当前位置:文档之家› 管式加热炉出口温度串级控制系统设计

管式加热炉出口温度串级控制系统设计

管式加热炉出口温度串级控制系统设计
管式加热炉出口温度串级控制系统设计

目录

1 管式加热炉概述...............................................................

错误!未定义书签。管式加热炉在石油工业中的重要性 (1)

管式加热炉的基本构成与组成 (1)

管式加热炉出口温度控制系统设计目的及意义 (1)

2 管式加热炉温度控制系统工作原理及控制要求.....................................错误!未定义书签。

管式加热炉出口温度控制系统工作原理..................... ........ . (2)

管式加热炉出口温度控制系统控制要求 (2)

3 管式加热炉出口温度控系统工艺流程设计.........................................

错误!未定义书签。

管式加热炉出口温度影响因素的扰动分析 (2)

管式加热炉出口温度控制系统的工艺流程设计 (2)

4 管式加热炉出口温度控系统现场仪表的选型与连线图...............................

错误!未定义书签。

控制系统中温度检测元件的选型 (3)

控制系统中变送器的选型 (4)

控制系统中执行器(调节阀)的选型 (4)

控制系统中调节器的选型 (5)

控制系统中的连锁保护与接线图 (6)

5管式加热炉出口温度串级控制系统分析...........................................

错误!未定义书签。

控制系统方框图与工作过程 (7)

主、副调节器规律选择 (7)

主、副调节器正反作用方式确定 (7)

控制器参数工程整定 (8)

6 管式加热炉出口温度串级控制系统的MATLAB SIMULINK仿真与分析...................

错误!未定义书签。传递函数的选择 (9)

系统的参数的选择 (9)

系统的仿真分析 (10)

7 感受与体会..................................................................错误!未定义书签。

8参考文献....................................................................错误!未定义书签。

1 管式加热炉概述

管式加热炉在石油工业中的重要性

⑴加热温度高(火焰温度1000℃以上),传热速率快。

⑵是整个石油加工和石油化工过程中能耗最大的设备之一。

⑶是控制运转周期及自动化及自动化程度的关键设备。

管式加热炉的基本构成与组成

管式加热炉是一种直接受热加热设备主要用于加热气体或液体化工原料,所用燃料通常有燃料油和燃料气。管式加热炉的传热方式以辐射传热为主。

管式加热炉一般由辐射室、余热回收系统、对流室、燃烧器和通风系统等五部分组成,如图1所示。

(1)辐射室:通过火焰或高温烟气进行辐射

传热的部分。这部分直接受火焰冲刷,温度很高

(600-1600℃),是热交换的主要场所(约占热负

(2

种方法。

(3)对流室:靠辐射室出来的烟气进行以对流传热为主的换热部分。

(4)燃烧器:是使燃料雾化并混合空气,使之燃烧的产热设备,燃烧器可分为燃料油

燃烧器,燃料气燃烧器和油一气联合燃烧器。

(5)通风系统:将燃烧用空气引入燃烧器,并将烟气引出炉子,可分为自然通风方式

和强制通风方式。

其结构通常包括:钢结构、炉管、炉墙(内衬)、燃烧器、孔类配件等。

管式加热炉出口温度控制系统设计目的及意义

加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,

由于管式加热炉具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的

节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,

能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个

重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。

2 管式加热炉温度控制系统工作原理及控制要求

管式加热炉出口温度控制系统工作原理

控制原理如图2所示,管式加热炉的主要任务是把物料加热到一定温度,以保证下一道工序的顺利进行。燃料油经过蒸汽雾化后在炉膛中燃烧,物料流过炉膛四周的排管中,就被加热到出口温度。在燃料油管道上装设一个调节阀,物用它来控制燃油量以达到所需出口温度1T 的目的。

管式加热炉出口温度控制系统控制要求

影响出口温度1T 变化的因素有很多种,主要表现在:

(1) 被加热物料的流量与初温1D 。

(2) 燃料热值的变化、压力波动、流量的变化2D 。

(3) 烟窗挡板位置的改变、抽力的变化3D 。 其中燃料油压力和过热蒸汽压力都可以用专门的调节器保持其稳定,以便把扰动因素减小到最低限度,能够及时准确的实现控制过程。工艺上对出口温度要求不高,一般希望波动范围不超过±1~2%。

3 管式加热炉出口温度控系统工艺流程设计

管式加热炉出口温度影响因素的扰动分析

由于从燃料油调节阀开始作用到出口温度1T 的改变,整个控制通道的容量滞后大,时间常数大,这就会导致控制系统的控制作用不及时,反应迟钝、最大偏差大、过渡时间长、抗干扰能力差,控制精度降低。

除1D 外,2D 、3D 的变化进入系统的位置,都是首先影响炉膛温度2T ,而后经过加热管管壁的影响被加热油料的温度1T 。而炉膛的惯性小,而炉膛的惯性小,其温度变化很快就可以反映出来,则控制通道的容量滞后大大减小,对干扰2D 、3D 能够及时克服,减小它们对出口温度的影响。

所以单独用单回路的出口温度或炉膛温度控制系统各有优缺点,为了同时发挥它们的优点,考虑选用出口温度—炉膛温度的串级控制系统。

管式加热炉出口温度控制系统的工艺流程设计

加热炉温度串级控制系统是以原料油出口温度为被控参数的控制系统。其它被控参数有炉膛温度,膛壁温度,燃料流量,原料油流量。主温度调节器对被控参数精确控制,与图2

副温度调节器对来自燃料干扰的及时控制相结合,先根据炉膛温度T 2的变化,改变燃料量,快速消除来自燃料的干扰对炉膛温度的影响;然后再根据原料油出口温度T 1与设定值的偏差,改变炉膛温度调节器的设定值,进一步调节燃料量,使原料油出口温度恒定,达到温度控制的目的。

副回路的选择也就是确定副回路的被控参数。燃料由于其成分和流量变化,对控制过程产生极大干扰。所以,我们选择炉膛温度为串级控制系统的辅助被控参数。串级系统中,为解决滞后时间与控制要求之间的矛盾,保持出口温度1T 的稳定,可根据炉膛温度2T 的变化,先调节燃油量,然后再根据

被加热油料出口温度与给定值之间的偏差,进一步调节燃油量,以保持出口温度1T 稳定,既包括对所有的扰动控制要求,又及时克服了各种扰动的影响,这样就构成了出口温度调节器与炉膛温度调节器串联起来的串级控制系统(如图3所示)。 4 管式加热炉出口温度控系统现场仪表的选型与连线图

控制系统中温度检测元件的选型

由于加热炉炉膛温度不能太高,炉膛温度一般控制在850℃以下,温度高有利于辐射传热,但太高会导致炉管结焦和烧坏,所以设此控制系统中的炉膛温度要求为700℃左右,而管式加热炉出口温度假设为石油分馏的温度300℃。由产品执行标准IEC584、GB/T16839-1997、JB/T5518-1991、GB3836热电偶标准,在1000℃以下一般用K 型热电偶和N 型热电偶,热电偶是工业上最常用的温度检测元件之一。其优点是:

(1)量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。

(2)测量范围广。常用的热电偶从-50~+1600℃均可边续测量。

(3)构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

图3

表1

如表1所示:所以物料出口处选择WRN 型分度号K ,允差等级为Ⅰ的热电偶。

如表2所示:炉膛温度的检测热电偶选择WRK 型分度号E ,惰性级别为Ⅰ的热电偶。

使用热电偶时,由于冷端暴露在空气中,受周围环境温度波动的影响,且距热源较近,其温度波动也较大,给测量带来误差,为了降低这一影响,通常用补偿导线作为热电偶的连接导线。补偿导线的作用就是将热电偶的冷端延长到距离热源较远、温度较稳定的地方。 控制系统中变送器的选型

SBWR 、SBWZ 系列热电偶、热电阻温度变送器是DDZ 系列仪表中的现场安装式温度变送器单元,与工业热电偶、热电阻配套使用,它采用二线制传输方式(两根导线作为电源输入和信号输出的公用传输线)。按国家防爆规程进行设计的,而且增加了安全栅,实现了控制室与危险场所之间的能量限制于隔离,使仪表能在危险的场所中使用。将工业热电偶、热电阻信号转换成与输入信号或与温度信号成线性的4-20mA 、0-10mA 的输出信号。

技术指标为:

1、输入信号:K 型热电偶、E 型热电偶、S 型热电偶、B 型等热电偶信号输入

2、供电电压:10-30VDC 、负载电阻:0-500Ω

3、输出信号:二线制4-20mA ,最大30mA

4、热电偶温度变送器精度:%FS

5、回路保护:带反向连接保护(防止电源正负极)

由表3知物料出口温度处选择SBW-R-70型变送器,炉膛温度选择SBW-R-10型变送器。 控制系统中执行器(调节阀)的选型 由于调节阀用于燃料油量调节选择气动调节阀,燃料油粘度比较大,为了减弱腐蚀防止堵塞,由于角形阀的阀体受流体的冲击小,体内不易结污,对粘度高的流体尤为适用,并且调节稳定性较好。所以选用角形阀。

表2

表3

从安全角度出发,一旦调节阀损坏,保证控制阀处于全关状态,切断燃料进入加热炉,确保设备安全,所以要选择气开调节阀。

综上选择ZMAS 型气动薄膜角形单座调节阀,阀体为直角形,阀芯不单导向结构,阀的流路简单,便于自净和清洗。阻力小,适用于高粘度,含有悬浮物和颗粒状物质的流体的调节,可避免结焦、粘结、堵塞。

由ZMAS 型气动薄膜角型调节阀型号编制说明知,选择ZMAS-320K 型的调节阀。

含义为,ZMA :气动薄膜正作用式, K :气开式;320:PN320MPa 。

EPC1000系列电气转换器是在引进国外先进技术的基础上开发的新一代电气转换器产品,它可将不同输入电流信号转换成相对应输出的气动信号。本产品具有体积小,结构巧妙,精度高,稳定性好,安装方便等优点。

如表4所示,选择型号为EPC110-OG-I 型的电器转换器。

技术参数为: 1、气源压力范围: 最小值:高于输出压力上限值20kPa ;最大值:700kPa 。

2、线性度:≤跨度的±1%。

3、重复性:≤跨度的±%。

4、回差:≤跨度的±%。

控制系统中调节器的选型

XMT-8000系列智能型数字显示调节仪采用新的智能仪表设计方案,对原有的数显表进行了修正处理,使仪表无论在外观还是性能都有的更进一步的提升,仪表内置PID 功能与位式控制功能,采用美观大方的轻触键设置,是工业控制中低价位仪表与高性能定位的理想选择。

智能性数显调节仪精度高、抗震性强、可靠性好、安装方便、读数清晰、无视差、可远距离观察等独特优点。在调节形式上有二位式、三位式、时间比例式、可控硅连续调节式、PID 式等多种,并可根据需要增强超限报警功能。可广泛应用于冶金、纺织、塑机、培养箱、烘烤箱、制冷化工、医疗等行业作-200℃~1800℃范围内的温度测量和自动控制,配上相应的传感器也可用于压力、流量、液位等参数的显示和控制。

由表5知,选择XMTG-8038C2调节器,结构如图4所示。

控制系统中的连锁保护与接线图

联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。

表5

表4

压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。

控制系统的电气连线图如图5。

5管式加热炉出口温度串级控制系统分析

控制系统方框图与工作过程

当系统受到扰动其调节过程如下: (1) D 2、D 3作用,副调节器开始调节,如果扰动不大,不影响炉出口温度;如果扰动大

主回路进一步调节。

(2) D 1作用,主回路,主调节器校正。

(3) 都作用时:

①一、二次扰动使主、副参数同时变大或变小调节阀大幅度开大或关小,调

节速度很快。

②一、二次扰动使主、副参数一个变大一个变小,主、副调节器控制阀的方

图5

图5

向相反,阀的开度变化较小就能满足要求。

主、副调节器规律选择

在串级控制系统中,主、副调节器所起的作用不同。主调节器起定值控制作用,副调节器起随动控制作用,这是选择调节器规律的基本出发点。

在加热炉温度串级控制系统中,我们选择原料油出口温度为主要被控参数,主控制器起定值控制作用,主变量是主要指标,原料油温度影响产品生产质量,工艺要求严格,又因为加热炉串级控制系统有较大容量滞后,允许波动小,一般要求无余差,所以,选择PID 调节作为住调节器的调节规律。

控制副参数是为了保证和提高主参数的控制质量,副变量的设置是为了保证主变量的控制质量,对副参数的要求一般不严格,对快速性要求较高,可以在一定范围内变化,允许有残差,但引入I 会延长控制作用,减弱副回路的快速作用,而引入D 会由于副回路本身起快速作用,再引入D 会使控制阀动作过大,对控制不利。所以我们的副调节器调节规律选择P 控制。

主、副调节器正反作用方式确定

由生产工艺安全考虑,燃料调节阀应选气开方式,这样保证系统出现故障时调节阀处于全关状态,防止燃料进入加热炉,确保设备安全,调节阀的Kv ﹥0。主调节器作用方式确定:炉膛温度升高,物料出口温度也升高,主被控过程Ko1﹥0。为保证主回路为负反馈,各环节放大系数成绩必须为正,所以负调节器的放大系数K1﹥0,主调节器作用方式为反作用。又为保证副回路是负反馈,各环节放大系数乘积必须为正,所以负调节器大于0,副调节器作用方式为反作用方式。

控制器参数工程整定

在模拟PID 算法控制规律为: 1()()()()P D I de t u t K e t e t dt T T dt ??=++????

? 写成传递函数形式为:()1()1()P D I U s W s K T s E s T s ??==++????

用增量型的离散PID 算法控制规律为:

[][]()()(1)()()2(1)(2)P I D u k K e k e k K e k K e k e k e k ?=--++--+-

其中: K P 为调节器的放大系数; T I 为积分时间常数 ; T D 微分时间常数; /I P I K K T T =为积分系数; /D P D K K T T =为微分系数;比例度1100%P

K δ=

? 由此得:影响控制的主要因素K P 、K D 、K I 及采样周期T 。 整定思路:

(1)理论根据——由于主、副对象的时间常数相差很大,则主、副回路的工作频率差别很大,当副回路整定好以后,将副回路视作主回路的一个环节来整定主回路时,可认为对副回路的影响很小,甚至可以忽略。

(2)另一方面,工艺上对主变量的控制要求较高,而对副变量的控制要求较低。

(3)整定顺序:先整定副调节器,再去整定主调节器。

整定步骤:

⑴在生产工艺稳定,主、副调节器均设置为纯比例控制作用。

⑵具体做法,将主调节器的比例度δ1置于100%,Ki=0,Kd=0。

⑶按简单控制系统的衰减曲线法整定副回路——将副调节器的比例度δ2由大到小调整,直到副变量的过渡过程曲线呈4:1衰减振荡为止。

(4)记下此时的比例度δ2s ,量得此时的衰减振荡周期T2s 。

(5)置副调节器的比例度为δ2s ,将副回路看作是主回路的一个环节,主副环仍闭合,用同样的方法整定主调节器——将主调节器的比例度δ1由大到小调节,直到主变量的过渡过程曲线呈4:1衰减振荡为止。

(6)记下此时主调节器的比例度δ1s ,量出主变量振荡周期T1s 。

(7)由已求得的δ1s 、δ2s 和T1s 、T2s 的值,结合主、副调节器的选型,按照简单控制系统的衰减曲线法整定参数的经验公式,分别计算主、副调节器的最佳参数值。

(8)按照“先副后主”、“先P 再I 后D ”的顺序,将计算出的参数设置到调节器上,作扰动试验,观察过渡过程曲线,作适当的参数调整,直到控制质量最佳。

6 管式加热炉出口温度串级控制系统的MATLAB Simulink 仿真与分析

传递函数的选择

按仪表的对应关系设:主回路的传递函数取 8012()(901)

s

e G s s -=+ 副回路的传递函数取 1622

()(301)(1)s

e G s s s -=++ 参考文献[8] 系统的参数的选择

系统的仿真图为图6:

首先整定副回路,当副回路的衰减比为4:1时,如图7所示

此时副回路的振荡周期T1s= 112-46=66(s )衰减比为δ1=1/?%=%。

然后整定主回路,当主回路的衰减比为4:

1时,如图8所示 此时主回路的振荡周期T2s=840-335=505(s ),衰减比 δ2=1/?%=%,

计算得Kp=、Ti=、Td= 、Ki=、Kd=。

系统的仿真分析

将Kp 、Ki 、Kd 分别代入PID 调节器后得到无扰动的的仿真结果为如图9

加入扰动后的系统框图为图10,得到的仿真结果为图11

由于超调量较大,可减小比例系数使超调量减小,当Kp=,Ki=,Kd=时。再次得到的无

图7 图8

图9 图11 图10

图6

扰动和有扰动响应曲线分别为图12和图13,超调量在生产规定的范围内。

图12图13

7 感受与体会

通过这次课程设计,我发现了很多平时学习上的不足,也学到了很多以前没有涉及到得知识,导致考完试以后就把这些知识给忘掉,没有能够转化成自己的知识,遇到过很多很多的问题,但我通过很多有效地途径,例如上网查相关资料,问身边的同学与朋友,都得到了解决。

刚开始的时候,对管式加热炉串级控制系统只有个大概的了解,我去图书馆仔细查阅了介绍过程控制系统的相关书籍,并在网上搜类似的设计来参考,详细了解其工作原理,并对管式加热炉控制系统的设计有一个大概的构思。当然,对一篇课程设计来说,格式也是一个重要的方面,我仔细按着知道老师的格式要求,认真编辑,达到好的效果。

在做课程设计的过程中,不断发现新的问题,不断去寻找好的解决方法,不断去改变,改进,才能让自己得到提高。我们首先要学好理论,然后抓住机会实践,在实践中加深对理论的理解,理论与实践相结合,才能学好专业知识,为未来打好基础。不知不觉中,几天时间的关于管式加热炉温度控制系统的课程设计已经做完了,感觉受益匪浅。

在设计过程中,从拿到题目,方案的设计到方案的确定,都经过了严谨的思考,回路的设计,调节器的正反作用的确定,被控参数的选择,使系统能够达到设计目的。同时,其他的同学,在设计的过程中曾耐心给与帮助,使我得以最终完成这次关于管式加热炉出口温度控制系统的设计。我们以前学习的知识都渐渐离我们远去,甚至不知道、不清楚哪些知识该用到哪些地方,什么时候用。学校安排了这次管式加热炉出口温度控制系统的课

程设计,通过自己查找资料,了解情况,让我们清楚我们学的知识与现实工业生产之间的联系,使得我们对知识更加了解和巩固,为今后的工作打下了基础。

8参考文献

[1]《过程装备控制技术及其应用》王毅主编化学工业出版社

[2]《过程自动化及仪表》俞金寿主编化学工业出版社

[3]《工业过程控制工程》王树青主编化学工业出版社

[4]《控制仪表及装置》吴勤勤主编化学工业出版社

[5]《过程控制仪表》徐春山主编冶金工业出版社

[6]《过程装备成套技术设计指南工程》黄振仁主编化学工业出版社

[7]《化工单元过程及设备课程设计》匡国柱主编化学工业出版社

[8] 《节能》2010年第7期

基于MATLAB Simu1ink下加热炉传递函数的PID仿真试验

赵春锋等烟台大学

步进式加热炉加热质量控制系统的设计

步进式加热炉加热质量控制系统的设计 摘要:目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。本文通过对步进式加热炉加热质量控制系统的设计,从而反映出当今自动化技术的发展方向。同时,介绍了软件设计思想和脉冲式燃烧控制技术原理特点及在本系统的应用。 一、引言 加热炉是轧钢工业必须配备的热处理设备。随着工业自动化技术的不断发展,现代化的轧钢厂应该配置大型化的、高度自动化的步进梁式加热炉,其生产应符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求,以提高其产品的质量,增强产品的市场竞争力。 我国轧钢工业的加热炉型有推钢式炉和步进式炉两种,但推钢式炉有长度短、产量低,烧损大,操作不当时会粘钢造成生产上的问题,难以实现管理自动化。由于推钢式炉有难以克服的缺点,而步进梁式炉是靠专用的步进机构,在炉内做矩形运动来移送钢管,钢管之间可以 留出空隙,钢管和步进梁之间没有摩擦,出炉钢管通过托出装置出炉,完全消除了滑轨擦痕,钢管加热断面温差小、加热均匀,炉长不受限制,产量高,生产操作灵活等特点,其生产符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求。 全连续、全自动化步进式加热炉。这种生产线都具有以下特点:

①生产能耗大幅度降低。②产量大幅度提高。③生产自动化水平非常高,原加热炉的控制系统大多是单回路仪表和继电逻辑控制系统,传动系统也大多是模拟量控制式的供电装置,现在的加热炉的控制系统都是PLC或DCS系统,而且大多还具有二级过程控制系统和三级生产管理系统。传动系统都是全数字化的直流或交流供电装置。 本工程是某钢铁集团新建的φ180小口径无缝连轧钢管生产线中的热处理线部分的步进式加热炉设备。 二、工艺描述 本系统的工艺流程图见图1 ?图1 步进式加热 炉工艺流程图 淬火炉和回火炉均为步进梁式加热炉。装出料方式:侧进,侧出;炉子布料:单排。活动梁和固定梁均为耐热铸钢,顶面带齿形面,直径小于141.3mm钢管,每个齿槽内放一根钢管。直径大15 3.7mm的钢管每隔一齿放一根钢管。活动梁升程180mm,上、下各90mm,齿距为190mm,步距为145mm。因此每次步进时,

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计 2010-07-28 12:56:38 作者:王丽华郑树展来源:高等职业教育:天津职业大学学报 关键字:电加热炉控温固态继电器飞升曲线 引言 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温控制,可以提高控制质量和自动化水平。 1 单片机炉温控制系统结构 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。如图1所示。 炉温信号T通过温度检测及变送,变成电信号,与温度设定值进行比较,计算温度偏差e和温度的变化率de/dt,再由智能控制算法进行推理,并得控制量u,可控硅输出部分根据调节电加热炉的输出功率,即改变可控硅管的接通时间,使电加热炉输出温度达到 理想的设定值。 2 系统硬件设计 2.1 系统硬件结构 以AT89C51单片机为该控制系统的核心,实现对温度的采集、检测和控制。该系统的工作流程如图2所示。系统由变送器经A/D转换器构成输入通道,用于采集炉内的温度信号。

变送器可以选用DBW,型号,它将热电偶信号(温度信号)变为0~5 V电压信号,以供A/D转换用。转换后的数字量与炉温数字化后的给定值进行比较,即可得到实际炉温和给定炉温的偏差及温度的变化率。炉温的设定值由BCD 拨码盘输入。由AT89C51构成的核心控制器按智能控制算法进行推算,得出所需要的控制量。由单片机的输出通过调节可控硅管的接通时间,改变电炉的输出功率,起到调温的作用。 2.2 系统硬件的选择 a)微型计算机的选择:选择AT89C51单片机构成炉温控制系统。它具有8位CPU,3 2根I/O线,4 kB片内ROM存储器,128 kB的RAM存储器。AT89C51对温度是通过可控硅调功器实现的。在系统开发过程中修改程序容易,可以大大缩短开发周期。同时,系统工作过程中能有效地保存一些数据信息,不受系统掉电或断电等突发情况的影响。AT89C51单片机内部有128 B的RAM存储器,不够本系统使用,因此,采用6264(8 kB)的RAM作为外部数据存储器。 b)热电偶的选择:本设计采用DBW型热电偶--镍络-镍硅(线性度较好,热电势较大,灵敏度较高,稳定性和复现性较好,抗氧化性强,价格便宜)对温度进行检测。由于温度是非线性输出的,而与输入的mV信号成线性关系,所以在软件上将此非线性关系加以修正,以便正确反映输入mV信号与温度之间的关系。ADC0809把检测到的连续变化的温度模拟量转换成离散的数字量,输人到单片机中进行处理。 c)键盘输入的选择:采用4片BCD拨码盘作为温度设定的输入单元,输入范围为0~9999,可满足本系统的要求。每位BCD码盘占4条线,通过上拉电阻接入8255可编程并行I/O扩展口。4片BCD码盘占8255的A、B两口,8255工作方式设为"0 模式",A、B 两口均为输入方式。开机后,CPU读8255口操作,即可将BCD码盘的设定温度读入并存人相应的存储单元。 d) 显示器的选择:采用字符型LCD(液晶显示器)模块TC1602A,并且它把LCD控制器、ROM和LCD显示器用PCB(印制板)连接到一起,只要向LCD送人相应的命令和数据便可实现所需要的显示,使用特别方便灵活。第1行显示设定温度,第2行显示实际温度,这样,温差一目了然,方便控制。 3 系统软件设计

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

管式加热炉温度控制系统设计

过程控制系统课程设计报告书管式加热炉温度控制系统设计 学院:自动化 班级:15级自动化4班 指导老师:陈刚 组员: 重庆大学自动化学院 2019年1月

任务分配 过程控制系统课程设计——管式加热炉温度控制系统的设计

目录 任务分配 (2) 过程控制系统课程设计——管式加热炉温度控制系统的设计 (2) 1摘要 (4) 2模型简介 (4) 2.1背景 (4) 2.2模型假设 (4) 2.3系统扰动因素 (5) 3控制方案 (5) 3.1传统PID控制方法 (5) 3.2串级控制系统 (6) 3.3 方案选择 (7) 4串级控制器的设计 (7) 4.1主副控制器设计 (7) 4.1.1主、副回路的设计原则 (7) 4.1.2主、副调节器的选型 (7) 4.1.3主、副调节器调节规律的选择作用 (8) 4.2串级控制器的参数整定 (8) 5系统的仿真和改进 (9) 5.1串级控制系统仿真 (9) 5.2基于Smith预估计补偿器的串级控制系统 (11) 六.总结 (14) 七.参考文献 (15)

1摘要 当今世界,随着市场竞争的日益激烈,产品的质量和功能也向更高的档次发展,制造产品的工艺过程变得越来越复杂,为满足优质、高产、低消耗,作为工业自动化重要分支的过程控制的任务也愈来愈重,无论是在大规模的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及节省能源等均起十分重要的作用。为了能将课程所学理论知识初步尝试应用于实践。 本设计针对管式加热炉系统的控制问题展开了研究。通过将实际加热炉模型化,通过实验法建立锅炉的数学模型。针对物料温度控制问题,在对比了简单的单回路PID控制方法、串级控制两种方法的优劣性后,选择了串级控制的方法控制物料温度。综合应用过程控制理论以及MATLAB仿真技术,通过经验模型及参数整定,得到系统响应曲线。通过反复实验,调整参数,使控制效果比较理想。 关键词:管式加热炉系统、串级控制、MATLAB仿真 2模型简介 2.1背景 管式加热炉是石油工业中重要装置之一,加热炉控制的主要任务就是保证工艺介质最终温度达到并维持在工艺要求范围内,由于其具有强耦合、大滞后等特性,控制起来非常复杂。同时,近年来能源的节约、回收和合理利用日益受到关注。加热炉是冶金、炼油等生产部门的典型热工设备,能耗很大。因此,在设计加热炉控制系统时,在满足工艺要求的前提下,节能也是一个重要质量指标,要保证加热炉的热效率最高,经济效益最大。另外,为了更好地保护环境,在设计加热炉控制系统时,还要保证燃料充分燃烧,使燃烧产生的有害气体最少,达到减排的目的。 2.2模型假设 管式加热炉的主要任务是把原质油或重油加热到一定的温度,保证下一道工序正常进行。假设有一个加热炉系统,系统参数设定为: 1.物料以恒定速度进入管道,流速为10L/s,管道直径为10cm,不考虑物料浓度变化、压力变化等其他条件。 2.物料在加热炉内的长度为L=5m,假定物料受热均匀,并在t=10s后上升至指定温度。 3.假定燃气混合浓度不变,物料温度上升只受燃料流量影响。 4.不考虑环境温度、燃料值等影响,主要考虑燃料流量的扰动。

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

加热炉出口温度与炉膛温度串级控制系统设计

第一章系统分析与控制方案的确立 1.系统分析 图1.1所示为某工业生产中的加热炉,其任务是将被加热物料加热到一定温度,然后送到下道工序进行加工。加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。 T1出口 支路1 炉膛 支路2 燃料 被加热物料 图1.1加热炉出口温度系统 由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,有效地提高控制质量,满足生产要求。 2.串级控制系统的设计 加热炉工艺过程为:被加热物料流过排列炉膛四周的管道后,加热到炉出口工艺所要求的温度。在加热用的燃料油管道上装有一个调节阀,用以控制燃料油流量,以达到控制出口温度的目的。由于加热炉时间常数大,而且扰动的因素多,比如原料侧的扰动及负荷扰动;燃烧侧的扰动等,单回路反馈控制系统不能满足工艺对加热炉出口温度的要求。为了提高控制质量,采用串级控制系统,运用副回路的快速作用,以加热炉出口温度为主变量,选择滞后较小的炉膛温度为副变量,构成炉出口温度与炉膛温度的串级控制系统有效地提高控制质量,以满足工业生产的要求,系统的串级控制结构图如图1.2所示。

图 1.2 加热炉出口温度串级控制系统结构图 串级控制系统的工作过程,就是指在扰动作用下,引起主、副变量偏离设 定值,由主、副调节器通过控制作用克服扰动,使系统恢复到新的稳定状态的 过渡过程。由加热炉出口温度串级控制系统结构图可绘制出其结构方框图,如 图 1.3 所示。 图 1.3 加热炉出口温度串级控制系统结构方框图 (1) 主被控参数的选择 应选择被控过程中能直接反映生产过程中的产品产量和质量,又易于测量 的参数。在加热炉出口温度与炉膛温度的串级控制系统中加热炉出口温度为系 统的主被控参数,因为加热炉出口温度是整个控制作用的关键,要求出口物料 温度维持在某给定值上下。如果其调节欠妥当,会造成整个系统控制设计的失 败。 (2) 副被控制参数的选择 从整个系统来看,加热炉的炉膛温度虽然不是我们要控制的直接目标,但 是炉膛温度会很大程度上影响出口物料的温度,因此我们选择炉膛温度为副被 控参数。 (3) 控制器的选择 主控制器的选择:主被控变量是工艺操作的主要指标(温度),允许波动的 度 副控制器 调节阀 主控制器 主检测、变送仪表 副检测、变送仪表 炉膛 出口温度

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

电加热炉温度控制

基于单片机的电加热炉温度控制系统设计 王丽华1郑树展2 (1、天津职业大学,天津300402;2、天津航空机电有限公司,天津300123) 摘要:温度控制是工业对象中主要的控制参数之一,其控制系统本身的动态特性属于一阶纯滞后环节。以8051单片机为核心,采用温度变送器桥路和固态继电器控温电路,实现对电炉温度的自动控制。该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。 关键词:电加热炉控温固态继电器飞升曲线 0引言 传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1电加热炉温度控制系统的硬件设计 电加热炉温度控制系统的硬件由图1所示各部件组成,它以8051单片机为核心,外扩键盘输入和LED显示温度。电加热炉炉内的实际温度由热电偶测量并转换成毫伏级的电压信号,通过温度变送器桥路实现零点迁移和冷端补偿,经运算放大器7650放大到0~5V,再经过有源低通滤波器滤波后,由A/D转换成数字量。此数字量经数字滤波、标度转换后,一方面通过LED将炉温显示出来;另一方面,将该温度值与被控温度值进行比较,根据其偏差值的大小,采用PID控制,通过PWM脉冲调宽功率放大器控制SSR固态继电器来控制电加热炉炉丝的导通时间,就可以控制电炉丝的加热功率大小,从而控制电炉的温度及升温速度,使其逐渐趋于给定值且达到平衡。 1.1 热电偶的选取 热电偶是温度测量传感器,对它的选择将直接影响检测误差的大小。目前多选K型或S 型(镍铬-镍硅)热电偶。两者相比,K型有较好的温度—热电势的线性度,但它不适宜于长时间在高温区适用;S型有高的精度,但温度—热电势的线性度较差。 A/D转换器 图1中A/D转换芯片采用ADC0809,其转换精度是1/256。若电加热炉工作温度是256℃,这样在(0~256)℃范围A/D的转换精度为256℃/256=1℃/bit,即一个数字量表示1℃,这显然不能满足控制精度为±0.5℃要求。为了提高控制精度,可以选用更高位的A/D转换器,如10位、12位、16位A/D转换器,其控值精度均能满足要求。然而根据实际需要温度控制情况,也可以通过具有零点迁移和冷端补偿功能的温度变送桥路,缩小测温的范围,如

课程设计(论文)-基于PLC的电加热炉温度控制系统设计

第一章绪论 1.1选题背景及意义 加热炉是利用电能来产生蒸汽或热水的装置。因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。而传统的加热炉普遍采用继电器控制。由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。 在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。 1.2国内外研究现状及发展趋势 一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。与欧美、日本,德国等先进国家相比,其差距较大。目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。对于一些过程复杂的,时变温度系统的场合往往束手无策。而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。并且普遍采用自适应控制、模糊控制及计算机技术。 近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及

毕业设计-电加热炉控制系统设计

密级: NANCHANGUNIVERSITY 学士学位论文THESIS OF BACHELOR (2006 —2010年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

基于单片机的温度控制系统设计

湖南科技大学潇湘学院 毕业设计(论文) 题目单片机温度控制系统 作者 系部信息与电气工程系 专业电气工程及其自动化 学号 指导教师 二〇一年月日

湖南科技大学学院 毕业设计(论文)任务书 信息与电气工程系电气工程及其自动化教研室 教研室主任:(签名)年月日 学生姓名: 学号: 专业: 电气工程及其自动化 1 设计(论文)题目及专题:单片机温度控制系统 2 学生设计(论文)时间:自年月日开始至年月日止 3 设计(论文)所用资源和参考资料: (1)单片机温度控制系统流程图(2)单片机程序设计基础 (3) protel se 99软件(4) 单片机使用接口技术 (5) 单片机程序设计基础(6)网上有关技术资料 4 设计(论文)应完成的主要内容: (1) 基于单片机温度控制系统的发展及应用 (2) 单片机温度控制系统设计包含的基本内容 (3) 单片机温度控制系统技术 (4) 单片机温度控制系统实现 (5) 全文总结 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1) 程序。要求:编译通过,基本能运行。 (2) 毕业论文。要求:正确,规范,通顺。 (3) 可供发表的研究论文(可选)。要求:规范,新意 均需提交电子版和纸质版。 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

湖南科技大学学院 毕业设计(论文)指导人评语 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学学院 毕业设计(论文)评阅人评语 评阅人:(签名) 年月日评阅人评定成绩:

湖南科技大学学院 毕业设计(论文)答辩记录 日期: 学生:学号:班级: 题目: 提交毕业设计(论文)答辩委员会下列材料: 1 设计(论文)说明书共页 2 设计(论文)图纸共页 3 指导人、评阅人评语共页 毕业设计(论文)答辩委员会评语: 答辩委员会主任:(签名) 委员:(签名) (签名) (签名) (签名)答辩成绩: 总评成绩:

相关主题
文本预览
相关文档 最新文档