二元一次方程组拓展练习
- 格式:doc
- 大小:193.06 KB
- 文档页数:4
二元一次方程的应用题一、解答题1.某校组织“大手拉小手.义卖献爱心”活动.购买了黑白两种颜色的文化衫共140件.进行手绘设计后了出售.所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售假设文化衫全部售出.共获利1860元.求黑白两种文化衫各多少件?2.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价.其中A型每件的价格上调了10%.B型每件的价格下调了5%.已知调价前买这两种服装各一件共花费70元.调价后买3件A型服装和2件B型服装共花费175元.问这两种服装在调价前每件各多少元?3.2015年我区中小学生田径运动会于5月中旬在区体育中心举行.区内某中学组织180名七年级学生和224名八年级学生参加开幕式的演出.其中表演队伍中八年级女生比七年级女生多24人.八年级男生是七年级男生的1.2倍.为了接送这些学生与31位带队老师.学校租用了45座和60座的大客车一共9辆.并且刚好能坐满.45座大客车的租金是500元/辆.60座大客车的租金是600元/辆.(1)求整个表演队伍中有女生.男生各多少人?(2)租用了45座.60座大客车各几辆.租车费用是多少元;(3)你能否找出更合算的租车方案来吗?如果没有.请说明理由;如果有.请你写出租车方案和租车费用.4.双十一期间.商场针对某品牌洗洁精和洗衣液推出如下两种促销套餐:套餐一:3瓶洗洁精2袋洗衣液一组.总价为60元;套餐二:4瓶洗洁精3袋洗衣液一组.总价为85元.根据上述信息.分别求该品牌一瓶洗洁精和一袋洗衣液的售价.5.某厂家生产三种不同型号的电视机.甲.乙.丙出厂价分别为1500元.2100元.2500元.(1)某商场同时从该厂购进其中两种不同型号的电视机共50台.正好用去90000元.可有几种进货方案(写出演算步骤)?(2)若该商场销售甲、乙、丙种电视机每台可分别获利150元.200元.250元.请你结合(1)的进货方案.如何进货可使销售时获利最多?6.为了响应“足球进校园”的目标.某校计划为学校足球队购买一批足球.已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A.B两种品牌的足球的单价.(2)求该校购买20个A品牌的足球和2个B品牌的足球的总费用.7.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车.两种车型的销售总额为96万元;本周销售2辆A型车和1辆B型车.两种车型的销售总额为62万元.已知这两周两种型号汽车销售价格不变.求它们的销售单价.8.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务.要在限定的时间内把一批抗洪物质从物资局仓库运到水库.这辆车如果按每小时30千米的速度行驶.在限定的时间内赶到水库.还差3千米.他决定以每小时40千米的速度前进.结果比限定时间早到18分钟.限定时间是几小时物资局仓库离水库有多远?9.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅.可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅.可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放.能否供全校的5300名学生就餐?请说明理由.10.团体购买公园门票票价如下:今有甲、乙两个旅行团.已知甲团人数少于50人.乙团人数不超过100人.若分别购票.两团共计应付门票费1392元.若合在一起作为一个团体购票.总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人;(2)求甲、乙两旅行团各有多少人?11.福林制衣厂现有24名制作服装的工人.每天都制作某种品牌的衬衫和裤子.每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子数量相等.则应各安排多少人制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元.制作一条裤子可获得利润16元.若该厂要求每天获得利润2100元.则需要安排多少名工人制作衬衫?12.某地新建的一个企业.每月将生产1960吨污水.为保护环境.该企业计划购置污水处理器.并在如下两个型号种选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元.售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完.该企业决定购买上述的污水处理器.那么他们至少要支付多少钱?13.假如某市的出租车是这样收费的:起步价所包含的路程为0~1.5千米.超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米.付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米.付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘坐出租车从汽车站到市政府走了10千米.应付车费多少元?14.某校准备组织七年级400名学生参加夏令营.已知满员时.用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆.大客车b辆.一次送完.且恰好每辆车都坐满;①请你设计出所有的租车方案;②若小客车每辆需租金200元.大客车每辆需租金380元.请选出最省钱的租车方案.并求出最少租金.15.春节期间.某商场计划购进甲、乙两种商品.已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售.乙商品以每件90元出售.为满足市场需求.需购进甲、乙两种商品共100件.且甲种商品的数量不少于乙种商品数量的4倍.请你求出获利最大的进货方案.并求出最大利润.16.某制衣厂某车间计划用10天加工一批出口童装和成人装共360件.该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装.几天加工成人装.才能如期完成任务?(2)若加工童装一件可获利80元.加工成人装一件可获利120元.那么该车间加工完这批服装后.共可获利多少元?17.某中学拟组织七年级师生去张家界森林公园春游.下面是李老师和小芳、小明同学有关租车问题的对话:李老师:“客运公司有45座和33座两种型号的客车可供租用.45座客车每辆每天的租金比33座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆45座和2辆33座的客车到张家界森林公园春游.一天的租金共计4400元.”小明:“我们七年级师生租用6辆45座和2辆33座的客车正好坐满.”根据以上对话.解答下列问题:(1)客运公司45座和33座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案.七年级师生到该公司租车一天.共需租金多少元?18.某工程队承包了一段全长1957米的隧道工程.甲乙两个班组分别从南北两端同时掘进.已知甲组比乙组每天多掘进0.5米.经过6天施工.甲乙两组共掘进57米.那么甲乙两个班组平均每天各掘进多少米?19.某校组织初二年级400名学生到威海参加拓展训练活动.已知用3辆小客车和1辆大客车每次可运送学生105人.用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆.大客车n辆.一次送完.且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金250元.大客车每辆租金350元.请选出最省线的租车方案.并求出最少租金.20.2012年12月1日.世界上第一条地处高寒地区的高铁线路--哈大高铁正式通车运营.哈大高铁列车共8节车厢编组.可供511位乘客乘坐.每节一等座车厢有52个座位.每节二等座车厢有80个座位.其中8号车厢和4号车厢均为二等座车厢.8号车厢为观光车厢共68个座位;4号车厢为方便残疾人使用而设置了一个超大卫生间.共71个座位;5号车厢是餐车.试求该列车一等车厢和二等车厢各有多少节?21.为了鼓励市民节约用水.某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:(水价计费=自来水销售费用+污水处已知小王家2012年4月份用水20吨.交水费66元;5月份用水25吨.交水费91元(1)求a、b的值;(2)6月份小王家用水32吨.应交水费多少元.22.某商场新进一种服装.每套服装售价1000元.若将裤子降价10%.上衣涨价5%.调价后这套服装的单价比原来提高了2%.这套服装原来裤子和上衣的单价分别是多少?23.小李购买了一套一居室.他准备将房子的地面铺上地砖.地面结构如图所示.根据图中所给的数据(单位:米).解答下列问题:(1)用含m.n的代数式表示地面的总面积S;(2)已知客厅面积是卫生间面积的8倍.且卫生间、卧室、厨房面积的和比客厅还少3平方米.如果铺1平方米地砖的平均费用为100元.那么小李铺地砖的总费用为多少元?24.两人骑自行车在400米环形跑道上用不变的速度行驶.当他们按相反的方向行驶时.每20秒名相遇一次;若按同一方向行驶.那么每100秒钟相遇一次.问两个的速度各是多少?25.某商场计划拨款9万元从厂家购进50台电视机.已知该厂家生产三种不同型号的电视机.出厂价分别为:甲种每台1 500元.乙种每台2 100元.丙种每台2 500元.若商场同时购进其中两种不同型号电视机共50台.用去9万元.请你研究一下商场的进货方案.26.有甲、乙两班学生.已知乙班比甲班少4人.如果从乙班调17人到甲班.那么甲班人数比乙班人数的3倍还多2人.求甲、乙两班原来各有多少人.27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公.众客都来到店中.一房七客多七客.一房九客一房空.诗中后两句的意思是:如果每一间客房住7人.那么有7人无房可住;如果每一间客房住9人.那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后.房间数大大增加.每间客房收费20钱.且每间客房最多入住4人.一次性定客房18间以上(含18间).房费按8折优惠.若诗中“众客”再次一起入住.他们如何订房更合算?28.某体育文化用品商店购进篮球和排球共30个.进价和售价如下表.全部销售完后共获利润660元.(1)请利用二元一次方程组求购进篮球和排球各多少个?(2)销售8个篮球的利润与销售几个排球的利润相等?29.为了拉动内需.全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台.政策出台后的第一个月售出这两种型号的汽车共1228台.其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月.销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元.自动型汽车每台价格为9万元.根据汽车补贴政策.政府按每台汽车价格的5%给购买汽车的用户补贴.问政策出台后的第一个月.政府对这1228台汽车用户共补贴了多少万元?30.华华在A、B两家超市发现他看中的MP3的单价相同.书包的单价也相同.这两件商品单价之和是452元.且MP3的单价比书包的单价的4倍少8元.(1)求华华看中的MP3和书包的单价各是多少元?(2)某一天华华上街.恰好赶上商家促销.超市A所有商品打八折销售.超市B全场购物满100元返购物券30元销售(不足100元不返券.购物券全场通用.不兑现金).但他只带了400元钱.在这两家超市.他能购买到这两件物品吗?如果两家超市都能买到.到哪一家买比较省钱?二元一次方程应用题2一、解答题1.平顶山市某中学举行“我爱中华”征文活动.七年级和八年级共收到征文118篇.且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇.求七年级和八年级各收到的征文有多少篇?2.某工厂用如图甲所示的长方形和正方形纸板.做成如图乙所示的竖式与横式两种无盖的长方体纸盒.(长方形的宽与正方形的边长相等)(1)现有正方形纸板50张.长方形纸板100张.若要做竖式纸盒个x.横式纸盒y个.①根据题意.完成以下表格:②若纸板全部用完.求、的值;(2)若有正方形纸板90张.长方形纸板a张(a是整数).做成上述两种纸盒.纸板恰好全部用完.已知164<a<174.求a的值.3.全民健身和医疗保健是社会普遍关注的问题.2014年.某社区共投入30万元用于购买健身器材和药品.2015年.该社区购买健身器材的费用比上一年增加50%.购买药品的费用比上一年减少.但社区在这两方面的总投入仍与2014年相同.(1)求2014年社区购买药品的总费用;(2)据统计.2014年该社区积极健身的家庭达到200户.社区用于这些家庭的药品费用明显减少.只占当年购买药品总费用的.与2014年相比.如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比均为50%.那么.2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的几分之几?4.去年春季.蔬菜种植场在15公顷的大棚地里分别种植了茄子和西红柿.总费用是26.5万元.其中.种植茄子和西红柿每公顷的费用和每公顷获利情况如表:请解答下列问题:(1)求出茄子和西红柿的种植面积各为多少公顷?(2)种植场在这一季共获利多少万元?5.大学生小王积极相应“自主创业”的号召.准备投资销售一种进价为每件40元的小家电.通过试营销发现.当销售单价在40元至90元之间(含40元和90元)时.每月的销售量y(件)与销售单价x(元)之间满足等式y=ax+b.其中a、b为常数.(1)根据图中提供的信息.求a、b的值;(2)求销售该款家电120件时所获利润是多少?(提示:利润=实际售价-进价)6.江堤边一洼地发生了管涌.江水不断地涌出.假定每分钟涌出的水量相等.如果用两台抽水机抽水.40分钟可抽完;如果用4台抽水机抽水.16分钟可抽完.如果要在10分钟内抽完水.那么至少需要抽水机多少台.(1999年全国初中数学联合竞赛试题)7.甲乙两地间的距离为600千米.一辆客车从甲地出发前往乙地.同时一辆货车从乙地出发前往甲地.客车比货车平均每小时多行驶20千米.3小时后两车相遇.分别求客车、货车的速度.8.某景点的门票价格如下表:班多于50人但不足60人.如果两班都以班为单位分别购票.则一共付款1118元.(1)两班各有多少名学生?(2)如果你是购票决策人.将如何购票能够省钱?可节省多少钱?9.解方程组甲由于看错了方程(1)中的a.得到方程组的解为;乙看错了方程(2)中的b.得到方程组的解为.求-的值.10.甲、乙两人共同解方程组 ①②由于甲同学看错了方程①中的a.得到方程组的解为.乙看错了方程②中的b.得到方程组的解为.请计算代数式a2007b2008的值.11.某牛奶加工厂现有鲜奶9t.若在市场上直接销售鲜奶.每吨可获利润500元.制成酸奶销售.每吨可获利润1 200元.制成奶片销售.每吨可获利2 000元.该厂的生产能力是:如制成酸奶.每天可加工3t.制成奶片.每天可加工1t.受人员限制.两种加工方式不可同时进行.受气温限制.这批牛奶需在4天内全部销售或加工完毕.为此.该厂设计了两种方案:方案一:尽可能多的制成奶片.其余鲜奶直接销售;方案二:一部分制成奶片.其余制成酸奶销售.并恰好4天完成.你认为选择哪种方案获利最多.为什么?12.某超市为“开业三周年”举行了店庆活动.对A、B两种商品实行打折出售.打折前.购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间.购买50件A商品和50件B商品仅需960元.这比不打折少花多少钱?13.红星服装厂要生产一批某种型号的学生服装.已知3米长的布料可做上衣2件或裤子3条.一件上衣和一条裤子为一套.计划用600米长的这种布料生产.应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?. .14.某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎.每扎1000张.已知体彩中心有A、B、C三种不同价格的彩票.进价分别是A彩票每张1.5元.B彩票每张2元.C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎.用去45000元.请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元.B型彩票一张获手续费0.3元.C型彩票一张获手续费0.5元.在购进两种彩票的方案中.为使销售完时获得手续费最多.你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎.请你设计进票方案.初中数学试卷第12页,共12页。
《建立二元一次方程组》拓展训练一、选择题1.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a﹣3y=27,则a=2.A.①②④B.②③C.②③④D.③④2.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=53.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D.2,44.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.B.C.﹣D.﹣5.方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,46.已知是关于x,y的二元一次方程组的解,则a+b的值是()A.1B.3C.6D.87.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.8.在方程(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为()A.﹣2B.2或﹣2C.2D.以上答案都不对9.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.410.已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1二、填空题11.已知关于x,y的方程组,给出下列四个结论:①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a,使得x=y;④若22a﹣3y=27,则a=2.其中正确的结论是.(填序号即可)12.方程组:的解是.13.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组14.对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有对.15.已知m,n均为正整数,且满足,则当m=时,n取得最小值.三、解答题16.已知:都是关于x、y方程y+mx=1的解,(1)若a=b=3,求m的值并直接写出c和d的关系式;(2)a+c=12,b+d=4m+4,比较b和d的大小.17.对于两个两位数p和q,将其中任意一个两位数的十位上的数字和个位上的数字分别放置于另一个两位数十位上数字与个位上的数字之间和个位上的数字的右边,就可以得到两个新四位数,把这两个新四位数的和与11的商记为F(p,q).例如:当p=23,q=15时,将p十位上的2放置于q中1与5之间,将p个位上的3位置于q中5的右边,得到1253.将q十位上的1放置于p 中2和3之间,将q个位上的5放置于p中3的右边,得到2135.这两个新四位数的和为1253+2135=3388,3388÷11=308,所以F (23,15)=308.(1)计算:F (13,26);(2)若a=10+m,b=10n+5,(0≤m≤9,1≤n≤9,m,n均为自然数).当150F (a,18)+F(b,26)=32761时,求m+n的值.18.已知和是二元一次方程mx﹣3ny=5的两个解.(1)求m、n的值;(2)若x<﹣2,求y的取值范围.19.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?20.已知关于x,y的方程组(1)请直接写出方程x+2y﹣6=0的所有正整数解;(2)若方程组的解满足x+y=0,求m的值;(3)无论实数m取何值,方程x﹣2y+mx+5=0总有一个固定的解,请直接写出这个解?(4)若方程组的解中x恰为整数,m也为整数,求m的值.《建立二元一次方程组》拓展练习参考答案与试题解析一、选择题1.已知关于x,y的方程组,则下列结论中正确的是()①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若22a﹣3y=27,则a=2.A.①②④B.②③C.②③④D.③④【分析】①把a=5代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a的值,即可做出判断;③假如x=y,得到a无解,本选项正确;④根据题中等式得到2a﹣3y=7,代入方程组求出a的值,即可做出判断.【解答】解:①把a=5代入方程组得:,解得:,本选项错误;②由x与y互为相反数,得到x+y=0,即y=﹣x,代入方程组得:,解得:a=20,本选项正确;③若x=y,则有,可得a=a﹣5,矛盾,故不存在一个实数a使得x=y,本选项正确;④方程组解得:,由题意得:2a﹣3y=7,把x=25﹣a,y=15﹣a代入得:2a﹣45+3a=7,解得:a=,本选项错误,则正确的选项有②③,故选:B.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.表格中上下每对x、y的值都是同一个二元一次方程的解,则这个方程为()x﹣1012y852﹣1 A.5x+y=3B.x+y=5C.2x﹣y=0D.3x+y=5【分析】设方程为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出方程.【解答】解:设方程为y=kx+b,把(0,5)与(1,2)代入得:,解得:,∴这个方程为y=﹣3x+5,即3x+y=5,故选:D.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.方程组的解为,则被遮盖的两个数分别为()A.2,1B.2,3C.5,1D.2,4【分析】把x=2代入方程组第二个方程求出y的值,再将x与y的值代入第一个方程左边求出所求即可.【解答】解:把x=2代入x+y=3得:y=1,把x=2,y=1代入得:2x+y=4+1=5,则被遮盖的两个数分别为5,1,故选:C.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为()A.B.C.﹣D.﹣【分析】把k看做已知数表示出方程组的解,代入已知方程计算即可求出k的值.【解答】解:,①+②得:2x=14k,解得:x=7k,①﹣②得:2y=﹣4k,解得:y=﹣2k,把x=7k,y=﹣2k代入方程得:14k﹣6k=6,解得:k=,故选:A.【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,方程组的即为能使方程组中两方程都成立的未知数的值.5.方程组的解为,则被遮盖的两个数分别为()A.2,1B.5,1C.2,3D.2,4【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【解答】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:B.【点评】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.6.已知是关于x,y的二元一次方程组的解,则a+b的值是()A.1B.3C.6D.8【分析】把x与y的值代入方程组计算求出a与b的值,即可确定出原式的值.【解答】解:把代入方程组得:,即,则a+b=﹣3+11=8,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.小亮解方程组的解为,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则两个数●与★的值为()A.B.C.D.【分析】根据题意可以分别求出●与★的值,本题得以解决.【解答】解:∵方程组的解为,∴将x=5代入2x﹣y=12,得y=﹣2,将x=5,y=﹣2代入2x+y得,2x+y=2×5+(﹣2)=8,∴●=8,★=﹣2,故选:D.【点评】本题考查二元一次方程组的解,解题的关键是明确题意,求出所求数的值.8.在方程(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0中,若此方程为二元一次方程,则k值为()A.﹣2B.2或﹣2C.2D.以上答案都不对【分析】根据二元一次方程必须符合以下三个条件:方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程,可得答案.【解答】解:由(k2﹣4)x2+(2﹣3k)x+(k+1)y+3k=0,得k2﹣4=0,解得k=±2,故选:B.【点评】本题考查了二元一次方程的定义,利用二次项的系数为零得出方程是解题关键.9.已知方程组中x,y的互为相反数,则m的值为()A.2B.﹣2C.0D.4【分析】根据x与y互为相反数得到x+y=0,即y=﹣x,代入方程组即可求出m 的值.【解答】解:由题意得:x+y=0,即y=﹣x,代入方程组得:,解得:m=x=2,故选:A.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.已知是方程组的解,则a、b的值为()A.a=﹣1,b=3B.a=1,b=3C.a=3,b=1D.a=3,b=﹣1【分析】所谓“方程组”的解,指的是该数值满足方程组中的每一方程.本题将解代回方程组,即可求出a,b.【解答】解:∵是方程的解,∴把代入方程组,得,∴.故选:B.【点评】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法.二、填空题11.已知关于x,y的方程组,给出下列四个结论:①当a=5时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a,使得x=y;④若22a﹣3y=27,则a=2.其中正确的结论是②③.(填序号即可)【分析】方程组利用加减消元法表示出x与y,即可作出判断.【解答】解:,①﹣②×3得:y=15﹣a,把y=15﹣a代入②得:x=25﹣a,①当a=5时,方程组的解为,不符合题意;②当x,y互为相反数时,x+y=0,即15﹣a+25﹣a=0,解得:a=20,符合题意;③当x=y时,15﹣a=25﹣a,无解,符合题意;④若22a﹣3y=27,得到2a﹣3y=7,即2a﹣45+3a=7,解得:a=,不符合题意,则其中正确的结论是②③,故答案为:②③【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12.方程组:的解是.【分析】方程组整理后,利用加减消元法求出解即可.【解答】解:方程组整理得:,①×2+②得:15y=﹣15,即y=﹣1,把y=﹣1代入①得:x=2,则方程组的解为.故答案为:.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.13.写出一个关于x,y的二元一次方程组,这个方程组的解为,那么你所写的方程组是(答案不唯一)。
《实际问题与二元一次方程组》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.342.(5分)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.203.(5分)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟4.(5分)甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲比乙大6岁B.甲比乙大9岁C.乙比甲大18岁D.乙比甲大34岁5.(5分)用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③二、填空题(本大题共5小题,共25.0分)6.(5分)国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有人.7.(5分)如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦公顷,3台大收割机和2台小收割机1小时收割小麦公顷.8.(5分)根据下图给出的信息可知,足球的单价为元.9.(5分)某长方形的周长是44,若宽的3倍比长多6,则该长方形的长等于.10.(5分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?三、解答题(本大题共5小题,共50.0分)11.(10分)如图,这是一个矩形养鸡场的平面图,一边靠墙(有阴影的直线),其余边用60米的篱笆围成.养鸡场被分割成三个面积相等的矩形区域①、②、③.且AD>AB.若养鸡场的总面积为162平方米,求AD的长.12.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c 米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.13.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?14.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.15.(10分)运输360吨化肥,装载了6节火车车厢和15辆汽车,运输580吨化肥,装载了10节火车车厢和20辆汽车,每节火车车厢和每辆汽车平均各装多少吨化肥?《实际问题与二元一次方程组》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)童威购买7块橡皮、5个作业本、1支圆珠笔共花费20元;购买10块橡皮、7个作业本、1支圆珠笔共花费26元;若购买11个橡皮、8个作业本、2支圆珠笔则要花费()元.A.31B.32C.33D.34【分析】首先假设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z 元.购买铅笔11支,作业本8本,圆珠笔2支共需a元.根据题目说明列出方程组,解方程组求出a的值,即为所求结果.【解答】解:设铅笔的单价是x元,作业本的单价是y元,圆珠笔的单价是z元.购买铅笔11支,作业本5本,圆珠笔2支共需a元.则由题意得:,由②﹣①得3x+2y=6 ④由②+①得17x+12y+2z=46 ⑤由⑤﹣④×2﹣③得0=46﹣12﹣a∴a=34故选:D.【点评】此题主要考查了方程组的应用,解答此题的关键是列出方程组,用加减消元法求出方程组的解.2.(5分)小杨在商店购买了a件甲种商品,b件乙种商品,共用213元,已知甲种商品每件5元,乙种商品每件19元,那么a+b的最大值是()A.37B.27C.23D.20【分析】根据题意得出关于a和b的二元一次方程,然后用b表示出a,继而用b表示出a+b,然后可以利用函数的思想得出a+b取得最值的条件,即能得出答案.【解答】解:由题意得,5a+19b=213,∴a=,∴a+b=+b=,∵a+b是关于b的一次函数且a+b随b的增大而减小,∴当b最小时,a+b取最大值,又∵a,b是正整数,∴当b=2时,a+b的最大值=37.故选:A.【点评】本题考查二元一次不定方程的应用,技巧性较强,解答本题的关键是函数思想的应用,同学们要注意掌握这种解题思想,它会在以后的解题中经常用到.3.(5分)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.4分钟C.5分钟D.6分钟【分析】设同向行驶的相邻两车的距离及车、小王的速度为未知数,等量关系为:6×车速﹣6×小王的速度=同向行驶的相邻两车的距离;3×车速+3×小王的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.【解答】解:设18路公交车的速度是x米/分,小王行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔6分钟从背后开过一辆18路公交车,则6x﹣6y=s.①每隔3分钟从迎面驶来一辆18路公交车,则3x+3y=s.②由①,②可得s=4x,所以.即18路公交车总站发车间隔的时间是4分钟.故选:B.【点评】本题考查二元一次方程组的应用;根据追及问题和相遇问题得到两个等量关系是解决本题的关键;设出所需的多个未知数是解决本题的突破点.4.(5分)甲是乙现在的年龄时,乙8岁,乙是甲现在的年龄时,甲26岁,那么()A.甲比乙大6岁B.甲比乙大9岁C.乙比甲大18岁D.乙比甲大34岁【分析】设甲现在的年龄是x岁,根据已知甲是乙现在的年龄时,乙8岁.乙是甲现在的年龄时,甲26岁,可列方程求解.【解答】解:甲现在的年龄是x岁,则乙现在的年龄为(2x﹣26)岁,根据题意得:x+8=2(2x﹣26)解得x=202x﹣26=14岁,20﹣14=6答:甲比乙大6岁;故选:A.【点评】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.5.(5分)用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,再列出方程(组)即可.【解答】解:设用x张制盒身,可得方程2×25x=40(36﹣x);故①正确;②错误;设用x张制盒身,y张制盒底,可得方程组;故③正确;④错误;故选:D.【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.二、填空题(本大题共5小题,共25.0分)6.(5分)国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有48人.【分析】设选李子坝轻轨站的有x人,选长江索道的有y人,选洪崖洞的有a(x+8)人,根据:选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍,选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人,列出方程组,组中两个方程相减得到二元一次方程,由于人数为正整数,得到x、y所有可能值,代入方程组中,只有满足a为整数倍的才合题意.然后计算出该团人数.【解答】解:设选李子坝轻轨站的有x人,选长江索道的有y人,则选磁器口的有(x+8)人,选洪崖洞的有a(x+8)人,根据题意得:,②可变形为:(a﹣1)(x+8)=24+x﹣y③,①+③,得2a(x+8)=24+6x+4y,即a=;①﹣③,得x+3y=20.∵x、y都是正整数,∴或或或或或当、、、、时,a=都不是整数,不合题意.当时,a===3.∴选李子坝轻轨站的有2人,选长江索道的有6人,选磁器口的有10人,选洪崖洞的有30人,由于每名游客都填了调査表,且只选了一个景点,所以该旅行团共有2+6+10+30=48(人).故答案为:48【点评】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.7.(5分)如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦(2x+5y)公顷,3台大收割机和2台小收割机1小时收割小麦(3x+2y)公顷.【分析】根据代数式的表示方法,利用台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷可表示出2台大收割机和5台小收割机1小时收割的工作量和3台大收割机和2台小收割机1小时收割小麦的工作量.【解答】解:由于1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据题意得么2台大收割机和5台小收割机1小时收割小麦(2x+5y)公顷,3台大收割机和2台小收割机1小时收割小麦(3x+2y)公顷.故答案为(2x+5y),(3x+2y).【点评】本题考查了二元一次方程组解的应用:找出问题中的已知条件和未知量及它们之间的关系,再找出题中的两个关键的未知量,并用字母表示出来.然后列方程组,解方程组即可.也考查了列代数式.8.(5分)根据下图给出的信息可知,足球的单价为20元.【分析】根据题意可知,本题中的等量关系是“44元”和“26元”,列方程组求解即可.【解答】解:设球的单价是x元,玩具的单价是y元.则解得所以足球的单价为20元.故填20.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.9.(5分)某长方形的周长是44,若宽的3倍比长多6,则该长方形的长等于15.【分析】根据题意可知,本题中的相等关系是“周长是44”和“宽的3倍比长多6”,列方程组求解即可.【解答】解:设长方形的长为x,宽为y.则,解得.则该长方形的长等于15.故填15.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.10.(5分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?【分析】设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意所述的两个等量关系可得出方程组,解出即可得出答案.【解答】解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.【点评】本题考查了二元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系得出方程组.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,这是一个矩形养鸡场的平面图,一边靠墙(有阴影的直线),其余边用60米的篱笆围成.养鸡场被分割成三个面积相等的矩形区域①、②、③.且AD>AB.若养鸡场的总面积为162平方米,求AD的长.【分析】设AD的长度为x,结合题意得到其它几条线段的长度,由矩形的面积公式列出方程并解答.【解答】解:设CE的长度为x,AD的长度为y,依题意得:,解得,,当时,AB=(60﹣2y﹣3x)+x=13.5,此时AB>AD.∵AD>AB,∴,不合题意,舍去.答:AD的长度为18米.【点评】考查了二元一次方程组的应用,解题的关键是读懂题意,找准等量关系,列出方程组并解答.注意:限制性条件AD>AB的存在.12.(10分)如图,为了美化校园,在长为60米,宽为32米的长方形空地中,沿着平行于长方形各边的方向,分割出三个全等的正方形和两个全等的长方形作为花圃.设小正方形的边长为a米,小长方形的长和宽分别为b米、c 米.(1)请用含有a、b、c的代数式表示AB、AD长度;(2)若小正方形的边长恰好是小长方形的宽的2倍,试求出花圃的总面积S.【分析】(1)观察图形,可得出:AB=3a+2b,AD=3a+2c;(2)由AB=60、AD=32及a=2c,即可得出关于a、b、c的方程组,解之即可得出结论.【解答】解:(1)根据题意得:AB=3a+2b,AD=3a+2c.(2)根据题意得:,解得:,∴S=3a2+2bc=3×82+2×18×4=336.答:花圃的总面积S为336平方米.【点评】本题考查了列代数式以及三元一次方程组的应用,解题的关键是:(1)观察图形,用含a、b、c的代数式表示出AB、AD;(2)找准等量关系,正确列出三元一次方程组.13.(10分)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入3400元;营业员B:月销售件数300件,月总收入3700元;假设营业员的月基本工资为x元,销售每件服装奖动y元.(1)求x、y的值;(2)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲服装3件,乙服装2件,丙服装1件共需390元;如果购买甲服装1件,乙服装2件,丙服装3件共需370元.某顾客想购买甲、乙、丙服装各一件共需多少元?【分析】(1)根据“月销售件数200件,月总收入3400元,月销售件数300件,月总收入3700元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据“购买甲服装3件,乙服装2件,丙服装1件共需390元;购买甲服装1件,乙服装2件,丙服装3件共需370元”,即可得出关于a、b、c的三元一次方程组,利用(①+②)÷4即可求出购买甲、乙、丙服装各一件的总费用.【解答】解:(1)根据题意得:,解得:.(2)设购买一件甲服装需要a元,购买一件乙服装需要b元,购买一件丙服装需要c元,根据题意得:,(①+②)÷4,得:a+b+c=190.答:购买甲、乙、丙服装各一件共需190元.【点评】本题考查了二元一次方程组的应用以及三元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出三元一次方程组.14.(10分)阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是20 cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.【分析】(1)设小长方形的长为x,宽为y,观察图形即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出每个小正方形的面积;(2)通过理解题意可知本题存在两个等量关系,即单独一个纸杯的高度+3个纸杯叠放在一起比单独的一个纸杯增高的高度=9,单独一个纸杯的高度+8个纸杯叠放在一起比单独的一个纸杯增高的高度=14.根据这两个等量关系可列出方程组;(3)设小长方形的面积为x,宽为y,根据长方形ABCD的长为19,宽的两种不同表达方式列出方程组求出小长方形的长和宽,进一步求出图中阴影部分的面积.【解答】解:(1)设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故每个小长方形的面积为60;(2)设每两个纸杯叠放在一起比单独的一个纸杯增高xcm,单独一个纸杯的高度为ycm,则,解得,则12x+y=12×1+8=20.即小明把13个纸杯整齐叠放在一起时,它的高度约是20cm.(3)设小长方形的长为x,宽为y,根据题意得,解得,=19×(7+3×3)﹣8×10×3=64.∴S阴影故答案为:64.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15.(10分)运输360吨化肥,装载了6节火车车厢和15辆汽车,运输580吨化肥,装载了10节火车车厢和20辆汽车,每节火车车厢和每辆汽车平均各装多少吨化肥?【分析】设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,根据运输360吨化肥,装载了6节火车车厢和15辆汽车;运输580吨化肥,装载了10节火车车厢和20辆汽车,列方程组求解.【解答】解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,由题意得,,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.。
第八章 二元一次方程组 8.2.2 用加减法解二元一次方程组1. 若二元一次方程组的解为则a-b 等于( ) A. B. C. 3 D. 12. 方程组⎩⎪⎨⎪⎧8x -3y =9,8x +4y =-5消去x 得到的方程是( ) A .y =4 B .7y =-14 C .7y =4 D .y =143. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( ) A.⎩⎪⎨⎪⎧x =5y =1 B. ⎩⎪⎨⎪⎧x =-5y =-1 C. ⎩⎪⎨⎪⎧x =4y =2 D.⎩⎪⎨⎪⎧x =-4y =-2 4. 若方程组的解满足x+y=0,则k 的值为( )A. -1B. 1C. 0D. 不能确定5. 用加减法解方程组⎩⎪⎨⎪⎧2a +2b =3,①3a +b =4,②最简单的方法是( ) A .①×3-②×2 B .①×3+②×2 C .①+②×2 D .①-②×26.解方程组⎩⎪⎨⎪⎧0.2x -0.3y =2,0.5x -0.7y =-1.5最合适的方法是( ) A .试值法 B .加减消元法 C .代入消元法 D .无法确定7. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则列方程组为( )A.⎩⎪⎨⎪⎧7y =x -38y =x +5B.⎩⎪⎨⎪⎧7y =x +38y =x -5C.⎩⎪⎨⎪⎧7y =x +38y +5=xD.⎩⎪⎨⎪⎧7y =x +38y =x +5 8. 对于非零的两个实数a,b,规定a ⊕b=am-bn,若3⊕(-5)=15,4⊕(-7)=28,则(-1)⊕2的值为( )A. -13B. 13C. 2D. -29. 已知则= .10. 二元一次方程组x +y 2=2x -y 3=x +2的解是________.11. 观察下列两方程组的特征:①⎩⎪⎨⎪⎧4x -3y =5,4x +6y =4; ②⎩⎪⎨⎪⎧y =3x +4,3x +5y =0. 其中方程组①采用______消元法较简单,而方程组②采用____消元法较简单.12. 已知方程组⎩⎪⎨⎪⎧2x -3y =4,①3x +2y =1,②用加减法消去x 的方法是_____________;用加减法消去y 的方法是______________.13. 根据图中的信息可知,一件上衣的价格是____元,一条短裤的价格是____元.14. 解下列方程组:(1)⎩⎪⎨⎪⎧x -3y =1,x +2y =6;(2)⎩⎪⎨⎪⎧3x +y =7,2x -y =3.15. 用加减法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =5,2x +3y =11;(2)⎩⎪⎨⎪⎧3x +2y =4,4x -3y =11;(3)⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,2(x +y )+(x -y )=15.16. 甲、乙两人同求方程ax -by =7的整数解,甲正确地求出一组解为⎩⎪⎨⎪⎧x =1,y =-1,乙把ax -by =7看成ax -by =1,求得一组解为⎩⎪⎨⎪⎧x =1,y =2,求a 2-2ab +b 2的值.17. 小丽购买了6支水彩笔和3本练习本共用了21元;小明购买了同样的12支水彩笔和5本练习本共用了39元.已知水彩笔与练习本的单价不同.(1)求水彩笔与练习本的单价;(2)小刚要买4支水彩笔和4本练习本,共需多少钱?18. A,B两地相距20 km,甲从A地向B地前进,同时乙从B地向A地前进,2 h 后两人在途中相遇,相遇后,甲返回A地,乙仍然向A地前进,甲回到A地时,乙离A地还有2 km,求甲、乙两人的速度.19. 某种水果的价格如表:张欣两次共购买了25 kg这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?答案:1---8 ABCBD BAA9. -310. ⎩⎪⎨⎪⎧x =-5y =-111. 加减 代入12. ①×3-②×2 ①×2+②×313. 40 2014. 解:(1)⎩⎪⎨⎪⎧x =4,y =1. (2)⎩⎪⎨⎪⎧x =2,y =1. 15. (1) 解:⎩⎪⎨⎪⎧x +y =5,①2x +3y =11,②①×3-②,得x =4,把x =4代入①,得y =1, ∴方程组的解为⎩⎪⎨⎪⎧x =4,y =1.(2) 解:⎩⎪⎨⎪⎧3x +2y =4,①4x -3y =11,②①×3+②×2,得17x =34,解得x =2, 把x =2代入①,得6+2y =4,解得y =-1,∴方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.(3) 解:⎩⎪⎨⎪⎧3(x +y )-5(x -y )=16,①2(x +y )+(x -y )=15,②①+②×5,得13(x +y)=91,解得x +y =7,把x +y =7代入①,得x -y =1.解方程组⎩⎪⎨⎪⎧x +y =7,x -y =1, 得⎩⎪⎨⎪⎧x =4,y =3,∴方程组的解为⎩⎪⎨⎪⎧x =4,y =3. 16. 解:由题意,得⎩⎪⎨⎪⎧a +b =7,a -2b =1,解得⎩⎪⎨⎪⎧a =5,b =2. ∴a 2-2ab +b 2=52-2×5×2+22=9.17. 解:(1)设水彩笔与练习本的单价分别为x 元和y 元,由题意, 得⎩⎪⎨⎪⎧6x +3y =21,12x +5y =39,解得⎩⎪⎨⎪⎧x =2,y =3. 则水彩笔与练习本的单价分别为2元和3元.(2)小刚买4支水彩笔和4本练习本共需2×4+3×4=20(元).18. 解:设甲的速度为x km/h ,乙的速度为y km/h ,由题意, 得⎩⎪⎨⎪⎧2x +2y =20,(2+2)y +2=20,解得⎩⎪⎨⎪⎧x =5.5,y =4.5. 则甲的速度为5.5 km/h ,乙的速度为4.5 km/h.19. 解:设张欣第一次、第二次分别购买了这种水果x kg ,y kg , 因为第二次购买多于第一次,则x<12.5<y.①当x ≤10时,⎩⎪⎨⎪⎧x +y =25,6x +5y =132,解得⎩⎪⎨⎪⎧x =7,y =18. ②当10<x<12.5时,⎩⎪⎨⎪⎧x +y =25,5x +5y =132,此方程组无解, ∴张欣第一次、第二次分别购买了这种水果7 kg ,18 kg.。
二元一次方程组一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元",主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法. (2)加减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5、方程关于解的个数1.一元一次方程ax b =的解由a b 、的值决定: ⑴若0a ≠,则方程ax b =有唯一解b x a=;⑵若0a b ==,方程变形为00x ⋅=,则方程ax b =有无数多个解; ⑶若0,0a b =≠,方程变为0x b ⋅=,则方程无解.2。
关于x y 、的方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解的讨论可以按以下规律进行:⑴若1122ab ab ≠,则方程组有唯一解;⑵若111222ab c a b c ==,则方程组有无数多个解; ⑶若111222ab c ab c ≠=,则方程组无解。
经典实例例1、解下列方程组:⑴41216x y x y -=-⎧⎨+=⎩⑵()()41312223x y y x y--=--⎧⎪⎨+=⎪⎩⑶2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩例2。
解下列方程组:⑴()()9185232032m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩⑵7231x y x y ⎧+=⎪⎨-=-⎪⎩⑶199519975989199719955987x y x y +=⎧⎨+=⎩⑷323231112x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩⑸23427x y y z z xx y z +++⎧==⎪⎨⎪++=⎩例3。
一、引言二元一次方程组在数学中有着重要的地位,它不仅在代数中有着广泛的应用,同时也与几何问题有着密切的联系。
通过解决一些具体的几何问题,我们可以更深入地理解二元一次方程组的概念和应用。
本文将以例题的形式结合几何问题,探讨二元一次方程组的应用。
二、例题分析1. 题目:已知两条直线的方程分别为2x - y = 1和x + y = 3,求两直线的交点坐标。
解析:两条直线的交点坐标即为二元一次方程组的解。
我们可以通过联立方程组,求解x和y的值。
首先我们可以选择其中一个方程,如x + y = 3,对其进行变形可以得到y = 3 - x。
将y = 3 - x代入到另一个方程2x - y = 1中,得到2x - (3 - x) = 1,化简得到3x = 4,从而得到x = 4/3。
将x = 4/3代入到y = 3 - x中,即可得到y的值。
交点坐标为(4/3, 5/3)。
2. 题目:求过点(1,2)且与直线2x + y = 3垂直的直线的方程。
解析:首先我们可以得到直线2x + y = 3的斜率为-2。
垂直直线的斜率为直线斜率的负倒数,即为1/2。
过点(1,2)且与直线2x + y = 3垂直的直线的方程为y - 2 = 1/2(x - 1),整理得到y = 1/2x + 1。
3. 题目:求直线y = kx + 2与直线x - 2y + 1 = 0的交点坐标。
解析:联立直线y = kx + 2和x - 2y + 1 = 0,得到kx + 2 - 2y + 1= 0,即kx - 2y = -1。
通过比较系数得到k = 1/2,然后代入k值,解得交点坐标为(-1, 1)。
三、结论通过以上例题的分析,我们可以发现二元一次方程组在几何问题中的应用是十分广泛的。
通过求解交点坐标、垂直直线的方程等问题,我们不仅可以更好地理解二元一次方程组的概念,也能深入地理解直线的性质和特点。
在学习数学的过程中,我们应该注重二元一次方程组的应用和几何问题的结合,以便更深入地掌握相关知识。
二元一次方程组(拓展与提优)1、二兀一次方程:含有两个未知数(x和y),并且含有未知数①项①次数都是1,像这样①整式方程叫做二元一次方程,它①一般形式是ax by c(a 0,b °).例1、若方程(2m-6)x|n|-1 +(n+2)y m2-8=1是关于x、y①二元一次方程,求m、n①值.2、二元一次方程①解:一般地,能够使二元一次方程①左右两边相等①两个未知数①值,叫做二元一次方程①解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数①项①次数都是1,将这样①两个或几个一次方程合起来组成①方程组叫做二元一次方程组•4、二元一次方程组①解:二元一次方程组中①几个方程①公共解,叫做二元一次方程组①解•【二元一次方程组解x y 1 x y 1 x y1x y 1 O情况:①无解,例如:x y 6, 2x 2y 6;②有且只有一组解,例如:2x y 2;③有无数组解,例如:2x 2y 2】是关于x、y O二元一次方程组2x+(m-1)y=2nx+ y=1O解,试求(m+r)2016O值例3、方程x 3y 10在正整数范围内有哪几组解?5、二元一次方程组O解法:代入消元法和加减消元法。
例4、将方程10 2(3 y) 3(2 x)变形,用含有x O代数式表示y.例5、用适当O方法解二元一次方程组x+1+3 2例6、若方程组ax y 1有无数组解,则a、b O值分别为()6x by 2例2、已知x 2y 1B. a 2,b 1C.a=3,b=-2D. a 2,b 2 A. a=6,b=-16、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数①项①次数都是1,并且方程组中一共有 两个或两个以上①方程,这样①方程组叫做三元一次方程组。
解三元一次方程组① 关键也是“消元”:三元T 二元T 元x y z 6 例10、3x 求解方程组y z 22x 3y z 117、二元 一次方程与一次函数关系:例11、一次函数y=kx+2①图像总过定点 _____________ ,二元一次方程kx-y=-2有无数组解,其中必有一个解为 ___________ 。
第8章二元一次方程组8.1二元一次方程组班级:姓名:知识点1二元一次方程的概念1.下列四个方程中,是二元一次方程的是()A.x-3=0B.2x-z=5C.3xy-5=8D.3x-2y=12.已知下列方程,其中是二元一次方程的是(填序号).①3x+2=2y;②2x+y=a;③x 2+y=2;④1x+3-2y;⑤x +2y3=1;⑥3x=1.3.若方程2x 2m+3+3y 5n-9=4是关于x,y 的二元一次方程,求m 2+n 2的值.4.判断下列各式是否是二元一次方程:(1)x+2y=2;(2)xy+y=2-x;(3)7-x+5y=0;(4)7x+2y=z;(5)8x-y;(6)5x+2y=7;(7)x+π=3;(8)x-2y 2=3.不是的请说明理由.知识点2二元一次方程组的概念5.下列方程组中是二元一次方程组的是()A.{xy =1,x +y =2B.{5x -2y =3,1x+y =3C.{2x +z =0,3x -y =15D.{x =5,x 2+y3=76.x,y 是未知数,下列方程组中,不是二元一次方程组的有()A.{x +1=0,y +4=0 B.{x -2y =3,y =-1C.{x +2y =-1,3x -2y =1D.{xy=1,x -y =37.下列方程组①{3x =2y +3,x +y =3x -7;②{x +y =-1,3x +z =5;③{x 2+y =1,4x -y =2;④{x +2=0,y -3=0中,是二元一次方程组的是(填序号).8.小明有1元和5角的硬币共9枚,小明能买到单价为1.5元的圆珠笔4支,若设一元的硬币有x 枚,5角的硬币有y 枚,根据题意可列出方程组,这是一个方程组.知识点3二元一次方程的解的概念9.二元一次方程x-2y=1有无数多组解,下列四组值中不是该方程的解的是()A.{x =0,y =-12B.{x =1,y =1C.{x =1,y =0D.{x =-1,y =-110.二元一次方程3x+2y=11()A.只有一个解B.只有两个解C.任何一对有理数都是它的解D.有无数个解11.若{x =1,y =2是关于x,y 的二元一次方程ax-3y=1的解,则a 的值为()A.-5B.-1C.2D.712.在方程2x+4y=7中,用含x 的代数式表示y,则y=.用含y 的代数式表示x,则x=.13.写出二元一次方程2x+3y=15的两组解:、.知识点4二元一次方程组的解的概念14.二元一次方程组{x -y =4,x +y =2的解是()A.{x =3,y =-7B.{x =1,y =1C.{x =7,y =3D.{x =3,y =-115.已知一个二元一次方程组的解是{x =-1,y =-2则这个方程组是()A.{x +y =-3x -y =-2 B.{x +y =-3x -2y =1C.{2x =y x +y =-3D.{x +y =03x -y =516.已知{x =12,y =-1是二元一次方程组{ax +y =1,2x -by =3的解,则a=,b=.17.下列各组数据中哪些是方程3x-2y=11的解?哪些是方程2x+3y=16的解?哪些是方程组{3x -2y =11,2x +3y =16的解?为什么?①{x =1,y =-4;②{x =5,y =2;③{x =7,y =23;④{x =15,y =6.综合点1二元一次方程组与求代数式的值的综合应用18.已知方程x 2m-1-2y 3n+4=100是二元一次方程,则(m+n)2013的值为.19.若{x =a ,y =b是方程3x-2y=2的一个解,求12a-8b+3的值.20.若{x =-1,y =2是方程2x+3y=m 和5x+2y=n 的解,求m 2-n 的值.21.甲、乙两同学共同解关于x,y 的方程组{ax +5y =15,①4x -by =-2,②由于甲看错了方程①中的a,得到方程组的解为{x =-3,y =-1,乙看错了方程②中的b,得到方程组的解为{x =5,y =4,求a 2009+()-110b2008的值.综合点2列二元一次方程(组)22.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是()A.{x +y =78,3x +2y =30B.{x +y =78,2x +3y =30C.{x +y =30,2x +3y =78D.{x +y =30,3x +2y =7823.八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能用二元一次方程组表示题中的数量关系吗?24.根据下列条件,设适当的未知数列出二元一次方程或二元一次方程组.(1)甲数的8%与乙数的11%的和是甲、乙两数和的10%;(2)有父子两人,已知10年前父亲的年龄是儿子年龄的3倍,现在父亲的年龄是儿子年龄的2倍;(3)某同学到书店去买甲、乙两种书共用去39元,其中购甲种书的钱比购乙种书的钱多1元.拓展点1由解写方程或方程组25.请写出一个以x,y 为未知数的二元一次方程组,且同时满足下列条件:①由两个二元一次方程组成;②方程组的解为{x =2,y =3.这样的方程组可以是.26.请你用方程组{x +y =38,2x -y =1编写一道具有实际背景的题,使列出的方程组为上述方程组.拓展点2二元一次方程的整数解27.求方程3x+2y=10的正整数解.28.求方程3y=9-6x 的非负整数解.第8章二元一次方程组8.1二元一次方程组答案与点拨1.B(点拨:x-3=0是一元一次方程;2x-z=5是二元一次方程;3xy-5=8是二元二次方程;3x-2y=1不是整式方程.故选B.)2.①⑤(点拨:根据二元一次方程的定义判定.②含有三个未知数,不是二元一次方程;③中x 2的次数是2,不是二元一次方程;④中1x不是整式,所以不是二元一次方程;⑥中只有一个未知数,不是二元一次方程.只有①⑤符合二元一次方程的定义.)3.由题意可得:{2m +3=1,5n -9=1,解得{m =-1,n =2.由此可得m 2+n 2=(-1)2+22=5.4.二元一次方程有(1),(3);因为(2),(8)含未知数的项有2次,故它们不是二元一次方程;(4)含有3个未知数;(5)不是方程;(6)不是整式方程;(7)中的π不是未知数,它是一元一次方程,所以它们都不是二元一次方程.5.D(点拨:选项A 第一个方程中的xy 是二次的;选项B 的第二个方程有1x,不是整式方程;选项C 含有3个未知数;选项D 符合二元一次方程组的定义.故选D.)6.D(点拨:二元一次方程组的每一个方程都是二元一次方程(或一元一次方程).)7.①④(点拨:②是三元一次方程组,③是二元二次方程组.)8.{x +0.5y =6,x +y =9二元一次9.B(点拨:把四个选项逐一代入二元一次方程x-2y=1,选项B 不能使方程成立.)10.D(点拨:由二元一次方程的解的特性求解.)11.D(点拨:把{x =1,y =2代入方程ax-3y=1中即可求出a 的值,即a-3×2=1,解得a=7.)12.7-2x 4或()74-12x7-4y 2或()72-2y (点拨:表示y(x)则把x(y)看作常数,解方程即可.)13.{x =3,y =3{x =6,y =1(点拨:用一个未知数x(或y)表示出另一个未知数y(或x),然后给x(或y)一个值,求出y(或x)就可得到一组解.答案不唯一.)14.D(点拨:把{x =3,y =-1代入方程组{x -y =4,x +y =2,成立.)15.C(点拨:把{x =-1,y =-2分别代入方程组,使方程组成立即可.)16.42(点拨:把x,y 的值代入方程组得12a-1=1,1+b=3.)17.①②是方程3x-2y=11的解,②③是方程2x+3y=16的解.②是方程组{3x -2y =11,2x +3y =16的解.因为方程组的解必须是方程组中两个方程的公共解.18.0(点拨:由二元一次方程的定义可得2m-1=1,3n+4=1.解得m=1,n=-1.把m=1,n=-1的值代入(m+n)2013可得(m+n)2013=(1-1)2013=0.)19.把{x=a,y=b代入方程3x-2y=2得3a-2b=2,①又因为12a-8b+3=4(3a-2b)+3,②把①式代入②式可得12a-8b+3=4×2+3=11.20.把{x=-1,y=2代入方程可得{2×(-1)+3×2=m,5×(-1)+2×2=n,∴m=4,n=-1,则可得m2-n=42-(-1)=17.21.由于甲看错了①,则{x=-3,y=-1符合4x-by=-2,则可得4×(-3)-b×(-1)=-2,③由于乙看错了②,则{x=5,y=4符合ax+5y=15.则可得5a+20=15,④由③④可得b=10,a=-1.把a=-1,b=10代入a2009+()-110b2008=(-1)2009+(-1)2008=-1+1=0.22.D(点拨:根据题意可得等量关系:①男生人数+女生人数=30;②男生种树的总棵数+女生种树的总棵数=78棵,根据等量关系列出方程组即可.)23.本题的等量关系可表示为:钢笔的单价=笔记本的单价+2元,10支钢笔的价钱+15本笔记本的价钱= 100元-5元.设钢笔每支为x元,笔记本每本为y元,根据题意得{x=y+2,10x+15y=100-5.24.(1)设甲数为x,乙数为y,8%x+11%y=(x+y)10%.(2)设今年父亲x岁,儿子y岁,{x-10=3(y-10),x=2y.(3)设购甲种书用x元,购乙种书用y元,{x+y=39,x-y=1.25.答案不唯一,如{x+y=5,2x-2y=-226.小明昨天上街买了一支钢笔和一个书夹共花去38元钱,已知两个书夹比一支钢笔贵1元,问钢笔和书夹的单价各是多少?(答案不唯一)27.由3x+2y=10,得y=5-32x.设x=2k,则y=5-3k.故3x+2y=10的整数解为{x=2k,y=5-3k.(k为整数)又∵x>0,y>0,∴{2k>0,5-3k>0,则0<k<53.∴k=1,则{x=2,y=2.28.∵3y=3(3-2x),∴y=3-2x.又∵y≥0,x≥0,∴0≤x≤32,x为整数,∴x=0或1.则非负整数解为{x=0,y=3;{x=1,y=1.。
专题2.2 二元一次方程组(提高篇)专项练习一、单选题1.方程(m-2 016)x|m|-2 015+(n+4)y|n|-3=2 018是关于x、y的二元一次方程,则() A.m=±2 016;n=±4B.m=2 016,n=4C.m=-2 016,n=-4D.m=-2 016,n=42.若二元一次方程3x-y=7,2x+3y=1,y=kx-9有公共解,则k的取值为().A.3B.-3C.-4D.43.一片牧场上的草长得一样快,已知60头牛24天可将草吃完,而30头牛60天可将草吃完.那么,若在120天里将草吃完,则需要几头牛()A.16B.18C.20D.224.若关于x,y的方程组10,20x aybx y a++=⎧⎨-+=⎩没有实数解,则()A.ab=-2B.ab=-2且a≠1C.ab≠-2D.ab=-2且a≠25.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程正确的是( )A.2753x yy x+=⎧⎨=⎩B.2753x yx y+=⎧⎨=⎩C.2753x yy x+=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩6.三元一次方程组156x yy zz x+=⎧⎪+=⎨⎪+=⎩的解是A.15xyz=⎧⎪=⎨⎪=⎩B.124xyz=⎧⎪=⎨⎪=⎩C.14xyz=⎧⎪=⎨⎪=⎩D.41xyz=⎧⎪=⎨⎪=⎩7.关于x、y的方程组51x ayy x+=⎧⎨-=⎩有正整数解,则正整数为( ).A.2、5B.1、2C.1、5D.1、2、58.根据图中提供的信息,可知每个杯子的价格是()A.51元B.35元C.8元D.7.5元9.一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团15人准备同时租用这三种客房共5间,如果每个房间都住满,租房方案有()A.4种B.3种C.2种D.1种10.已知实数a、m满足a>m,若方程组325x y ax y a-=+⎧⎨+=⎩的解x、y满足x>y时,有a>-3,则m的取值范围是()A.m>-3B.m≥-3C.m≤-3D.m<-3二、填空题11.一个大正方形和四个全等的小正方形按图①、①两种方式摆放,则图①的大正方形中未被小正方形覆盖部分的面积是__________(用a、b的代数式表示).12.已知x、y满足方程组2524x yx y+=⎧⎨+=⎩,则x y-的值为___.13.对于实数a,b,定义运算“①”:a①b=a bab a b≥⎪⎩,<,例如4①3,因为4>3.所以.若x,y满足方程组48229x yx y-=⎧⎨+=⎩,则x①y=_____________.14.若关于x、y的二元一次方程组316215x myx ny+=⎧⎨+=⎩的解是73xy=⎧⎨=⎩,则关于x、y的二元一次方程组3()()162()()15x y m x yx y n x y++-=⎧⎨++-=⎩的解是__.15.若(2x﹣3y+5)2+|x+y﹣2|=0,则x=_____,y=_____.16.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.17.如图所示的各图表示由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n >1)盆花,每个图案花盆的总数为s.按此规律推断,以s,n为未知数的二元一次方程为______.18.当x=1,-1,2时,y=ax2+bx+c的值分别为1,3,3,则当x=-2时,y的值为____.19.如果二元一次方程组3{9x y ax y a+=-=的解是二元一次方程2x-3y+12=0的一个解,那么a的值是_________.20.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.三、解答题21.解方程(1)2931x yy x+=⎧⎨-=⎩(代入法)(2)4143314312x yx y+=⎧⎪--⎨-=⎪⎩22.解三元一次方程组2314 2?7 3211 x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩23.若二元一次方程组37231x yx y-=⎧⎨+=⎩的解也适合于二元一次方程y=kx+9,求(k+1)2的值.24.甲、乙两人共同解方程组51542ax yx by+=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程①中的b,得到方程组的54xy=⎧⎨=⎩,试计算a2017+(110-b)2018的值.25.阅读探索知识累计解方程组()()()()12262126a b a b ⎧-++=⎪⎨-++=⎪⎩解:设a ﹣1=x ,b+2=y ,原方程组可变为2626x y x y +=⎧⎨+=⎩解方程组得:22x y =⎧⎨=⎩即1222a b -=⎧⎨+=⎩所以30a b =⎧⎨=⎩此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:122435212535a b a b ⎧⎛⎫⎛⎫-++= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪-++= ⎪ ⎪⎪⎝⎭⎝⎭⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组()()()()11112253325332a m b n c a m b n c ⎧++-=⎪⎨++-=⎪⎩的解为_____________.26.阅读下列材料:《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只? 结合你学过的知识,解决下列问题: (1)若设母鸡有x 只,公鸡有y 只,① 小鸡有__________只,买小鸡一共花费__________文钱;(用含x ,y 的式子表示) ①根据题意,列出一个含有x ,y 的方程:__________________;(2)若对“百鸡问题”增加一个条件:母鸡数量是公鸡数量的4倍多2只,求此时公鸡、母鸡、小鸡各有多少只?(3)除了问题(2)中的解之外,请你再直接写出两组..符合“百鸡问题”的解.27.在平面直角坐标系中,点O是坐标原点,点A的坐标是(-a,a),点B的坐标是(c,b),满足3+28{24a b ca b c-=--=-.(1)若x=2是3x-a<0的一个解,试判断点A在第几象限,并说明理由;(2)若①AOB的面积是4,求点B的坐标;(3)若两个动点E( e ,2e + 1) 、F( f ,-2f +3) ,请你探索是否存在以两个动点E、F为端点的线段EF①AB,且EF=AB.若存在,求出E、F两点的坐标;若不存在,请说明理由.参考答案1.D 【解析】【分析】根据二元一次方程的定义可得m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】①()()20153201642018m n m xn y---++=是关于x 、y 的二元一次方程,①m -2016≠0,n+4≠0,|m|-2015=1,|n|-3=1, 解得:m=-2016,n=4, 故选D .【点拨】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.2.D 【分析】先利用方程3x -y=7和2x+3y=1组成方程组,求出x 、y ,再代入y=kx -9求出k 值. 解:由题意,得:37,23 1.x y x y -=⎧⎨+=⎩解得:2,1.x y =⎧⎨=-⎩将21x y =⎧⎨=-⎩代入y=kx -9中,得:-1=2k -9,解得:k=4. 故选D.【点拨】本题考查二元一次方程组和三元一次方程组的解法,有加减法和代入法两种,一般选用加减法解二元一次方程组较简单. 3.C 【解析】【分析】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据60头牛24天可将草吃完,而30头牛60天可将草吃完,列方程组,用其中一个未知数表示另一个未知数即可求解. 【详解】设草一天增加量是a ,每头牛每天吃的草的量是b ,原有草的量是c .根据题意,得602424306060b c a b c a ⨯⎧⎨⨯⎩=+,=+,解得10,1200.a b c b =⎧⎨=⎩则若在120天里将草吃完,则需要牛的头数是120120c ab+=20.故选C.【点拨】考查了二元一次方程组的应用,解题关键是能够把题目中的未知量用一个字母表示.注:牛在吃草的同时,草也在长. 4.A 【解析】 【分析】把①变形,用y 表示出x 的值,再代入①得到关于y 的方程,令y 的系数等于0即可求出ab 的值. 【详解】1020x ay bx y a =①=②++⎧⎨-+⎩, 由①得,x=-1-ay ,代入①得,b (-1-ay )-2y+a=0, 即(-ab -2)y=b -a ,因为此方程组没有实数根,所以-ab -2=0,ab=-2. 故选:A . 【点拨】考查的是解二元一次方程组,解答此类问题时要熟知解二元一次方程组的代入消元法和加减消元法. 5.B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x +2y ,宽又是75厘米,故x +2y =75,矩的长可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】解:根据图示可得,2753x yx y+=⎧⎨=⎩故选B.【点拨】本题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.6.A【详解】观察方程组的特点,可以让三个方程相加,得到x+y+z=6.然后将该方程与方程组中的各方程分别相减,可求得15xyz=⎧⎪=⎨⎪=⎩.故选A.7.B【分析】先解含a的二元一次方程组,再根据x,y为正整数求出a的取值.【详解】解x、y的方程组51x ayy x+=⎧⎨-=⎩得61161xaya⎧=-⎪⎪+⎨⎪=⎪+⎩①x,y,a为正整数①a+1=3或2,解得a=2或1,故选B【点拨】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法进行求解.8.C【解析】试题分析:要求一个杯子的价格,就要先设出一个未知数,然后根据题中的等量关系列方程求解.题中的等量关系是:一杯+壶=43元;二杯二壶+一杯=94.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.9.C【解析】解:设二人间x间,三人间y间,四人间(5﹣x﹣y)间.根据题意得:2x+3y+4(5﹣x﹣y)=15,整理得:2x+y=5.当y=1时,x=2,5﹣x﹣y=5﹣2﹣1=2;当y=3时,x=1,5﹣x﹣y=5﹣1﹣3=1;当y=5时,x=0,5﹣x﹣y=5﹣0﹣5=0.因为同时租用这三种客房共5间,则x>0,y>0,所以有二种租房方案:①租二人间2间、三人间1间、四人间2间;①租二人间1间,三人间3间,四人间1间.故选C.点拨:本题是二元一次方程的应用,此题难度较大,解题的关键是理解题意,根据题意列方程,然后根据x,y是整数求解,注意分类讨论思想的应用,另外本题也可以列三元一次方程组.10.C【解析】解:325x y ax y a-=+⎧⎨+=⎩①②,①+①得,3x=6a+3,得到:x=2a+1①,把①代入①得,2a+1-y=a+3,解得y=a﹣2,所以,方程组的解是212x ay a=+⎧⎨=-⎩,①x>y,①2a+1>a﹣2,解得a>﹣3.①a>-3,a>m,①m≤-3,故选C.点拨:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11.ab【详解】设大正方形的边长为x1,小正方形的边长为x2,由图①和①列出方程组得,12122{2x x a x x b+=-= 解得,122{4a bx a b x +=-= ①的大正方形中未被小正方形覆盖部分的面积=(2a b +)2-4×(4a b -)2=ab . 故答案为ab.12.1【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ①x -y=1;方法二:两个方程相减,得.x -y=1,故答案为1.【点拨】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.13.60【解析】分析:根据二元一次方程组的解法以及新定义运算法则即可求出答案.详解:由题意可知:48229x y x y -=⎧⎨+=⎩, 解得:512x y =⎧⎨=⎩.①x <y ,①原式=5×12=60.故答案为60.点拨:本题考查了二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法以及正确理解新定义运算法则,本题属于基础题型.14.52x y =⎧⎨=⎩【解析】分析:令x +y =a ,x -y =b ,根据已知,比较后得出a ,b 的值,从而得出结论..详解:令x +y =a ,x -y =b ,则关于x 、y 的二元一次方程组316215x y m x y x y n x y ++-=⎧⎨++-=⎩()()()()变为:316215a mb a nb +=⎧⎨+=⎩.①二元一次方程组316215x my x ny +=⎧⎨+=⎩的解是73x y =⎧⎨=⎩,①73a b =⎧⎨=⎩,①73x y x y +=⎧⎨-=⎩,解得:52x y =⎧⎨=⎩. 点拨:本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法,本题要注意整体思想的运用.15.15 95【解析】分析:本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出x 、y 的值.详解:①(2x −3y +5)2+|x +y −2|=0,①235020x y x y -+=⎧⎨+-=⎩, 解得19,.55x y ==故答案为19,.55点拨:考查非负数的性质,掌握两个非负数相加,和为0,这两个非负数的值都为0是解题的关键.16.20【解析】【分析】设平路有x 千米,上坡路有y 千米,根据平路用时+上坡用时+下坡用时+平路用时=5,即可得解.注意求得x+y 的值即为总路程.【详解】设平路有x 千米,上坡路有y 千米,根据题意,得: 4x +3y +6y +4x =5,即2x +2y =5,则x +y =10(千米), 这5小时共走的路程=2×10=20(千米).故答案是:20.【点拨】考查了二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.注意可以通过间接方式得解.17.s=3(n -1)【分析】根据图片可知:第一图:有花盆3个,每条边有花盆2个,那么s=3×2-3;第二图:有花盆6个,每条边有花盆3个,那么s=3×3-3;第三图:有花盆9个,每条边有花盆4个,那么s=3×4-3;…由此可知以s ,n 为未知数的二元一次方程为s=3n -3.【详解】根据图案组成的是三角形的形状,则其周长等于边长的3倍,但由于每个顶点重复了一次.所以s=3n -3=3(n ﹣1).故答案为3(n ﹣1)【点拨】本题要注意给出的图片中所包含的规律,然后根据规律列出方程.18.7【解析】【分析】根据函数图象上的点的坐标,利用待定系数法即可求出二次函数的解析式,将x=-2代入函数解析式中即可求出y值.【详解】由已知,得1,3,342,a b ca b ca b c=++⎧⎪=-+⎨⎪=++⎩解得1,1,1,abc=⎧⎪=-⎨⎪=⎩①y=x2-x+1.当x=-2时,y=(-2)2-(-2)+1=7.故答案是:7.【点拨】考查了待定系数法求函数解析式以及二次函数图象上点的坐标特征,解题的关键是利用待定系数法求出二次函数的解析式.本题属于基础题,难度不大,解决该题型题目时,利用待定系数法求出函数解析式是关键.19.4 7 -【解析】解:39x y ax y a+=⎧⎨-=⎩①②,①+①得:x=6a,把x=6a代入①得:y=-3a.把x=6a,y=-3a代入2x-3y+12=0得:12a+9a+12=0,解得:47x=-.故答案为:47-.20.7 14 5 4【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)①s,t都是“相异数”,s=100x+32,t=150+y,①F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.①F(t)+F(s)=18,①x+5+y+6=x+y+11=18,①x+y=7.①1≤x≤9,1≤y≤9,且x,y都是正整数,①16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.①s是“相异数”,①x≠2,x≠3.①y≠1,y≠5.①16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,①()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,①k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,①k的最大值为54.点拨: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F (241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.21.(1)14xy=⎧⎨=⎩(2)3114xy=⎧⎪⎨=⎪⎩【解析】试题分析:(1)、将①-①×2求出x的值,然后代入①求出y的值,从而得出方程组的解;(2)、首先将①进行化简,然后利用加减消元法求出x的值,代入x的值求出y的值,从而得出方程组的解.试题解析:(1)、29? 31?x y y x ①②+=⎧⎨-=⎩, ①×2可得:2y -6x=2 ①, ①-①可得:7x=7, 解得:x=1, 将x=1代入①可得:1+2y=9,解得:y=4①原方程组的解为:14x y =⎧⎨=⎩. (2)、414? 331 4312x y x y +=⎧⎪⎨---=⎪⎩①②,将①化简可得:3x -4y=-2 ①, ①+①可得:4x=12,解得:x=3,将x=3代入①可得:3+4y=14,解得:y=114,①原方程组的解为:3114x y =⎧⎪⎨=⎪⎩. 22.123x y z =⎧⎪=⎨⎪=⎩【解析】分析:根据解三元一次方程组的方法解方程即可,详解:231427?3211x y z x y z x y z ①②③++=⎧⎪++=⎨⎪++=⎩①-①×2得:30,x z -+=①-①×2得:58,x z --=-联立方程3058,x z x z -+=⎧⎨--=-⎩解得:13,x z =⎧⎨=⎩把13x z =⎧⎨=⎩代入①得,12914,y ++= 解得:2,y =原方程组的解为:123 xyz=⎧⎪=⎨⎪=⎩点拨:考查三元一次方程组的加法,牢记加减消元法是解题的关键.23.16.【解析】【分析】先利用加减消元法解得x,y的值,然后代入方程即可求得k的值,再代入所求式子求解即可.【详解】解:37? 231x yx y①②-=⎧⎨+=⎩,①×3+①,得11x=22,解得x=2.将x=2代入①,得6-y=7,解得y=-1,①方程组37231x yx y-=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,将21xy=⎧⎨=-⎩代入y=kx+9,得k=-5,则当k=-5时,(k+1)2=16.【点拨】本题主要考查解二元一次方程组,解此题的关键在于正确求得二元一次方程组的解. 24.0【解析】分析: 把甲的结果代入①求出b的值,把乙的结果代入①求出a的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入①,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩ 解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点拨: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.25.(1)95a b =⎧⎨=-⎩ (2)23m n =-⎧⎨=⎩ 【分析】(1)利用换元法把13a - ,+25b 分别看成一个整体把原方程组进行变形求出,继而在求出a 和b(2)利用换元法把5(m+3),3(n -2)分别看成一个整体把原方程组变形,可得一个新的含有m 、n 的二元一次方程组,然后求解即可得所求【详解】解: (1)拓展提高 设3a −1=x ,5b +2=y , 方程组变形得:24{25x y x y +=+= ,解得:21x y =⎧⎨=⎩ ,即123{215a b -=+= , 解得:9{5a b ==- ;(2)能力运用设53){3(2)m x n y+=-=( , 可得53)5{3(2)3m n +=-=( , 解得:2{3m n =-= , 故答案为2{3m n =-= 【点拨】二元一次方程组解法的拓展是本题的考点,熟练掌握基础知识进行换元是解题的关键. 26.解:(1)①100x y --, 1(100)3x y --;①74100x y +=;(2)母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.【解析】试题分析:(1)设母鸡有x 只,公鸡有y 只,根据一百文钱买一百只鸡,表示出小鸡的数量和价钱,然后列出方程;(2)设母鸡有x 只,公鸡有y 只,根据根据一百文钱买一百只鸡,母鸡数量是公鸡数量的4倍多2只,列方程求解即可;(3)解不定方程即可.试题解析:解:(1)①100x y --, 11003x y --();①74100x y +=;(2)设母鸡有x 只,公鸡有y 只,根据题意,得: 7410042x y x y +=⎧⎨=+⎩,,解得184x y =⎧⎨=⎩,,10078x y --=(只), 答:母鸡有18只,公鸡有4只,小鸡有78只.(3)以下三组答案,写出其中任意两组即可:①公鸡有12只,母鸡有4只,小鸡有84只;①公鸡有8只,母鸡有11只,小鸡有81只;①公鸡有0只,母鸡有25只,小鸡有75只.27.(1)点A 在第二象限 (2)()()2,26,2B -或(3)35,2,,222E F ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭【解析】试题解析:(1)根据题意,求出a 的取值范围,从而确定点A 的位置;(2)先解方程组,得{4b ac a ==-,再利用三角形的面积求出a 的值即可解决问题;(3)根据线段EF 平行于线段AB 且等于线段AB ,得出4f e -=,2123e f +=-+求解即可.(1)点A 在第二象限理由:把x =2代入3x -a<0得a>6①-a<0,a>0①点A 在第二象限(2)由方程组解得{4b ac a ==-()4,B a a ∴-①A(-a ,a ),S △OAB =4①AB =41442a ∴⋅= 2a ∴=±()()2,26,2B ∴-或(3)①EF ①AB ,且EF =AB4{2123f e e f -=∴+=-+ 解得: 32{52e f =-= 35,2,,222E F ⎛⎫⎛⎫∴--- ⎪ ⎪⎝⎭⎝⎭【点拨】本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.21。
一、二元一次方程(组)与二元一次方程解定义1.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=.【解答】﹣22.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的立方根是【解答】13.二元一次方程x+2y=3的正整数解是.【解答】4.写出二元一次方程x+2y=8的一组整数解:.【解答】(答案不唯一)5.由方程3x﹣2y﹣12=0可得到用x表示y的式子是.【解答】y=x﹣66.已知x﹣3y=9,请用含x的代数式表示y,则y=.【解答】x﹣37.已知二元一次方程2x﹣3y﹣5=0的一组解为,则6b﹣4a+3=.【解答】﹣78.若方程组是二元一次方程组,则a的值为.【解答】09.试写出一个以为解的二元一次方程组.【解答】.10.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.【解答】﹣2或﹣311.若==1,将原方程组化为的形式为.【解答】12.观察下列方程组:①;②;③;…若第④方程组满足上述方程组的数字规律,则第④方程组为.【解答】13.当m=时,关于x、y的方程组有无穷多解.【解答】414.若方程组的解是,其中y的值看不清楚了,则b的值是.【解答】二、解二元一次方程组与三元一次方程组(1).【解答】(2)【解答】(3);【解答】(4)【解答】(5)【解答】(6)【解答】.(7)【解答】(8)【解答】.(9).【解答】(10)【解答】(11)【解答】(12)【解答】二.含参数方程组1.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.【解答】,所以2a+5b=﹣1.2.若关于x,y的方程组的解为正数,当m为整数时,求的值.【解答】∴m=4,∴==5.3.k为正整数,已知关于x,y的二元一次方程组有整数解,求2k+x+y的平方根.【解答】2k+x+y的平方根=±3.4.若实数x、y满足方程组,则代数式2x+2y﹣4的值是.【解答】45.已如是方程的解,则(a+b)(a﹣b)的值为.【解答】45.6.已知是关于x,y的二元一次方程组的一组解,则a+b=.【解答】5.7.已知关于x,y的方程组的解为,则m=.n=.【解答】.8.若二元一次方程组的解为,则a+b的值为【解答】﹣1.9.如果方程组的解是方程7x+my=16的一个解,则m的值为.【解答】2.10.已知关于x,y的二元一次方程组的解互为相反数,则(m﹣5)2019=.【解答】﹣1..已知方程组的解满足12.如果方程组的解中x与y的值相等,那么a的值是.【解答】313.已知关于x、y的二元一次方程组的解满足二元一次方程﹣y=4,则m=.【解答】﹣12.方程组的解适合方程15. 已知方程组⎩⎨⎧=--=+1653652y x y x 和方程组⎩⎨⎧-=+-=-84ay bx by ax 的解相同,求代数式3a +7b 的值.16.已知方程组和方程组的解相同,则b ﹣2a 的值是 .【解答】﹣3.17.若关于x 、y 的二元一次方程组和的解相同,求a 、b 的值.【解答】.18.若方程组与方程组的解相同,分别求a ,b 的值.【解答】a =﹣3,b =2.19.若关于x 、y 的方程组与有相同的解.(1)求这个相同的解; (2)求m 、n 的值.【解答】(1);(2).20.在解关于x 、y 的方程组时,可以用①×2﹣②消去未知数x ,也可以用①×4+②×3消去未知数y ,试求a 、b 的值.【解答】a =6,b =21.在解方程组时,由于粗心,甲看错了方程组中的a ,而得到解为,乙看错了方程组中的b ,而得到解为.(1)求正确的a ,b 的值;(2)求原方程组的解.【解答】(1)b =5a =4(2)22.小明和小红同解同一个方程组时,小红不慎将一滴墨水滴在了题目上使得方程组的系数看不清了,显示如下,同桌的小明说:“我正确的求出这个方程组的解为”,而小红说:“我求出的解是,于是小红检查后发现,这是她看错了方程组中第二个方程中x 的系数所致”,请你根据他们的对话,把原方程组还原出来.【解答】23.在解方程组时,哥哥正确地解得,弟弟因把c 写错而解得.求:(1)a +b +c 的值.(2)弟弟把c 写错成了什么数?【解答】(1)a +b +c =4+5+(﹣2)=7.(2)c =﹣11.24.已知关于x,y的二元一次方程组.(1)若该方程组的解是,那么关于x,y的二元一次方程组的解是多少?(2)若y<0,且m≤n,试求x的最小值.【解答】(1);(2)x的最小值是5.25.阅读下列材料:小明同学遇到下列问题:解方程组,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y)看作一个数,把(2x﹣3y)看作一个数,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.这时原方程组化为解得把代入m=2x+3y,n=2x﹣3y.得解得所以,原方程组的解为请你参考小明同学的做法,解决下面的问题:(1)解方程组(2)若方程组的解是,求方程组的解.【解答】(1);(2).26.阅读下列解方程组的方法,然后回答问题.解方程组解:由(1)﹣(2)得2x+2y=2即x+y=1(3)(3)×16得16x+16y=16(4)(2)﹣(4)得x=﹣1,从而可得y=2∴方程组的解是.(1)请你仿上面的解法解方程组.【解答】(1)(2).(2)猜测关于x、y的方程组的解是什么,并利用方程组的解加以验证.27.如下是按一定规律排列的方程组集合和它的解的集合的对应关系,若方程组从左至右依次记作方程组1,方程组2,方程组3,…,方程组n.方程组集合:,,,…对应方程组解的集合:,,,….(1)方程组1的解为;(2)请依据方程组和它的解变化的规律,直接写出方程组n为,方程组n的解;(3)若方程组的解是,求a的值,并判断该方程组是否符合(2)中的规律.【解答】(1),(2)方程组n它的解是;(3)a=5,即原方程组为所以该方程组符合(2)中的规律.28.已知:.(1)用x的代数式表示y;(2)如果x、y为自然数,那么x、y的值分别为多少?(3)如果x、y为整数,求(﹣2)x•4y的值.【解答】(1)y=;(2)当x=1时,y=3;x=3时,y=2;x=5时,y=1;x=7时,y=0;(3)方程组整理得:x+2y=m+2+5﹣m=7,则原式=(﹣2)x+2y=(﹣2)7=﹣128.29.当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)、B(4,b)是“爱心点”,请判断A、B两点的中点C在第几象限?并说明理由;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【解答】(1)A点为“爱心点”,B点不是“爱心点”;(2)A、B两点的中点C在第四象限(3)P=0,q=﹣.30.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.【解答】(1)A(2,3)不是完美点.(2)点B(x,y)是完美点.31.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.【解答】(1)60;(2)20cm.(3)S阴影=19×(7+3×3)﹣8×10×3=64.。
二元一次方程组拓展提高题
一、选择题
1、若a+b=3,a﹣b=7,则ab=()
A.﹣10 B.﹣40 C.10 D.40
2、已知方程组,则x+y的值为()
A.﹣1 B.0 C.2 D.3
3x y2y x+1
....
①xy+2x-y=7;②4x+1=x-y;③1
x
+y=5;④x=y;⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A.1 B.2 C.3 D.4
5、已知3-x+2y=0,则3x-6y+9的值是()
A.3
B.9
C.18
D.27
6、.以方程组
2
1
y x
y x
=-+
⎧
⎨
=-
⎩
的解为坐标的点(,)
x y在平面直角坐标系中的位置是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,
一根露出水面的长度是它的,另一根露出水面的长度是它的.两
根铁棒长度之和为220cm,此时木桶中水的深度是cm.
8、四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有
A.4种
B.11种
C.6种
D.9种
二、填空题
9、若方程组,则3(x+y)﹣(3x﹣5y)的值是.
10、已知是二元一次方程组的解,则m +3n 的立方根为
11、已知4x a +2b ﹣5﹣2y 3a ﹣b ﹣3=8是二元一次方程,那么a ﹣b = .
12、.已知(3x -2y +1)2与|4x -3y -3|互为相反数,则x =__________,y =__________。
13、.已知y =kx +b ,当x =1时,y =-1,当x =3时,y =-5,则k =__________,b =__________。
14、.若方程组⎩⎨⎧=+=+54ay bx by ax 的解是⎩
⎨⎧==12y x ,则a +b =__________。
15、已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代
数式表示x 为:x=________.
16、如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件
17. 若23
x y =-⎧⎨=⎩是方程33x y m -=和5x y n +=的公共解,则23m n -= . 18. 已知231
x y =-⎧⎨=⎩是二元一次方程组11ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值是 .
19、已知x ,y 是有理数,且(│x │-1)2+(2y+1)2=0,则x -y 的值是____________,
已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____,,
20、程组43235x y k x y -=⎧⎨+=⎩
的解与x 与y 的值相等,则k 等于( ) 21、关于x y 、的二元一次方程组59x y k x y k
+=⎧⎨
-=⎩的解也是二元一次方程236x y +=的解,则k 的值是 . 22、若 4x-3y =0 , 的值 23、a-b=2,a-c=21,则(b-c)3-3(b-c)+4
= 24、方程组42
332=-=+t s t s 的解为 25、若|3a+4b-c|+41(c-2b)2=0,则a :b :c= 三、解方程组
26、 (1)()()41312223
x y y x y --=--⎧⎪⎨+=⎪⎩ (2)2320235297x y x y y --=⎧⎪-+⎨+=⎪⎩
( 3)) ()()918523203
2m n m m n ⎧+=⎪⎪⎨⎪++=⎪⎩ ( 4) 23427x y y z z x x y z +++⎧==⎪⎨⎪++=⎩
27、 若()4360,2700,x y z x y z xyz --=+-=≠ 求(1)x :y 的值 (2)x :y::z
值 (3)222
222522310x y z x y z
+---的值.
28、已知⎩
⎨⎧=-+=--082043z y x z y x 则zx yz xy z y x 22
22++++的值是 29、已知y=3xy+x ,求代数式
y
xy x y xy x ---+2232的值
30、.已知关于x y 、的方程组210320
mx y x y +=⎧⎨
-=⎩有整数解,即x y 、都是整数,m 是正整数,求m 的值.
31、已知关于x y 、的方程组2647x ay x y -=⎧⎨+=⎩
有整数解,即x y 、都是整数,a 是正整数, 求a 的值.
32、:已知关于x y 、的方程组()312
y kx b y k x =+⎧⎪⎨=-+⎪⎩ 分别求出k,b 为何值时, 方程组的解为 ⑴有唯一解; ⑵有无数多个解; ⑶无解?
33、甲、乙两人同时解方程组⎩
⎨⎧=--=+)2(5)1(8ny mx ny mx 由于甲看错了方程⑴中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中⑵的n ,得到的解是25x y =⎧⎨=⎩
,试求正确,m n 的值。
求出原方程组的正确的解。
34、已知方程组45321x y x y +=⎧⎨-=⎩和31
ax by ax by +=⎧⎨-=⎩有相同的解,求222a ab b -+的值.
35、已知x=1是关于x 的一元一次方程ax-1=2(x-b)的解,y=1是关于y 的一元一次方程b(y-3)=2(1-a)的解,在y=ax 2+bx-3中,求当x=-3时y 值。