电磁感应习题、答案及解法
- 格式:doc
- 大小:495.50 KB
- 文档页数:9
【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。
在此题中,导线不运动,所以感应电动势为零。
因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。
答案:电路中的电流为0A。
题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。
当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。
在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。
根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。
根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。
答案:环中的新磁场强度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。
在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。
答案:导线在磁场中的运动速度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。
电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
高三物理电磁感应试题答案及解析1.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是【答案】 C【解析】试题分析: 发电机是利用线圈在磁场中做切割磁感线运动从而产生电流---电磁感应现象来工作的,所以A属于电磁感应现象及其应用;动圈式话筒是利用说话时空气柱的振动引起绕在磁铁上的线圈做切割磁感线运动,从而产生随声音变化的电流,利用了电磁感应现象,所以B属于电磁感应现象及其应用;电动机是利用通电线圈在磁场中受力转动的原理来工作的,所以C不属于电磁感应现象及其应用;变压器是利用电磁感应现象的原理来改变交流电压的,所以D属于电磁感应现象及其应用,故选C。
【考点】电磁感应2.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,如图所示。
一个质量为m、电阻为R、边长也为L的正方形线框在t=0时刻以速度v0进入磁场,恰好做匀速直线运动,若经过时间t,线框ab边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则下列说法正确的是()A.当ab边刚越过ff′时,线框加速度的大小为gsinθB.t时刻线框匀速运动的速度为C.t时间内线框中产生的焦耳热为D.离开磁场的过程中线框将做匀速直线运动【答案】BC【解析】当ab边进入磁场时,有E=Blv0,I=E/R,mgsinθ=BIl,有B2l2v/R=mgsinθ.当ab边刚越过f′时,线框的感应电动势和电流均加倍,则线框做减速运动,有4B2I2v/R=4mgsinθ,加速向上为3gsinθ,A错误;t0时刻线框匀速运动的速度为v,则有4B2I2v/R=mgsinθ,解得v=v/4,B正确;线框从进入磁场到再次做匀速运动过程,沿斜面向下运动距离为3l/2,则由功能关系得线框中产生的焦耳热为Q=3mglsinθ/2+(mv02/2-mv2/2)=3mgls inθ/2+15mv2/32,C正确;线框离开磁场时做加速运动,D错误。
高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应习题及答案一、 选择题1.如图1所示,两根无限长平行直导线载有大小相等、方向相反的电流I ,并都以dtdI的变化率增长,一圆形金属线圈位于导线平面内,则()A 线圈中无感应电流 ()B 线圈中感应电流为顺时针方向()C 线圈中感应电流为逆时针方向 ()D 线圈中感应电流方向不确定[ B ]解: 由楞次定律,可判断出感应电流方向为顺时针。
2.如图2所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?()A 载流螺线管向线圈靠近 ()B 载流螺线管离开线圈()C 载流螺线管中电流减小 ()D 抽出载流螺线管中的铁心[ A]解:由楞次定律,可判断出必须增加线圈中的电流或将线圈想右移动。
3.一边长为l 的正方形线框,置于均匀磁场中,线框绕OO ’轴以匀角速度ω旋转(如图3所示)。
设0t =时,线框平面处于纸面内,则任一时刻感应电动势的大小为()A t B l ωcos 22 ()B B l 2ω ()C t B l ωωcos 212 ()D t B l ωωcos 2()E t B l ωωsin 2[ D ]解:t B l ωφsin 2= t B l dtd ωωφεcos 2=-=Oω图1 图2 图34.如图所示,导体棒AB 在均匀磁场B中绕通过C 点的垂直于棒长且磁场沿磁场方向的轴OO ’转动(角速度与B同方向),BC 的长度为棒长的41,则()A A 点比B 点电势高 ()B A 与B 点电势相等 ()C A 点比B 点电势低 ()D 稳恒电流从A 点流向B 点[A]()04144321214342224342434434〉=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛====•⨯=⎰⎰⎰----L LL L LL L L BL L L B Bl Bldl vBdl l d B v ωωωωε5.如图5所示,长度为l 的直导线CD 在均匀磁场B 中以速度υ移动,直导线CD 中的电动势为()A υBl ()B θυsin Bl ()C θυ cos Bl ()D 0[D]解: ()02cos sin ==•⨯=πθεvBL L B v6.如图6所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线,外磁场垂直水平面向下,当外力使ab 向右平移时,cd()A 不动 ()B 转动 ()C 向左移动 ()D 向右移动[D]7.对于单匝线圈取自感系数的定义为I L φ=.当线圈的几何形状、大小及周围磁介质分布不变,切无铁磁性质时,若线圈中的电流强度变大,则线圈的自感系数L()A 变大,与电流成正比关系 ()B 变大,但与电流不成反比关系 ()C 变小,与电流成反比关系 ()D 不变 [D]8.如图7所示,一导体棒ab 在均匀磁场中沿金属导轨向左作匀加速运动,磁场方向垂直导轨所在平面,若导轨电阻忽略不计,并设铜心磁导率为常数,则达到稳定后在电容器的C 极板上会()A 带有一定量的正电荷 ()B 带有一定量的负电荷 ()C 带有越来越多的正电荷 ()D 带有越来越多的负电荷[A]9.在圆柱形空间内有一磁感应强度为B 的匀强磁场,如图所示。
电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
其中棒CD 通过绝缘细绳、定滑轮与质量也为m 的重物相连,重物放在水平地面上,开始时细绳伸直但无弹力,棒CD 与导轨间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,忽略其他摩擦和其他阻力,导轨间有一方向竖直向下的匀强磁场1B ,磁场区域的边界满足曲线方程:sin(0y L x x L Lπ=≤≤,单位为)m 。
高中物理电磁感应现象习题知识点及练习题及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在垂直导轨平面的磁场,磁感应强度分布为1()00.60.8()0T x B x T x -<⎧=⎨+≥⎩(取磁感应强度B垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导轨间的动摩擦因数均为33μ=。
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框能保持静止,求冲量I 大小应满足的条件。
(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。
【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】(1)金属棒获得冲量I 后,速度为24m/s Iv m == 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为1E B lv =其中11B =T ;金属棒ab 两端的电势差为12120.1V ab B lvU R R R ==+(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为2212212B l v F m a R R ==+做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为21212B B l v F R R =+安其中21T B =;因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为11cos sin m f m g m g μαα==因此安培力的最大值为12sin m g θ; 可得最大冲量为()12122122sin 0.48m m g R R I B B lα+==N·s (3)当I =0.4N·s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得22212012B l vtm v m v R R -=-+ 其中0.32m vt x == 解得12m/s v =金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得()11122m v m m v =+因此碰撞后U 形框速度为20.5m/s v =同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为12de ab B lv B lvI R R -=+其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为()2212deab de abB B l vF B Il B Il R R -=-=+其中,,0.8cd ab B B kl k -== 由动量定理得()24122120k l vtm m v R R -=-++ 因此向下运动的距离为()()12212242m m m v R R s k l ++==此时cd 边的坐标为x =2.5m2.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
四. 知识要点:第一单元电磁感应现象楞次定律(一)电磁感应现象1. 产生感应电流的条件:穿过闭合电路的磁通量发生变化.2. 磁通量的计算(1)公式Φ=BS此式的适用条件是:①匀强磁场;②磁感线与平面垂直。
(2)如果磁感线与平面不垂直,上式中的S为平面在垂直于磁感线方向上的投影面积.即其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”。
(3)磁通量的方向性:磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同。
求合磁通时应注意相反方向抵消以后所剩余的磁通量。
(4)磁通量的变化:可能是B发生变化而引起,也可能是S发生变化而引起,还有可能是B和S同时发生变化而引起的,在确定磁通量的变化时应注意。
3. 感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,这部分电路就会产生感应电动势。
这部分电路或导体相当于电源。
(二)感应电流的方向1. 右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断。
右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向。
说明:伸直四指指向还有另外的一些说法:①感应电动势的方向;②导体的高电势处。
2. 楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
注意:①“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小,即“增反减同”。
②“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化。
③楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能。
(2)应用楞次定律判断感应电流的步骤:①确定原磁场的方向。
②明确回路中磁通量变化情况。
③应用楞次定律的“增反减同”,确定感应电流磁场的方向。
电磁感应习题及答案一、 选择题1.如图1所示,两根无限长平行直导线载有大小相等、方向相反的电流I ,并都以dtdI的变化率增长,一圆形金属线圈位于导线平面内,则()A 线圈中无感应电流 ()B 线圈中感应电流为顺时针方向()C 线圈中感应电流为逆时针方向 ()D 线圈中感应电流方向不确定[ B ]解: 由楞次定律,可判断出感应电流方向为顺时针。
2.如图2所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?()A 载流螺线管向线圈靠近 ()B 载流螺线管离开线圈()C 载流螺线管中电流减小 ()D 抽出载流螺线管中的铁心[ A]解:由楞次定律,可判断出必须增加线圈中的电流或将线圈想右移动。
3.一边长为l 的正方形线框,置于均匀磁场中,线框绕OO ’轴以匀角速度ω旋转(如图3所示)。
设0t =时,线框平面处于纸面内,则任一时刻感应电动势的大小为()A t B l ωcos 22 ()B B l 2ω ()C t B l ωωcos 212 ()D t B l ωωcos 2()E t B l ωωsin 2[ D ]解:t B l ωφsin 2= t B l dtd ωωφεcos 2=-=Oω图1 图2 图34.如图所示,导体棒AB 在均匀磁场B ρ中绕通过C 点的垂直于棒长且磁场沿磁场方向的轴OO ’转动(角速度与B ρ同方向),BC 的长度为棒长的41,则()A A 点比B 点电势高 ()B A 与B 点电势相等 ()C A 点比B 点电势低 ()D 稳恒电流从A 点流向B 点[A]()04144321214342224342434434〉=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛====•⨯=⎰⎰⎰----L LL L LL L L BL L L B Bl Bldl vBdl l d B v ωωωωερρρ 5.如图5所示,长度为l 的直导线CD 在均匀磁场B 中以速度υ移动,直导线CD 中的电动势为()A υBl ()B θυsin Bl ()C θυ cos Bl ()D 0[D]解: ()02cos sin ==•⨯=πθεvBL L B v ρρρ6.如图6所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线,外磁场垂直水平面向下,当外力使ab 向右平移时,cd()A 不动 ()B 转动 ()C 向左移动 ()D 向右移动[D]7.对于单匝线圈取自感系数的定义为I L φ=.当线圈的几何形状、大小及周围磁介质分布不变,切无铁磁性质时,若线圈中的电流强度变大,则线圈的自感系数L()A 变大,与电流成正比关系 ()B 变大,但与电流不成反比关系 ()C 变小,与电流成反比关系 ()D 不变 [D]8.如图7所示,一导体棒ab 在均匀磁场中沿金属导轨向左作匀加速运动,磁场方向垂直导轨所在平面,若导轨电阻忽略不计,并设铜心磁导率为常数,则达到稳定后在电容器的C 极板上会()A 带有一定量的正电荷 ()B 带有一定量的负电荷 ()C 带有越来越多的正电荷 ()D 带有越来越多的负电荷[A]9.在圆柱形空间内有一磁感应强度为B 的匀强磁场,如图所示。
B 的大小以速率dt d B 变化。
现将同一根导线放在磁场中ab 和a ’b ’两个不同的位置上,则()A 电动势只在ab 位置上产生 ()B 电动势只在a ’b ’位置上产生()C 电动势在ab 和a ’b ’位置上都产生,且两者大小相等 ()D ab 位置上产生的电动势小于a ’b ’位置上产生的电动势[D]解:dtdBSdt d -==φε- dt dB S dt d dt dB S dt d O b a O O b a O b a OabO OabO ab ''''''-==〈-==φεφε-- 10.真空中两只长直螺线管1和2的长度相等,单层密绕匝数相同,直径之比4121=d d 。
当它们通以相同的电流时,两螺线管储存的磁能力之比()A 116: ()B 161: ()C 14: ()D 41:[B]解:nIS 0μ=Φ nS I nIS I L 00μμ==Φ=221LI W = 1614144212122212221222121201*********=⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=======d d S S nS nS L L I L I L W W φφφπφπμμ 二、 填空题1. 半径为r 的无限长直螺线管1和2的长度相等,单位长度上的匝数为n ,通以交变电流t cos i m ωI =,则围在管外的同轴回形回路(半径为R )上的感生电动势为t I r n m ωωπμεsin 20=()t I r n t I r n dtddt d m m ωωπμωπμφεsin cos -2020=-==2. 一导线被弯成回路如图所示,形状,abc 是半径为R 的二分之一圆弧,直线Oa 长为R ,若此导线放在匀强磁场B 中,B 的方向垂直图面向内,导线以角速度ω在图面内绕O 点匀速运动,则此导线中的感生电动势=ε229BR ω- 电势最高的点是O 点 。
()()()[]29032121302223023030〈-=--=-=-=-=•⨯=⎰⎰⎰RR RR BR R B Bl Bldl vBdl l d B v ωωωωερρρ3. 长为L 的金属直导线在垂直于均匀磁场的平面内以角速度ω转动。
如果转轴在导线上的位置是在导线端点,整个导线上的电动势为最大;如果转轴在导线上的位置是在导线中点,整个导线上的电动势为最小。
()()()[]021021212220200〉=-====•⨯=⎰⎰⎰LL LL BL L B Bl Bldl vBdl l d B v ωωωωερρρ()⎰⎰⎰----=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛====•⨯=222222222220222121L LL L LL L L L L B Bl Bldl vBdl l d B v ωωωερρρ 4. 金属圆板在均匀磁场中以角速度ω绕中心轴转动,均匀磁场的方向平行于转轴,如图所示,这时板中由中心至同一边缘点的不同曲线上总R感应电动势的大小为_221R B ω,方向沿曲线由外指向中心。
()()()[]2102121222020〈-=--==-=-=•⨯=⎰⎰⎰RR RR BR R B Bl Bldl vBdl l d B v ωωωωερρρ5. 一线圈中通过的电流I 随时间t 变化的曲线如图11所示。
试定性画出自感电动势L ε随时间变化的曲线。
(以I 的正向作为L ε的正向)6. 自感系数H L 4.0=的螺线管中通以A I 10=的电流时,螺线管存储的磁场能量=W_20 J ___. 参考答案:()()J 20104.0212122=⨯⨯==LI W7. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径为1r 和2r ,管内充满均匀介质,其磁导率分别为1μ和2μ,设2121=r r ,1221=μμ,当将两只螺线管串联在电路中通电稳定后,其自感系数之比为21L L 为_1:2_,磁能2m 1m W W 为_1:2_参考答案:212121222211221122011021222121======r r S S nS nS L L I L I L W W πμμπμμμμμμ 8. 平行板电容器的电容F C μ0.10=,两板上的电压变化率为()15100.2-⋅⨯=s V dtdU,则该平行板电容器中的位移电流为_2 A _. 参考答案:U Q C = ()A 0.2100.2100.1056=⨯⨯⨯===-dtdUC dt dQ I D9. 在感应电场中电磁感应定律可写成t l E LK d d d φ-=•⎰ρρ,式中为感应电场的电场强度。
此表明在感应电场中_不能_(填“能”或“不能”)像对电场那样引入电势概念。
三、 计算题1. 如图所示,一条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,它到长直导线的距离为d ,已知导线中电流为t sin m ωI I =,其中m I 和ω为常数, t为时间。
导线框长为a ,宽为b ,求导线框中的感应电动势的大小。
解:规定顺时针方向为回路正方向。
在t 时刻通过整个矩形框面积S 的B ρ通量为t dbd a I adx x I m bd dωπμπμφφsin ln 22d 00+===⎰⎰+ 感应电动势为 t d b d a I t d b d a I dt d m m ωπωμωπμφεcos ln 2sin ln 2dt d 00i +-=⎥⎦⎤⎢⎣⎡+-=-=2. 如图所示,用一根硬导线弯成半径为r 的一个半圆,使这根半圆形导线在磁感应强度为B ρ的匀强磁场中以角速度ω旋转,整个电路的电阻为R 。
求感应电流的表达式。
解: t 时刻半圆环的磁通量为:t B r ωπϕcos 212⎪⎭⎫ ⎝⎛=t 时刻半圆环的产生的电动势为:t B r t B r dt d dt d ωωπωπϕεsin 21cos 2122⎪⎭⎫⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-=-= t 时刻回路中的产生的电流为:t R r B R I ωωπεsin 22⎪⎪⎭⎫⎝⎛-==3. 如图所示,一根无限长的直导线载有电流I ,长度为b 的金属杆CD 与导线共面且垂直, CD 杆以速度v ρ平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端那端电势高?解: D 点电势高在CD 上取任意一线元dx则dx 上的电动势为: ()dx xIvl d B v d i πμε20-=•⨯=ρρρ所以整个导体的电动势为:()aba Iv dx x Iv l d B v db a a L i +-=-=•⨯==⎰⎰⎰+ln2200L i πμπμεερρρ 4. 如图所示,在匀强磁场B ρ中,a ==EF OE ,0135=∠OEF ,OEF 整体可绕O 点在垂直于磁场的平面内逆时针转动,若转动角速度为ω,则 (1) 求OE 间电势差OE U ; (2) 求OF 间电势差OF U ;(3) 指出O 、E 、F 三点中那点电势最高。
解: (1)()200L OE 21Ba rBdr vBdr l d B v d a a L ωωεε===•⨯==⎰⎰⎰⎰ρρρ(2)()()()()2220220L OF 223Ba rBdr vBdr l d B v d a a Lωωεε+===•⨯==⎰⎰⎰⎰++ρρρ (3)O 点电势高。