度为 .【考点】余弦定理.【分析】连接AC,BD,由圆内接四边形的性质可得∠PAB=∠BCD,∠PBA=∠ADC,在△ABD和△BCD中运用余弦定理,结合诱导公式求得cos∠PAB,sin∠PAB,同理可得cos∠PBA,sin∠PBA,再由两角和的正弦公式求得sin P,在△PAB中运用余弦定理可得所求;另解:由四点共圆的性质和三角形的相似的性质,解方程可得所求值.【解答】解:连接AC,BD,由A,B,C,D四点共圆,可得∠PAB=∠BCD,∠PBA=∠ADC,由BD2=AB2+AD2﹣2AB•AD•cos∠BAD,BD2=CB2+CD2﹣2CB•CD•cos∠BCD,且∠BAD+∠BCD=180°,可得cos∠BAD=﹣cos∠BCD,则1+16﹣2×1×4cos∠BAD=25+4﹣2×5×2×cos∠BCD,化为17+8cos∠BCD=29﹣20cos∠BCD,解得cos∠BCD=,即cos∠PAB=,则sin∠PAB==,又AC2=BA2+BC2﹣2BA•BC•cos∠ABC,AC2=DA2+DC2﹣2DA•DC•cos∠ADC,且∠ABC+∠ADC=180°,可得cos∠ABC=﹣cos∠ADC,则1+25﹣2×1×5cos∠ABC=16+4﹣2×4×2×cos∠ADC,化为26+10cos∠ADC=20﹣16cos∠ADC,解得cos∠ADC=﹣,即cos∠PBA=﹣,则sin∠PBA==,则sin P=sin(∠PAB+∠PBA)=sin∠PAB cos∠PBA+cos∠PAB sin∠PBA=×(﹣)+×=,在△PAB中,由=,可得=,解得PA=.另解:由A,B,C,D四点共圆,可得∠PAB=∠PCD,∠PBA=∠PDC,则△PAB∽△PCD,即有==,设PA=x,PB=y,可得==,即有2x=5+y,即y=2x﹣5,2y=4+x,即有2(2x﹣5)=4+x,解得x=,即PA=.故答案为:.【点评】本题考查三角形的余弦定理和正弦定理的运用,以及圆内接四边形的性质,考查化简运算能力,属于中档题.28.给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为 .【考点】函数奇偶性的性质与判断;古典概型及其概率计算公式.【分析】基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m ==6,由此能求出其中既有奇函数、又有偶函数的概率.【解答】解:给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m==6,∴其中既有奇函数、又有偶函数的概率为P===.故答案为:.【点评】本题考查概率的求法,考查概率定义等基础知识,考查运算求解能力,是基础题.五、选择题29.下列不等式恒成立的是( )A.x2+≥x+B.C.|x﹣y|≥|x﹣z|+|y﹣z|D.【考点】不等关系与不等式;基本不等式及其应用.【分析】A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化简即可判断出正误.B.取特殊值,令x﹣y=﹣1,即可判断出正误;C.由绝对值不等式的性质即可判断出正误;D.﹣=﹣,即可判断出真假.【解答】解:A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化为(t﹣2)(t+1)≥0,即t≥2,恒成立.因此不等式恒成立.B.取x﹣y=﹣1,则|x﹣y|+=1﹣1=0<2,因此不恒成立;C.由绝对值不等式的性质可得:|x﹣z|+|y﹣z|≥|(x﹣z)﹣(y﹣z)|=|x﹣y|,因此不恒成立.D.∵﹣>,∴﹣=﹣≤0,∴≤,错误.故选:A.【点评】本题考查了不等式的性质、绝对值不等式的性质,考查了推理能力与计算能力,属于基础题.六、填空题30.向量数列满足,且满足,令,则当S n取最大时,n的值为 6或7 .【考点】数列的求和;平面向量数量积的性质及其运算.【分析】直接利用向量的运算求出数列的通项公式,进一步利用前n项和公式的应用求出结果为二次函数的形式,最后利用二次函数的性质求出结果.【解答】解:数列满足,所以,,…,,所有的式子相加得到:,所以,由于,由于======,由于二次函数的对称轴方程为n=(n为整数),所以n=6或7时,S n取最大值.故答案为:6或7【点评】本题考查的知识要点:数列的通项公式,向量的运算,数列的前n项和,主要考查学生的运算能力和转换能力及思维能力,属于中档题.31.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有 1128 种.【考点】排列、组合及简单计数问题.【分析】根据题意,按甲乙丙的安排分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,乙没有限制,②甲在第三天值班,丙安排在第二天值班,乙没有限制,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,求出每种情况的安排方法数目,由加法原理计算可得答案.【解答】解:根据题意,甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,有2种情况,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有2×120=240种安排方式,②甲在第三天值班,丙安排在第二天值班,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有1×120=120种安排方式,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有3×2×4×24=576种安排方式,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式;故有240+120+96+576+96=1128种安排方式;故答案为:1128【点评】本题考查排列组合的应用,涉及分类、分步计数原理的应用,属于基础题.32.直线l1,l2交于O点,M为平面上任意一点,若p,q分别为M点到直线l1,l2的距离,则称(p,q)为点M的距离坐标.已知非负常数p,q,下列三个命题正确的个数是 (1)(2)(3) .(1)若p=q=0,则距离坐标为(0,0)的点有且仅有1个;(2)若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个;(3)若pq≠0,则距离坐标为(p,q)的点有且仅有4个.【考点】命题的真假判断与应用.【分析】由题意点到直线l1,l2的距离分别为p,q,由点M的距离坐标的定义逐一判断即可.【解答】解:(1)p=q=0,则“距离坐标”为(0,0)的点有且只有1个,此点为点O.故(1)正确;(2)若pq=0,且p+q≠0,则p,q中有且仅有一个为0,当p=0,q≠0时,距离坐标点在l1上,分别为关于O点对称的两点,当q=0,p≠0时,在l2上也有两点,但是这两种情况不能同时存在,∴若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个,故(2)正确;(3)若pq≠0,则距离坐标为(p,q)的点有且只有4个,而四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点.故答案为:(1)(2)(3).【点评】本题考查了新定义“距离坐标”,考查了理解能力与推理能力,属于中档题.。
全国各重点大学自主招生数学试题及答案分类汇总一.集合与命题 (2)二.不等式 (9)三.函数 (20)四.数列 (27)五.矩阵、行列式、排列组合,二项式定理,概率统计 (31)六.排列组合,二项式定理,概率统计(续)复数 (35)七.复数 (39)八.三角 (42)近年来自主招生数学试卷解读第一讲集合与命题第一部分近年来自主招生数学试卷解读一、各学校考试题型分析:交大:题型:填空题10题,每题5分;解答题5道,每题10分;考试时间:90分钟,满分100分;试题难度:略高于高考,比竞赛一试稍简单;考试知识点分布:基本涵盖高中数学教材高考所有内容,如:集合、函数、不等式、数列(包括极限)、三角、复数、排列组合、向量、二项式定理、解析几何和立体几何复旦:题型:试题类型全部为选择题(四选一);全考试时间:总的考试时间为3小时(共200道选择题,总分1000分,其中数学部分30题左右,,每题5分);试题难度:基本相当于高考;考试知识点分布:除高考常规内容之外,还附加了一些内容,如:行列式、矩阵等;考试重点:侧重于函数和方程问题、不等式、数列及排列组合等同济:题型:填空题8题左右,分数大约40分,解答题约5题,每题大约12分;考试时间:90分钟,满分100分;试题难度:基本上相当于高考;考试知识点分布:常规高考内容二、试题特点分析:1. 突出对思维能力和解题技巧的考查。
关键步骤提示:2. 注重数学知识和其它科目的整合,考查学生应用知识解决问题的能力。
关键步骤提示:()()()4243222342(2)(2)(1)(2)(1)f a x x a x x xx x x a x x x =--++-=+-+++-111(,),(,),(,)nnni i i ii i i i i i id u w a d v w b d u v a b a b a b ======-+≥-∑∑∑由绝对值不等式性质,三、 应试和准备策略1.注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。
交通大学2000年保送生数学试题一、选择题(本题共15分,每小题3分.在每小题给出的4个选项中,只有一项正确,把所选项的字母填在括号内) 1.若今天是星期二,则31998天之后是( ) A .星期四B .星期三C .星期二D .星期一 2.用13个字母A ,A ,A ,C ,E ,H ,I ,I ,M ,M ,N ,T ,T 作拼字游戏,若字母的各种排列是随机的,恰好组成“MATHEMATICIAN”一词的概率是 ( ) A .4813!B .21613!C .172813!D .813!3.方程cos 2x sin 2x +sin x =m +1有实数解,则实数m 的取值范围是 ( ) A .18m ≤B .m > 3C .m > 1D .138m -≤≤4.若一项数为偶数2m 的等比数列的中间两项正好是方程x 2+px +q =0的两个根,则此数列各项的积是( ) A .p mB .p 2mC .q mD .q 2m 5.设f ’(x 0)=2,则000()()limh f x h f x h h→+--( ) A . 2B .2C . 4D .4二、填空题(本题共24分,每小题3分)1.设f (x )1x ,则10(2)f x dx =⎰__________.2.设(0,)2x π∈,则函数(222211sin )(cos )sin cos x x x x++的最小值是__________. 3.方程316281536x x x ⋅+⋅=⋅的解x =__________.4.向量2a i j =+在向量34b i j =+上的投影()b a =__________. 5.函数3223y x x =+的单调增加区间是__________.6.两个等差数列200,203,206,…和50,54,58…都有100项,它们共同的项的个数是__________. 7.方程7x 2(k +13)x +k 2k 2=0的两根分别在区间(0,1)和(1,2)内,则k 的取值范围是__________.8.将3个相同的球放到4个盒子中,假设每个盒子能容纳的球数不限,而且各种不同的放法的出现是等可能的,则事件“有3个盒子各放一个球”的概率是________. 三、证明及计算(本题61分)1.(6分)已知正数列a 1,a 2,…,a n ,且对大于1的n 有1232n a a a n +++=,1212n n a a a +=. 试证:a 1,a 2,…,a n 中至少有一个小于1.2.(10分)设3次多项式f (x )满足:f (x +2)=f (x ),f (0)=1,f (3)=4,试求f (x ).3.(8分)求极限112lim(0)p p pp n n p n +→∞+++>.4.(10分)设2,0(),0x bx c x f x lx m x ⎧++>=⎨+≤⎩在x =0处可导,且原点到f (x )中直线的距离为13,原点到f (x )中曲线部分的最短距离为3,试求b ,c ,l ,m 的值.(b ,c >0)5.(8分)证明不等式:341sin cos 2x x ≤+≤,[0,]2x π∈.6.(8分)两名射手轮流向同一目标射击,射手甲和射手乙命中目标的概率都是12.若射手甲先射,谁先命中目标谁就获胜,试求甲、乙两射手获胜的概率.7.(11分)如图所示,设曲线1y x=上的点及x 轴上的点顺次构成等腰直角三角形△OB 1A 1,△A 1B 2A 2,…,直角顶点在曲线1y x=上.试求A n 的坐标OyxB 1A 2A 1B 2表达式,并说明这些三角形的面积之和是否存在.复旦大学2000年保送生招生测试数学试题(理科)一、填空题(每小题10分,共60分)1.将自然数按顺序分组:第一组含一个数,第二组含二个数,第三组含三个数,……,第n 组含n 个数,即1;2,3;4,5,6;…….令a n 为第n 组数之和,则a n =________________.2.222sin sin ()sin ()33ππααα+++-=______________.3.222lim[(2)log (2)2(1)log (1)log ]n n n n n n n →∞++-+++=_________________.4.已知平行六面体的底面是一个菱形且其锐角等于60度,又过此锐角的侧棱及锐角两边成等角,和底面成60度角,则两对角面面积之比为__________________.5.正实数x ,y 满足关系式x 2xy 4=0,又若x ≤1,则y 的最小值为_____________.6.一列火车长500米以匀速在直线轨道上前进,当车尾经过某站台时,有人驾驶摩托车从站台追赶火车给火车司机送上急件,然后原速返回,返回中及车尾相遇时,此人发现这时正在离站台1000米处,假设摩托车车速不变,则摩托车从出发到站台共行驶了______________米.二、解答题(每小题15分,共90分)1.数列{a n }适合递推式a n +1=3a n +4,又a 1=1,求数列前n 项和S n .2.求证:从椭圆焦点出发的光线经光洁的椭圆壁反射后必经过另一个焦点.你还知道其它圆锥曲线的光学性质吗?请叙述但不必证明.3.正六棱锥的高等于h ,相邻侧面的两面角等于12arcsin 2, 求该棱锥的体积.(1cos124π=)4.设z 1,z 2,z 3,z 4是复平面上单位圆上的四点,若z 1+z 2+z 3+z 4=0. 求证:这四个点组成一个矩形.5.设(1n n x y =+x n ,y n 为整数,求n →∞时,nnx y 的极限.6.设平面上有三个点,任意二个点之间的距离不超过1.问:半径至少为多大的圆盘才能盖住这三个点.请证明你的结论.2001年上海交通大学联读班数学试题一、填空题(本题共40分,每小题4分) 1.数12825N =⨯的位数是________________.2.若log 2[log 3(log 4x )]=log 3[log 4(log 2y )]=log 4[log 2(log 3z )]=0,则x +y +z =_________.3.若log 23=p ,log 35=q ,则用p 和q 表示log 105为________________. 4.设sin 和sin 分别是sin 及cos 的算术平均和几何平均,则cos2:cos2=____________.5.设[0,]2x π∈,则函数f (x )=cos x +x sin x 的最小值为________________.6.有一盒大小相同的小球,既可将他们排成正方形,又可将它们排成正三角形,已知正三角形每边比正方形每边多2个小球,则这盒小球的个数为____________.7.若在数列1,3,2,…中,前两项以后的每一项等于它的前面一项减去再前面一项,则这个数列的前100项之和是_______________. 8.在(1+2x x 2)4的二项展开式中x 7的系数是_______________. 9.某编辑在校阅教材时,发现这句:“从60°角的顶点开始,在一边截取9厘米的线段,在另一边截取a 厘米的线段,求两个端点间的距离”,其中a 厘米在排版时比原稿上多1.虽然如此,答案却不必改动,即题目及答案仍相符合,则排错的a =________________. 10.任意掷三只骰子,所有的面朝上的概率相同,三个朝上的点数恰能排列成公差为1的等差数列的概率为_________________. 二、选择题(本题共32分,每小题4分)11.a >0,b >0,若(a +1)(b +1)=2,则arctan a +arctan b =( ) A .2πB .3πC .4πD .6π 12.一个人向正东方向走x 公里,他向左转150°后朝新方向走了3公里,3x 是( ) A .3B .23C .3D .不能确定 13.111113216842(12)(12)(12)(12)(12)-----+++++=( )A .11321(12)2--- B .1132(12)---C .13212--D .1321(12)2--14.设[t ]表示≤ t 的最大整数,其中t ≥0且S ={(x ,y )|(x T )2+y 2≤T 2,T=t [t ]},则 ( )A .对于任何t ,点(0,0)不属于SB .S 的面积介于0和之间C .对于所有的t ≥5,S 被包含在第一象限D .对于任何t ,S 的圆心在直线y =x 上15.若一个圆盘被2n (n >0)条相等间隔的半径和一条割线所分隔,则这个圆盘能够被分成的不交迭区域的最大个数是( ) A .2n +2 B .3n 1C .3nD .3n +116.若i 2=1,则cos45°+i cos135°+…+i n cos(45+90n )°+…+i 40cos3645°= ( ) A 2B 212C 220)i -D 220)i + 17.若对于正实数x 和y 定义xyx y x y*=+,则( )A .”*”是可以交换的,但不可以结合B .”*”是可以结合的,但不可以交换C.”*”既不可以交换,也不可以结合D.”*”是可以交换和结合的18.两个或两个以上的整数除以N(N为整数,N>1),若所得的余数相同且都是非负数,则数学上定义这两个或两个以上的整数为同余.若69,90和125对于某个N是同余的,则对于同样的N,81同余于( )A.3 B.4 C.5 D.7三、计算题(本题共78分)19.(本题10分)已知函数f(x)=x2+2x+2,x∈[t,t+1]的最小值是g(t).试写出g(t)的解析表达式.20.(本题12分)设对于x>0,66633311()()2()11()x xx xf xx xx x+-+-=+++,求f(x)的最小值.21.(本题16分)已知函数121 ()1xf xx -=+,对于n=1,2,3,…定义f n+1(x)=f1[f n(x)].若f35(x)=f5(x),则f28(x)的解析表达式是什么?22.(本题20分)已知抛物线族2y=x2-6x cos t-9sin2t+8sin t+9,其中参数t∈R.(1) 求抛物线顶点的轨迹方程;(2) 求在直线y=12上截得最大弦长的抛物线及最大弦长.23.(本题20分)设{x n }为递增数列,x 1=1,x 2=4,在曲线y x =上及之对应的点列为P 1(1,1),P 2(4,2),333(,)P x x ,…,(,)n n n P x x …,且以O 为原点,由OP n 、OP n +1及曲线P n P n +1所围成部分的面积为S n ,若{S n }(n ∈N )是公比为45的等比数列,图形X n X n +1P n +1P n 的面积为332212()3n n x x +-,试求S 1+S 2+…+S n +…和lim n n x →∞.复旦大学2001年选拔生考试数学试题一、填空(每小题5分,共45分)1.sin x sin y 0,则cos 2x sin 2y ___________________. 2.平面1,2成的二面角,平面1中的椭圆在平面2中的射影是圆,那么椭圆短轴及长轴之比为__________.3.(x 2+2x +2)(y 2-2y +2)=1,则x +y ________________________. 4.电话号码0,1不能是首位,则本市电话号码从7位升到8位,使得电话号码资源增加____.5.200283a 3+82a 2+8a 1+a 0,0≤a 0,a 1,a 2,a 3≤7正整数,则a 0______________.xP nyOXn +1XnP n +16.15()x x-的常数项为_________________. 7.lim (1)n n n n →∞+-=__________________. 8.空间两平面,,是否一定存在一个平面均及平面,垂直?___________.9.在△ABC 中,cos(2A C )=cos(2C B ),则此三角形的形状是________________. 二、解答题(共87分)1.求解:cos3x tan5x =sin7x .2.数列3,3lg2,…,3(n 1)lg2.问当n 为几时,前n 项的和最大?3.求证:x ∈R 时,|x 1|≤4|x 31|.4.a 为何值时,方程22lg lg()log (1)lg 2lg 2x a x a -+=-有解?只有一解?5.一艘船向西以每小时10公里的速度航行,在它的西南方向有一台风中心正以每小时20公里速度向正北方向移动,船及台风中心距离300米,在台风中心周围100米处将受到影响,问此船航行受台风影响的时间段长度?6.x 3-2y 3=1的所有整数解(x ,y ),试证明:1334|2|||x y y -<.上海交通大学2002年保送生考试数学试题一、填空题(本题共64分,每小题4分)1.设方程x 3=1的一个虚数根为2,1n n ωωω++则(n 是正整数)=__________. 2.设a ,b 是整数,直线y =ax +b 和3条抛物线:y =x 2+3,y =x 2+6x +7及y =x 2+4x +5的交点个数分别是2,1,0,则(a ,b )=___________.3.投掷3个骰子,其中点数之积为9的倍数的概率为___________. 4.若x ,y ,z >0且x 2+y 2+z 2=1,则222111x y z ++的最小值为___________. 5.若2x 2x =2,则8x =______________. 6.若a ,b ,c 为正实数,且3a =4b =6c ,则1112ab c+-=_____________. 7.222111(1)(1)(1)23n---的值为_____________. 8.函数22sec sec x tgxy x tgx-=+的值域为______________.9.若圆内接四边形ABCD 的边长AB =4,BC =8,CD =9,DA =7,则cos A =__________.10.若a ,b 满足关系:22111a b b a --=,则a 2+b 2=____________. 11.291(1)2x x+-的展开式中x 9的系数是_____________. 12.当12a ≤<时,方程222||a x x -=的相异实根个数共有_____________个.13.若不等式2054x ax ≤++≤有唯一解,则a =_______________.14.设a ,b ,c 表示三角形三边的长,均为整数,且a b c ≤≤,若b =n (正整数),则可组成这样的三角形______个.15.有两个二位数,它们的差是56,它们的平方数的末两位数字相同,则这两个数为_______.16.某市环形马路上顺次有第一小学至第五小学等5所小学,各小学分别有电脑15,7,11,3,14台,现在为使各小学的电脑数相等,各向相邻小学移交若干台,且要使移交的电脑的总台数最小,因此,从第一小学向第二小学移交了________台,从第二小学向第三小学移交了______台,从第五小学向第一小学移交了________台,移动总数是_________台.二、计算及证明题(本题共86分)17.(本题12分)(1)设n 为大于2的整数,试用数学归纳法证明下列不等式:(1)22211111223n n++++<-;(2)已知当2sin 01,116x x x x <≤-<<时, 试用此式及(1)的不等式求1111lim (sin12sin 3sin sin )23n n n n→∞++++18.(本题14分)若存在实数x ,使f (x )=x ,则称x 为f (x )的不动点,已知函数2()x af x x b+=+有两个关于原点对称的不动点 (1) 求a ,b 须满足的充要条件;(2) 试用y =f (x )和y =x 的图形表示上述两个不动点的位置(画草图)19.(本题14分)欲建面积为144m 2的长方形围栏,它的一边靠墙(如图),现有铁丝网50m ,问筑成这样的围栏最少要用铁丝网多少米?并求此时围栏的长度.20.(本题14分)设数列{a n }满足关系2121(1,2,)n n a a n +=-=,若N 满足1(2,3,)N a N ==,试证明:(1) 1||1a ≤;(2) 12cos2N k a π-= (k 为整数)21.(本题16分)设()|lg |,,f x x a b =为实数,且0,,()()2()2a ba b a b f a f b f +<<==若满足 试写出a 及b 的关系,并证明在这一关系中存在b 满足3<b <422.(本题16分)A 和B 两人掷骰子,掷出一点时,原掷骰子的人再继续掷,掷出不是一点时,由对方接着掷,第一次由A 开始掷,设第n 次由A 掷的概率是P n .试求:(1) P n +1用P n 表示的式子;(2) 极限lim n n P →∞2003年上海交通大学冬令营选拔测试数学试题 2003.1.4一、填空题(本大题共40分,每题4分)1.三次多项式f (x )满足f (3)=2f (1),且有两个相等的实数根2,则第三个根为___________.2.用长度为12的篱笆围成四边形,一边靠墙,则所围成面积S 的最大值是_______________.3.已知,x y R +∈,x +2y =1,则22xy+的最小值是______________. 4.有4个数,前3个成等比数列,后3个成等差数列,首末两数和为32,中间两数和为24,则这四个数是___________________. 5.已知f (x )ax 7+bx 5+x 2+2x 1,f (2)8,则f (2)_______________.6.投三个骰子,出现三个点数的乘积为偶数的概率是_______________. 7.正四面体的各个面无限延伸,把空间分为________________个部分. 8.有n 个元素的集合分为两部分,空集除外,可有___________种分法. 9.有一个整数的首位是7,当7换至末位时,得到的数是原数的三分之一,则原数的最小值是___________. 10.100!末尾连续有______________个零. 二、解答题(本大题共60分,每题10分) 11.数列{a n }的a 11,a 23,3a n +22a n +1+a n ,求a n 和lim n n a →∞.12.3个自然数倒数和为1.求所有的解.13.已知x 1000+x 999(x +1)+…+(x +1)1000,求x 50的系数.14.化简:(1) 11!22!!n n ⋅+⋅++⋅; (2) 1212kn n n k C C C ++++++.15.求证:342231a aa a +++为最简分式.16.证明不等式()!()23n n n n n >>,当自然数n ≥6时成立.复旦大学2003年暨保送生考试数学试题一、填空题(本大题共80分,每题8分)1.函数1()2y f t x x=-,当x =1时,252t y t =-+,则f (x )=________________.2.方程x 2+(a 2)x +a +10的两根x 1,x 2在圆x 2+y 24上,则a _______________.3.划船时有8人,有3人只能划右边,1人只能划左边,共有________种分配方法.4.A ={x |log 2(x 24x 4)>0},B ={x ||x +1|+|x 3|≥6},则A B ⋂=_______________.5.数列{a n }的前n 项和为S n ,若a k =k ·p k (1p ),(p ≠1),则S k =______________.6.若(x 1)2+(y 1)21,则13y x --的范围是___________________. 7.边长为4的正方形ABCD 沿BD 折成60o 二面角,则BC 中点及A 的距离是_________. 8.已知|z 1|2,|z 2|3,|z 1+z 2|4,则12z z ______________.9.解方程3log 2a xx xa=,x =________________. 10.(a >0),lim 2nn nn a a →∞+=______________.二、解答题(本大题共120分)11.已知|z |=1,求|z 2+z +4|的最小值.12.a 1,a 2,a 3,…,a n 是各不相同的自然数,a ≥2,求证:1231111()()()()2a a a ana a a a ++++<.13.已知3sin cos 2αβ+=,cos sin 2αβ+=tan cot αβ⋅的值.14.一矩形的一边在x 轴上,另两个顶点在函数21xy x=+(x >0)的图象上, 求此矩形绕x 轴旋转而成的几何体的体积的最大值.15.一圆锥的底面半径为12,高为16,球O 1内切于圆锥,球O 2内切于圆锥侧面,及球O 1外切,…,以次类推, (1) 求所有这些球的半径r n 的通项公式;(2) 所有这些球的体积分别为V 1,V 2,…,V n ,….求12lim()n n V V V →∞+++.16.已知数列{a n }的前n 项和为S n ,n a =S 2003.17.定义闭集合S ,若,a b S ∈,则a b S +∈,a b S -∈.(1) 举一例,真包含于R 的无限闭集合.(2) 求证对任意两个闭集合S 1,S 2⊂R ,存在c R ∈,但12c S S ∉⋃.同济大学2003年暨保送生考试数学试题一、填空题1.f (x )是周期为2的函数,在区间[1,1]上,f (x )|x |,则3(2)2f m +___(m 为整数).2.函数y cos2x 2cos x ,x ∈[0,2]的单调区间是__________________.3.函数222y x x =-的值域是__________________. 4.5.函数y =f (x ),f (x +1)f (x )称为f (x )在x 处的一阶差分,记作△y ,对于△y 在x 处的一阶差分,称为f (x )在x 处的二阶差分△2y ,则y =f (x )=3x ·x 在x 处的二阶差分△2y ____________. 6.7.从1~100这100个自然数中取2个数,它们的和小于等于50的概率是__________. 8.正四面体ABCD ,如图建立直角坐标系,O 为A 在底面的投影,则M 点坐标是_________,CN 及DM 所成角是_________.9.双曲线x 2y 2=1上一点P 及左右焦点所围成三角形的面积ABCM D NO xyz___________.10.椭圆22143x y +=在第一象限上一点P (x 0,y 0),若过P 的切线及坐标轴所围成的三角形的面积是_________. 二、解答题11.不等式22222log 0364x kx kx x ++<++对于任意x ∈R 都成立,求k 的取值范围. 12.不动点,()bx c f x x a +=+.(1) 12,3为不动点,求a ,b ,c 的关系;(2) 若1(1)2f =,求f (x )的解析式;(3) 13.已知sin cos ([0,2))2sin cos y θθθπθθ⋅=∈++,(1) 求y 的最小值;(2) 求取得最小值时的.14.正三棱柱ABC -A 1B 1C 1,|AA 1|h ,|BB 1|a ,点E 从A 1出发沿棱A 1A 运动,后沿AD 运动,∠A 1D 1E ,求过EB 1C 1的平面截三棱柱所得的截面面积S 及的函数关系式.15.已知数列{a n }满足112n n n a a a -++=. (1) 若b n =a n a n 1(n=2,3,…), 求b n ;(2) 求1ni i b =∑;(3) 求lim n n a →∞.16.抛物线y 2=2px ,(1) 过焦点的直线斜率为k ,交抛物线及A ,B ,求|AB |.(2) 是否存在正方形ABCD ,使C 在抛物线上,D 在抛物线内,若存在,求这样的k ,正方形ABCD 有什么特点?BACD A 1D 1 C 1 B 1上海交通大学2004年保送生考试数学试题(90分钟)2004.1.3一、填空题:1.已知x ,y ,z 是非负整数,且x +y +z =10,x +2y +3z =30,则x +5y +3z 的范围是__________.2.长为l 的钢丝折成三段及另一墙面合成封闭矩形,则它的面积的最大值是_________.3.函数x x y cos sin +=(20π≤≤x )的值域是_____________.4.已知a ,b ,c 为三角形三边的长,b =n ,且a ≤b ≤c ,则满足条件的三角形的个数为________.5.b ax x ++2和c bx x ++2的最大公约数为1+x ,最小公倍数为d x b x c x +++-+)3()1(23,则a =______,b =_______,c =_______,d =__________.6.已知21≤≤a ,则方程x x a -=-222的相异实根的个数是__________.7.8182004)367(+的个位数是______________.8.已知数列{}n a 满足11=a ,22=a ,且n n n a a a 2312-=++,则2004a =____________.9.n n ⨯的正方格,任取得长方形是正方形的概率是__________. 10.已知abcxyz xyzabc 76=,则xyzabc =_______________. 11. 12.二、解答题1.已知矩形的长、宽分别为a 、b ,现在把矩形对折,使矩形的对顶点重合,求所得折线长.2.某二项展开式中,相邻a 项的二项式系数之比为 1:2:3:…:a ,求二项式的次数、a 、以及二项式系数.3.f (x )=ax 4+x 3+(58a )x 2+6x 9a ,证明:(1)总有f (x )=0;(2)总有f (x )≠0.4.11)(1+-=x xx f ,对于一切自然数n ,都有)]([)(11x f f x f n n =+,且)()(636x f x f =,求)(28x f .5.对于两条垂直直线和一个椭圆,已知椭圆无论如何滑动都及两条直线相切,求椭圆中心的轨迹.6.已知{}n b 为公差为6的等差数列,)(11N n a a b n n n ∈-=++. (1) 用1a 、1b 、n 表示数列{}n a 的通项公式;(2) 若a b a =-=11,]33,27[∈a ,求n a 的最小值及取最小值时的n 的值. 复旦大学2004年保送生考试数学试题(150分钟)2003.12.21一、填空题(每题8分,共80分)1.)1)(12(124248++++=+ax x x x x ,则=a _________. 2.已知74535=-++x x ,则x 的范围是___________.3.椭圆191622=+y x ,则椭圆内接矩形的周长最大值是___________.4.12只手套(左右有区别)形成6双不同的搭配,要从中取出4只正好能形成2双,有____种取法.5.已知等比数列{}n a 中31=a ,且第一项至第八项的几何平均数为9,则第三项为______.6.0)1(2<++-a x a x 的所有整数解之和为27,则实数a 的取值范围是___________.7.已知194)4(22=+-y x ,则9422y x +的最大值为____________. 8.设21,x x 是方程053cos 53sin 2=+-ππx x 的两解,则21arctgx arctgx +=__________.9.z z =3的非零解是___________. 10.xx y +-=112的值域是____________.二、解答题(每题15分,共120分) 1.解方程:1)3(log 5=--x x .2.已知1312)sin(=+βα,54)sin(-=-βα,且2,0,0πβαβα<+>>,求α2tg .3.已知过两抛物线C 1:2)1(1-=+y x ,C 2:2(1)41y x a -=--+的交点的各自的切线互相垂直,求a .4.若存在M ,使任意D t ∈(D 为函数)(x f 的定义域),都有M x f ≤)(,则称函数)(x f 有界.问函数x x x f 1sin 1)(=在)21,0(∈x 上是否有界?5.求证:3131211333<++++n.6.已知E 为棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱AB 的中点,求点B 到平面A 1EC 的距离.7.比较25log 24及26log 25的大小并说明理由.8.已知数列{}n a 、{}n b 满足n n n b a a 21--=+,且n n n b a b 661+=+,又21=a ,41=b ,求 (1) n n b a ,; (2) nnb a lim.简单解答:一、填空题:1.2- 2.)8.0,6.0(- 3.20 4.31 二、解答题: 5.证明1:111))1(1)1(1()1()1(113+-+⋅+--=+-<m m m m m m m m m m=(2111)1111-++⋅⋅+--m m mm m而m m m m m =-++<-++211211111113+--<m m m原式<1+111141213111+--++-+-n n =3111222<+--+n n证明2:)1)(1()1(2--+->+=n n n n n n n11)1(1121---=-+-<n n n n n n nnn n n n n nn 111)1(121--=---<原式〈313)1113121211(21<-=--++-+-+nn n同济大学2004年自主招生优秀考生文化测试数学试卷一、填空题(本大题共有8题,只要求直接填写结果,每题答对得5分,否则一律得零分,本大题满分40分)1.函数12()log (sin cos )f x x x =+的单调递增区间是_______________________.2.如图所示,为某质点在20秒内作直线运动时,速度函数()v v t =的图象,则该质点运动的总路程s =_____(厘米).3.设a 及b 是两条非相互垂直的异面直线,及分别是过直线a 及b 的平面,有以下4个结论:(1) b //,(2)b ,(3) //,(4),则其中不可能出现的结论的序号为__________.4.设某地于某日午后2时达到最高水位,为3.20米,下一个最高水位恰在12小时后达到,而最低水位为0.20米。