构造等比数列求通项公式
- 格式:doc
- 大小:252.50 KB
- 文档页数:2
等比数列三种构造法
等比数列是由一个首项和公比决定的数列。
为构造等比数列,我们可以采用以下三种方法:
1. 递推法:首项已知的等比数列可以通过首项和公比计算后续项。
具体而言,每一项都是前一项乘以公比的结果,即an = a1×r^(n-1)。
2. 公式法:对于给定的首项、公比和项数,可以使用等比数列的通项公式计算该数列中任意一项的值。
通项公式为an = a1×r^(n-1)。
3. 倍数法:通过将等比数列中每一项除以前一项得到的倍数序列,可以简化计算。
具体而言,如果第n项是前一项的r倍数,那么第n+1项就是前一项的r²倍数,以此类推。
通过计算倍数序列的第n项,我们可以得到等比数列的第n 项。
高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题02构造等差或者等比数列求解数列的通项公式【典例1】数列{}n a 中,112a =,112(()2n n n a a n N *+=-∈,数列{}n b 满足*2n n n b a n =⋅∈N .(I )求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(II )设2log n n nc a =,求数列22n n c c +⎛⎫ ⎪⎝⎭的前n 项n T .【思路点拨】(I )将1122nn n a a -⎛⎫=- ⎪⎝⎭配凑成11221n n n n a a ++=-.由此证得数列{}n b 是等差数列.求得n b 的表达式,进而求得数列{}n a 的通项公式.(II )先求得n c 的表达式,然后利用裂项求和法求得n T .【典例2】已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N.(1)设3n n b a =+,证明数列{}n b 为等比数列,并求出通项公式n a ;(2)求2462n a a a a ++++L .【思路点拨】(1)由题可得()11231n n S a n ++=-+,与条件作差可得123n n a a +=+,则()1323n n a a ++=+,即可证明数列{}n b 为等比数列,利用等比数列的通项公式求得数列{}n b 的通项公式,进而求得数列{}n a 的通项公式;(2)由(1)可得22323nn a =⋅-,进而利用等比数列的前n 项和公式求解即可【典例3】设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N .(1)证明:{}1n S +为等比数列,求出{}n a 的通项公式;(2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.【思路点拨】(1)根据等比数列的定义即可证明{}1n S +为等比数列,再根据n S 和n a 的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,即可求出{}n a 的通项公式;(2)根据12n n n n nb a -==,可采取错位相减法求出{}n b 的前n 项和n T ,然后代入1250n n T n -⋅=+得,2260n n --=,构造函数()226x f x x =--(1x ≥),利用其单调性和零点存在性定理即可判断是否存在.【典例4】已知数列{}n a 是等比数列,数列{}n b 满足1212b b ==,338b =,1121nn n n a b b ++=+.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.【思路点拨】(1)根据已知条件求出2a ,3a 即可求出等比数列{}n a 的通项公式;(2)由(1)可得11221n n n n b b ++=+,即数列{}2n n b 是公差为1的等差数列,求出n b 的通项公式,利用错位相减法求出数列的前n 项和.【典例5】已知正项数列{}n a 满足11a =,()221142n n n n a a a a n *+++=-∈N.(1)证明:数列{}1n a +是等比数列;(2)证明:()2341111123n n a a a a *+++++<∈N .【思路点拨】(1)将题干中的等式因式分解后得出()()111222n n n n n n a a a a a a ++++=+-,由此得出121n n a a +=+,再利用定义证明出数列{}1n a +为等比数列;(2)求出21nn a =-,利用放缩法得出()2111232n n n a -≤⋅≥,结合等比数列的求和公式可证明出结论成立.【典例6】已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T .【思路点拨】(1)由2n n S a n =-,可得()1121n n S a n ++=-+,两式相减,可化为()1121n n a a ++=+,结合等比数列的定义,即可得到结论;(2)由⑴1111111112121n n n n n n n n n a b a a a a a +++++=+==---,利用“裂项法”,即可求得数列{}n b 的前n 项和n T .1.已知数列{}n a 满足112a =-,()1212n n a a n -=-≥.(1)求证:{}1n a +为等比数列,并求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公差为3的等差数列,求数列{}n b 的前n 项和.2.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .3.已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-.(1)求证{}n b 是单增数列;(2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .4.已知数列{}n a 的前n 项和为n S ,2n n S a n =+.(1)证明:{}1n a -为等比数列;(2)设1n n b a =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值.5.已知数列{}n a 满足:11a =,12n n a a n ++=,*n N ∈.(1)求证:数列12n a n ⎧⎫-+⎨⎬⎩⎭是等比数列;(2)设212n n n a b -=,求数列{}n b 的前n 项和n S .6.已知数列{}n a 的前n 项和为n S ,且满足()221,n n S a n n N +=--∈.(Ⅰ)求证:数列{}2n a +是等比数列;(Ⅱ)求数列(){}2n n a ⋅+的前n 项和.7.已知数列{}n a 满足113a =,且*n N ∈时,1n a +,n a ,23-成等差数列.(1)求证:数列2{}3n a +为等比数列;(2)求数列{}n a 的前n 项和n S .8.已知数列{}n a 满足11232,2n n n a a n ---=⋅≥,且1232a a =.(1)求证:数列{}2nn a -是等比数列.(2)设n S 为数列{}n a 的前n 项的和,记n T 为数列1{}n na S +的前n 项和,若*,n n N T m ∀∈<,*m N ∈,求m 的最小值.9.在数列{}n a 中,11a =,122nn n a a +=+,(1)设12nn n a b -=,证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.参考答案【典例1】解:(I )由1122nn n a a +⎛⎫=- ⎪⎝⎭,即11221n n n n a a ++=-.而2nn n b a =,∴11n n b b +=-,即11n n b b +-=.又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列.于是1(1)1=2nn n b n n a =+-⨯=,∴2n n n a =.(II )∵22log log 2n n n n c n a ===,∴22211(2)2n n c c n n n n +==-++.∴1111111111111132435112212n T n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-=+-- ⎪ ⎪ ⎪ ⎪ ⎪-++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311212n n =--++.【典例2】【2020届湖南省长沙市第一中学高三月考】已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N.(1)设3n n b a =+,证明数列{}n b 为等比数列,并求出通项公式n a ;(2)求2462n a a a a ++++L .【思路点拨】(1)由题可得()11231n n S a n ++=-+,与条件作差可得123n n a a +=+,则()1323n n a a ++=+,即可证明数列{}n b 为等比数列,利用等比数列的通项公式求得数列{}n b 的通项公式,进而求得数列{}n a 的通项公式;(2)由(1)可得22323nn a =⋅-,进而利用等比数列的前n 项和公式求解即可解:(1)由23n n S a n =-,得()11231n n S a n ++=-+,两式相减,得123n n a a +=+,所以()1323n n a a ++=+,即()12n n b b n *+=∈N,当1n =时,11123a S a ==-,所以13a =,则1136b a =+=,所以数列{}n b 是以6为首项,2为公比的等比数列,所以162n n b -=⋅,所以()13623321n n n n a b -=-=⋅-=-(2)由(1)知22323nn a =⋅-,则24224623232323nn a a a a n++++=⋅+⋅++⋅-L L ()14143343414n n n n +-=⋅-=---【典例3】【2020届山东省青岛市高三上学期期末数学试题】设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N .(1)证明:{}1n S +为等比数列,求出{}n a 的通项公式;(2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.【思路点拨】(1)根据等比数列的定义即可证明{}1n S +为等比数列,再根据n S 和n a 的关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,即可求出{}n a 的通项公式;(2)根据12n n n n nb a -==,可采取错位相减法求出{}n b 的前n 项和n T ,然后代入1250n n T n -⋅=+得,2260n n --=,构造函数()226x f x x =--(1x ≥),利用其单调性和零点存在性定理即可判断是否存在.解:(1)∵121n n S S +-=∴()1121n n S S ++=+,*n N ∈因为111a S ==,所以可推出10n S +>.故1121n n S S ++=+,即{}1n S +为等比数列.∵112S +=,公比为2∴12n n S +=,即21nn S =-,∵1121n n S --=-,当2n ≥时,112n n n n a S S --=-=,11a =也满足此式,∴12n n a -=;(2)因为12n n n n n b a -==,01112222n n n T -=++⋅⋅⋅+∴121122222n n n T =++⋅⋅⋅+,两式相减得:011111122222222n n n n n n T -+=++⋅⋅⋅+-=-即1242n n n T -+=-,代入1250n n T n -⋅=+,得2260n n --=.令()226x f x x =--(1x ≥),()2ln 210xf x '=->在[)1,x ∈+∞成立,∴()226xf x x =--,()1,x ∈+∞为增函数,而()()540f f ⋅<,所以不存在正整数n 使得1250n n T n -⋅=+成立.【典例4】【广东省佛山市2019-2020学年高三教学质量检测(一)】已知数列{}n a 是等比数列,数列{}n b 满足1212b b ==,338b =,1121nn n n a b b ++=+.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.【思路点拨】(1)根据已知条件求出2a ,3a 即可求出等比数列{}n a 的通项公式;(2)由(1)可得11221n n n n b b ++=+,即数列{}2n n b 是公差为1的等差数列,求出n b 的通项公式,利用错位相减法求出数列的前n 项和.解:(1)由1121nn n n a b b ++=+,取1n =,得22121a b b =+,解得24a =.取2n =,得33241a b b =+,解得38a =.∵{}n a 是等比数列,则322a q a ==,212aa q==.∴{}n a 的通项公式为112n n n a a q -==.(2)∵11221n n n n b b ++=+,∴数列{}2n n b 是公差为1的等差数列.()12211n n b b n n =+-⨯=,则2n nnb =.设{}n b 的前n 项和为n S ,则231232222n n n S =+++⋅⋅⋅+,234112322222n n S n+=++++ .则2311111222222n n n S n +=+++⋅⋅⋅+-11111222112212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=-=--.∴222n n n S +=-.【典例5】【2020届浙江省杭州市第二中学高三12月月考数学试题】已知正项数列{}n a 满足11a =,()221142n n n n a a a a n *+++=-∈N .(1)证明:数列{}1n a +是等比数列;(2)证明:()2341111123n n a a a a *+++++<∈N .【思路点拨】(1)将题干中的等式因式分解后得出()()111222n n n n n n a a a a a a ++++=+-,由此得出121n n a a +=+,再利用定义证明出数列{}1n a +为等比数列;(2)求出21nn a =-,利用放缩法得出()2111232n n n a -≤⋅≥,结合等比数列的求和公式可证明出结论成立.解:(1)221142n n n n a a a a +++=- ,()()2211112422n n n n n n n n a a a a a a a a ++++∴+=-=+-.0n a > ,120n n a a +∴+>,121n n a a +∴-=,即121n n a a +=+,则有1122211n n n n a a a a +++==++且112a +=,∴数列{}1n a +是以2为首项,以2为公比的等比数列;(2)由(1)得12nn a +=,即21nn a =-,得()22111112212232n n n n n n a --=≤=⋅≥--,2123411111111111121232111322232312n n n n a a a a -+⎛⎫- ⎪⎛⎫⎛⎫⎝⎭∴++++≤++++==-< ⎪⎪⎝⎭⎝⎭- .【典例6】【天津市南开区南开中学2019届高三第五次月考】已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T .【思路点拨】(1)由2n n S a n =-,可得()1121n n S a n ++=-+,两式相减,可化为()1121n n a a ++=+,结合等比数列的定义,即可得到结论;(2)由⑴1111111112121n n n n n n n n n a b a a a a a +++++=+==---,利用“裂项法”,即可求得数列{}n b 的前n 项和n T .解:(1)令1n =,得1121a a =-,由此得11a =,由于2n n S a n =-,则()1121n n S a n ++=-+,两式相减得()11212n n n n S S a n a n ++-=-+-+,即121n n a a +=+,所以()1121121n n n a a a ++=++=+,即1121n n a a ++=+,故数列{}1n a +是等比数列,其首项为112a +=,11222n nn a -+=⋅=,故数列{}n a 的通项公式是21nn a =-.(2)1111n n n n b a a a ++=+11n n n a a a ++=()()122121nn n +=--()()()()1121212121n n nn ++---=--,1112121n n +=---,12n nT b b b =+++12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭ 12231111111212121212121n n +=-+-++-------11121n +=--.1.【思路点拨】(1)由已知构造等比数列,可得111122n n a -⎛⎫+=⋅ ⎪⎝⎭,化简即为{}n a 的通项.(2)由已知得32n n a b n +=-,代入112nn a ⎛⎫=- ⎪⎝⎭,可得()1=312nn b n ⎛⎫-- ⎪⎝⎭,所以数列{}n b 的前n 项和分别利用等差数列和等比数列求和公式即可求得.解:(1)由()1212n n a a n -=-≥,得()1211n n a a -+=+,即()11112n n a a -+=+,又11102a +=≠,∴{}1n a +是以1112a +=为首项,公比为12的等比数列.∴111122n n a -⎛⎫+=⋅ ⎪⎝⎭,∴112nn a ⎛⎫=- ⎪⎝⎭.(2)由已知得()11332n n a b n n +=+-⨯=-,∵112n n a ⎛⎫=- ⎪⎝⎭,∴()()()11323213122n nn n b n a n n ⎛⎫⎛⎫=--=--+=-- ⎪ ⎪⎝⎭⎝⎭.所以数列{}n b 的前n 项和为:()2121112531222nn b b b n ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-- ⎪⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L L ()21112531222nn ⎡⎤⎛⎫⎛⎫=+++--+++⎡⎤⎢⎥⎪ ⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦L L()211122231311122212nn n n n n ⎡⎤⎛⎫-⎢⎥ ⎪+-⎡⎤⎝⎭+⎢⎥⎛⎫⎣⎦⎣⎦=-=-+ ⎪⎝⎭-.2.【2020届河北省保定市高三上学期期末】已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .【思路点拨】(1)根据所给通项公式及12a =,24a =,310a =,可求得123,,b b b ,即可利用等比中项定义判断{}n b 是否为等比数列.(2)根据{2}n b +为等比数列,即可由(1)中所得首项与公比求得n b .根据1,n n n a a b +-=结合递推公式与累加法,即可求得n a .解:(1)数列{}n b 不是等比数列.理由如下:由1n n n a a b +-=,且1232,4,10a a a ===得:所以1212b a a =-=,2326b a a =-=,又因为数列{2}n b +为等比数列,所以可知其首项为4,公比为2.所以2324216b +=⨯=,314b =∴,显然22133628b b b =≠=故数列{}n b 不是等比数列.(2)结合(1)知,等比数列{2}n b +的首项为4,公比为2,故112422n n n b -++=⋅=,所以122n n b +=-,因为1n n n a a b +-=,122(2)nn n a a n --=-≥∴令2,,(1)n n =- 累加得()2322222(1)nn a n -=+++-- ,()23222222nn a n ∴=++++-+ ()1221222221n n n n +-=-+=--,又12a =满足上式,+122n n a n=-∴3.【2020届北京市清华大学附属中学高三第一学期(12月)月考】已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-.(1)求证{}n b 是单增数列;(2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .【思路点拨】(1)先求出数列{}nb n的通项公式,再得n b ,直接作差可得单调性;(2)用裂项相消法求数列1n b ⎧⎫⎨⎬⎩⎭的和.解:(1)∵12(2)1n n b b n n n --=≥-,∴数列{}n b n 是等差数列,公差为2,又141b =,∴42(1)22nb n n n=+-=+,∴2(1)n b n n =+.2n ≥时,12(1)2(1)40n n b b n n n n n --=+--⋅=>,所以1n n b b ->,所以数列{}n b 是递增数列.(2)11111(2(1)21n b n n n n ==-++,∴111111[(1()()]222312(1)n n S n n n =-+-++-=++ .4.【2020届重庆市康德卷高考模拟调研卷理科数学(二)】已知数列{}n a 的前n 项和为n S ,2n n S a n =+.(1)证明:{}1n a -为等比数列;(2)设1n n b a =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值.【思路点拨】(1)利用1nn n a S S -=-得到1,n n a a -的递推公式再构造数列证明即可.(2)根据(1)可求得12nn a =-,进而求得2n b n =,再用裂项求和求解12231111n n b b b b b b +++⋅⋅⋅+进而求得t 的最小值解:(1)11221n n n n n a S S a a --=-=--()1121(2)n n a a n -⇒-=-≥,故{}1n a -为等比数列.(2)令1n =,则有111211S a a =+⇒=-,所以()111122n n n a a --=-⋅=-,所以12n n a =-,令122nn n b a n =-==,令1111141n n n c b b n n +⎛⎫==- ⎪+⎝⎭,所以122311*********...412231n n b b b b b b n n +⎛⎫++⋅⋅⋅+=-+-++- ⎪+⎝⎭()111111414414n n ⎛⎫=-=-< ⎪++⎝⎭.所以14t ≥.故t 的最小值为14.5.【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知数列{}n a 满足:11a =,12n n a a n ++=,*n N ∈.(1)求证:数列12n a n ⎧⎫-+⎨⎬⎩⎭是等比数列;(2)设212n n na b -=,求数列{}n b 的前n 项和n S .【思路点拨】(1)12n n c a n =-+,则12n n a c n =+-代入已知式可证得结论;(2)由(1)求得n a ,从而得n b ,用错位相减法求数列{}n b 的前n 项和n S .解:(1)设12n n c a n =-+,由题111(1)22n n a n a n +⎛⎫-++=--+ ⎪⎝⎭,即1n n c c +=-,又11111022c a =-+=≠,∴{}n c 为等比数列,即12n a n ⎧⎫-+⎨⎬⎩⎭为等比数列;(2)由(1)知11(1)2n n c -=⋅-,即111(1)22n n a n -=⋅-+-,2121n a n -∴=-,212n n n b -∴=,231135232122222n n n n n S ---=+++⋅⋅⋅++,234+111352*********n n n n n S --=+++⋅⋅⋅++,两式相减得23111111121323222222222n n n n n n S ++-+⎛⎫=+++⋅⋅⋅+-=- ⎪⎝⎭,2332n nn S +∴=-.6.【2020届陕西省咸阳市高三上学期期末考试】已知数列{}n a 的前n 项和为n S ,且满足()221,n n S a n n N +=--∈.(Ⅰ)求证:数列{}2n a +是等比数列;(Ⅱ)求数列(){}2n n a ⋅+的前n 项和.【思路点拨】(I )令1n =,利用11a S =可求得13a =;当2n ≥时,利用1n n n a S S -=-整理可得()1222n n a a -+=+,从而证得结论;(II )由(I )可得{}2n a +的通项公式,从而求得()1252n n n a n -+=⋅,利用错位相减法求得结果.解:(I )令1n =,11123a S a ==-,解得:13a =当2n ≥且n *∈N 时,221n n S a n =--,11221n n S a n --=-+11222n n n n n a S S a a --∴=-=--,即122n n a a -=+()1222n n a a -∴+=+{}2n a ∴+是以125a +=为首项,2为公比的等比数列(II )由(I )知:1252n n a -+=⋅()1252n n n a n -∴+=⋅设数列(){}2n n a +的前n 项和为nT 则()012215210215251252n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅()123125210215251252n nn T n n -∴=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅两式作差得:()()11212125525222552512n n n n n T n n ----=-⋅+⨯++⋅⋅⋅+=-⋅+⨯-()55252105525n n n n n =-⋅+⋅-=-⋅-()5525n n T n ∴=-⋅+7.【2020届四川省达州市普通高中高三第一次诊断性测】已知数列{}n a 满足113a =,且*n N ∈时,1n a +,n a ,23-成等差数列.(1)求证:数列2{}3n a +为等比数列;(2)求数列{}n a 的前n 项和n S .【思路点拨】(1)利用等差中项的知识列出算式,然后整理算式,对算式进行变形可发现数列2{}3n a +为等比数列;(2)先根据(1)的结论得出数列{}n a 的通项公式,然后根据通项公式的特点分组求和即可得到前n 项和n S .解:(1)证明:由题意,当*n N ∈时,1n a +,n a ,23-成等差数列,则1223n n a a +-=,即1223n n a a +=+,1222222()3333n n n a a a +∴+=++=+,又12121333a +=+= ,∴数列2{}3n a +是以1为首项,2为公比的等比数列.(2)解:由(1),知1223n n a -+=,即1223n n a -=-,*n N ∈.12n nS a a a ∴=++⋯+1212222(1(2(2)(2)3333n -=-+-+-+⋯+-1212(1222)3n n-=+++⋯+-122123n n -=--2213n n =--.8.【2020届山西省太原市第五中学高三11月阶段性考试】已知数列{}n a 满足11232,2n n n a a n ---=⋅≥,且1232a a =.(1)求证:数列{}2nn a -是等比数列.(2)设n S 为数列{}n a 的前n 项的和,记n T 为数列1{}n na S +的前n 项和,若*,n n N T m ∀∈<,*m N ∈,求m 的最小值.【思路点拨】(1)首先令2n =,解得13a =,将11232n n n a a ---=⋅化简为112122n n n n a a ---=-,得到数列{}2nna -是以1为首项,12为公比的等比数列.(2)由(1)可知1122n n n a -⎛⎫ ⎪⎝⎭+=,利用分组求和可算出1112()2n n n S +-=-,从而得到11132nn n a S ⎛⎫=⋅ ⎪+⎝⎭,再计算n T 即可找到m 的最小值.解:(1)当2n =时,2126a a -=,因为1232a a =,所以13a =.由11232,2n n n a a n ---=⋅≥,得()11222nn n n a a---=-,所以112122n n n n a a ---=-,则数列{}2nn a -是以1为首项,12为公比的等比数列.(2)由(1)知1122n nn a -⎛⎫= ⎪⎝⎭-,1122n nn a -⎛⎫ ⎪⎝⎭+=.111(1)2(12)122()112212nn n n n S +---=+=---.所以111111111132322()2()22nn n n n n n n a S -+-⎛⎫===⋅ ⎪+⎝⎭++- ,11(1)11162(1)132312n n n T -==-<-所以m 的最小值为1.9.在数列{}n a 中,11a =,122nn n a a +=+,(1)设12nn n a b -=,证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.试题分析:(1)题中条件12nn n a b -=,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式122nn n a a +=+转化为的递推公式:11122n n n n a a +-=+,从而11n n b b +=+,,进而得证;(2)由(1)可得,12n n a n -=,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.解:(1)∵122nn n a a +=+,11122n n n n a a +-=+,又∵12nn n a b -=,∴11n n b b +=+,,∴则{}n b 是为首项为公差的等差数列;由(1)得1(1)1n b n n =+-⋅=,∴12n n a n -=,∴①,①得:②,②-①得.。
基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。
1.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c d a c c d a n n逐项相减法(阶差法):有时我们从递推关系d ca a n n +=+1中把n 换成n-1有d ca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再利用类型(1)即可求得通项公式.我们看到此方较 比较复杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
解法一:121(2),n n a a n -=+≥ 112(1)n n a a -∴+=+又{}112,1n a a +=∴+是首项为2,公比为2的等比数列 12n n a ∴+=,即21n n a =-练习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a 。
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。
但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。
而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。
关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。
下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。
比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。
能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。
练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。
2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。
例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。
三.结构形如 b n lg a n的数列。
例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。
等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,由于其特殊的规律性质,在各个领域都有广泛的应用。
本文将以等比数列的通项与求和公式为主线,探讨其定义、性质及应用等方面内容。
一、等比数列的定义等比数列是指数列中的每一项与它前一项的比值相等的数列。
通常用字母a表示首项,字母r表示公比,公比r≠0。
二、等比数列的通项公式设等比数列的首项是a,公比是r,第n项是an。
根据等比数列的定义,可得等式:an = ar^(n-1)即等比数列的通项公式为an = a × r^(n-1)。
三、等比数列的求和公式对于等比数列的求和,有两种情况要讨论。
1. 当公比r不等于1时,求和公式为:Sn = a(1 - r^n) / (1 - r)其中,Sn表示等比数列的前n项和。
2. 当公比r等于1时,求和公式为:Sn = na这是因为当r=1时,等比数列变为等差数列,其求和公式为Sn =(n/2)(a + an) = na。
四、等比数列的性质1. 等比数列的比值恒定:对于等比数列中的任意两项an和an+1,它们的比值都等于公比r,即an+1 / an = r。
2. 等比数列前n项的和与后n项的和的关系:等比数列的前n项和Sn与后n项和Sn'的关系是Sn' = Sn × r^n。
3. 等比数列的性质与对数函数的关系:等比数列与指数函数和对数函数密切相关,等比数列的通项公式可以看作是指数函数的离散形式,而求和公式则与对数函数有着密切的联系。
五、等比数列的应用等比数列在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 财务分析:某企业每年的盈利额按等比数列递增或递减,通过求和公式可以计算出多年的总盈利额。
2. 投资计算:等比数列可以用来计算复利的本金增长情况,根据投资年限和年复利率,可以计算出多年后的本金总额。
3. 几何形状分析:等比数列可以用来分析几何形状中的边长、面积、体积等相关问题,如等比缩放、等比放大等。
数列构造求通项万能公式数列是由一系列按照一定规律排列的数字组成的序列。
在数学中,数列是非常重要且常见的概念,它不仅在数学中有广泛的应用,而且在物理、工程等领域也有重要的作用。
在解决数列问题时,可以通过构造数列的通项公式来简化计算和分析,这是一种非常实用的方法。
对于一个数列,通项是指数列中任意一项的公式表示。
通项公式可以帮助我们找到数列的第n项,而不需要逐个计算。
因此,求解数列的通项公式是一项非常有价值的技能。
那么如何构造数列的通项公式呢?首先,我们需要观察数列中的数字之间的规律。
这样可以帮助我们找到数列的通项公式。
在观察过程中,我们可以关注数列中数字的增长规律、相邻数字之间的差异、乘积等等。
举个例子来说明。
考虑以下数列:1, 4, 7, 10, 13, ...。
我们可以观察到,每一项与前一项相差3。
因此,我们可以猜测这个数列的通项公式为an = 3n - 2。
通过验证,我们可以发现这个公式确实满足数列中的每一项。
接下来,让我们看一个更复杂的例子。
考虑以下数列:2, 6, 18, 54, ...。
在观察这个数列时,我们可以发现每一项都是前一项乘以3。
因此,我们可以猜测这个数列的通项公式为an = 2 * 3^(n-1)。
同样地,通过验证我们可以发现这个公式确实满足数列中的每一项。
除了观察规律外,还有一些常见的数列类型可以通过特定的方法求解通项公式。
例如等差数列和等比数列。
对于等差数列,其通项公式可以通过观察相邻数字之间的差异来得到。
假设等差数列的首项为a1,公差为d,那么第n项可以表示为an = a1 + (n-1)d。
通过这个公式,我们可以直接计算等差数列的任意一项。
对于等比数列,其通项公式可以通过观察相邻数字之间的比值来得到。
假设等比数列的首项为a1,公比为r,那么第n项可以表示为an = a1 * r^(n-1)。
同样地,通过这个公式,我们可以直接计算等比数列的任意一项。
当然,不同的数列类型可能有不同的求解方法和通项公式。
求通项公式的5种重要方法一、Sn 法,根据等差数列、等比数列的定义求通项an=Sn-S n-1*121{}(1)()3(1),;(2):{}.n n n n n a n S S a n N a a a =-∈ 已知数列的前项为,求求证数列是等比数列二、累加、累乘法1、累加法 适用于:1()n n a a f n +=+若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例3 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
例12、累乘法 适用于: 1()n n a f n a += 若1()n n a f n a +=,则31212(1)(2)()n na a a f f f n a a a +=== ,,, 两边分别相乘得,1111()n n k a a f k a +==⋅∏ 例4 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
例5 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式.例6 已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥ ,,求{}n a 的通项公式。
三、待定系数法 适用于1()n n a qa f n +=+分析:通过凑配可转化为1121()[()]n n a f n a f n λλλ++=+;解题基本步骤:1、确定()f n2、设等比数列{}1()n a f n λ+,公比为2λ3、列出关系式1121()[()]n n a f n a f n λλλ++=+4、比较系数求1λ,2λ5、解得数列{}1()n a f n λ+的通项公式6、解得数列{}n a 的通项公式例7 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。
构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考;一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A 其中A 为常数形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式;例1 在数列{}n a 中,1a =12,1n a +=33n n a a +n N +∈,求数列{}n a 通项公式. 解析:由a n+1=33+n na a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31n-1=31n +35∴数列通项公式为a n =53+n评析:本例通过变形,将递推公式变形成为A a a nn =-+111形式,应用等差数列的通项公式,先求出na 1的通项公式,从而求出n a 的通项公式; 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S n ≥2,求S n 与a n;解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2n-1=2n-1, ∴ S n =121-n n ≥2,n=1也适合,∴S n =121-n n ≥1当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点;二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为fn+1=Afn其中A 为非零常数形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式;例3在数列{a n }中,a 1=2,a n =a n-12n ≥2,求数列{a n }通项公式;解析:∵ a 1=2,a n =a n-12n ≥2>0,两边同时取对数得,lg a n =2lg a n-1∴1lg lg -n n a a=2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lg a n =2n-1lg2=122lg -n∴数列通项公式为a n =122-n评析:本例通过两边取对数,变形成1log 2log -=n n a a 形式,构造等比数列{}log n a ,先求出n a log 的通项公式,从而求出n a 的通项公式;例4在数列{a n }中,a 1=1,a n+1=4a n +3n+1,求数列{a n }通项公式;解析:设a n+1+An+1+B=4a n +An+B,A 、B 为待定系数,展开得a n+1=4a n +3An+3B-A,与已知比较系数得{1333=-=A B A ∴{321==B A ∴a n+1+n+1+32=4a n +n+32,根据等比数列的定义知,数列{a n +n+32}是首项为38,公比为q=3的等比数列,∴a n +n+32=38×3n-1∴数列通项公式为a n =38×3n-1-n-32评析:待定系数法是构造数列的常用方法;例5 在数列{a n }中,a 1=1 ,a n+1a n =4n ,求数列{a n }通项公式;解析:∵a n+1a n =4n ∴a n a n-1=4 n-1 两式相除得11-+n n a a =4 ,∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列, 又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={nn n n 22144-练习:1.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 2. 数列{a n }满足a 1=1,a n =21a 1-n +1n ≥2,求数列{a n }的通项公式; 解:由a n =21a 1-n +1n ≥2得a n -2=21a 1-n -2,而a 1-2=1-2=-1,∴数列{ a n -2}是以21为公比,-1为首项的等比数列∴a n -2=-211-n ∴a n =2-211-n3. 数列{}n a 中,n n n a a a a a +===++122123,2,1,求数列{}n a 的通项公式;解:由n n n a a a +=++1223得,313212n n n a a a +=++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,31=-=h k若取31,1-==h k ,则有)(31112n n n n a a a a --=-+++∴}{1n n a a -+是以31-为公比,以11212=-=-a a 为首项的等比数列∴11)31(-+-=-n n n a a由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---=11)31()31()31()31(232++-+-++-+--- n n=1311)31(11++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n4. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n,都有等式:n n n S a a 422=+成立,求{}n a 的通项an.解:n n n S a a 422=+⇒112142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(42211212=-=-+----0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且24211121=⇒=+a a a a . ∴n n a n 2)1(22=-+=1通过分解常数,可转化为特殊数列{a n +k }的形式求解;一般地,形如a 1+n =p a n +qp ≠1,pq ≠0型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=pa n +k 与原式比较系数可得pk -k =q ,即k=1-p q,从而得等比数列{a n +k }; 2通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解;这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,;3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式. 1构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. 2构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. 3构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种常用方法; 4构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.。
构造等比等差数列求通项公式
一. 预备知识:
问题:已知数列{}n a 的首项为14a =.
(1)若12n n a a -=+,求n a ; (2)若12n n a a -=,求n a
(3)若1(3)2(3)n n a a --=-; (4)若1(1)3(1)n n a a --=-
(5)若1()()n n a A B a A --=-(A ,B 为常数且n a A ≠,B 0≠),求n a 上述2,3,4,5题从结构形式上看有何共同特点_______________________
公比与哪项的系数有关 _____________________________________
二. 典例分析:
例1:已知111,22(2,)n n a a a n n N -+==+≥∈,求n a
反思:(1)确认什么类型可以化归成等比数列如何化
巩固练习:1.已知数列{}n a 的首项为16a =.
(1) 若131(1)n n a a n +=+≥,求n a ;(2)1124(2),n n a a n +-=+≥求n a
2.已知数列{}n a 中,13a =,1323n n a a +=-,求n a
例2. 设数列{}n a 的前n 项和为n S ,11,a =当2n ≥时,1.n n a tS n -+=求{}n a 的通项公式
一:预备知识:(1)已知数列{}n a 中,11a =,12(2),n n a a n -=+≥求n a
(2)已知数列{}n a 中,11a =,1
112,n n a a --=求n a (3)已知数列{}n a 中,11a =,1130n n n n a a a a -+--=,求n a
(4)已知数列{}n a 中,11a =,112250n n n n a a a a -+--=,求n a 上述2,3,4题形式有何共同特点 你能出一道类似的题目吗 推广:110n n n n Aa Aa Ba a ---+=(AB 0≠),且1a c =,求n a
二. 典例分析:
例:3:已知数列{}n a 的前n 项和为n S 满足1120n n n n S S S S +++-=且11a =,求n a 变式练习:已知数列{}n a 的前n 项和为n S 满足113n n n a S S ++=,且12a =,求n a
练习1:设(),(2)x f x a x =+()x f x =有唯一解,111(),()()1003
n n f x f x x n N ++==∈,求2004x 的值及n x
2.已知函数()(0)3
ax f x b bx =
≠+的图像经过点()3,1,且方程()f x x =有两个相等的实数根.(1)求实数,a b 的值;(2)若正项数列{}n a 满足:113,()2n n a a f a +==,求通项n a
3.已知数列{}n a ,1121,43
n n n a a a a +==+,求{}n a 的通项公式 4.已知数列{}n a 满足:11,1,21n n n a a a a +==+求数列11n n a a +⎧⎫⎨⎬⎩⎭
的前n 项和 5.已知数列{}n a 的前n 项和为n S ,且满足111(2), 2.21n n n S S n a S --=
≥=+ (1)求证:1n S ⎧⎫⎨⎬⎩⎭是等差数列;
(2)求n a 的表达式.。