八年级数学整式的除法1
- 格式:pdf
- 大小:828.10 KB
- 文档页数:10
15.3.2整式的除法 (一)------单项式除以单项式一、教学分析(一)教学目标:1.掌握单项式除以单项式运算法则,能熟练进行单项式与单项式的除法运算;2.理解单项式除以单项式是在同底数幂的除法基础上进行的.(二)重点难点1.教学重点:单项式除以单项式的运算法则的探索过程及其应用.2.教学难点:法则的探索过程以及能够灵活地运用法则进行计算和化简二、指导自学(一)复习回顾,巩固旧知1.单项式乘以单项式的法则:2.同底数幂的除法法则:(二)创设情境,总结法则问题1:木星的质量约是1.90×1024吨.地球的质量约是5.08×1021吨.•你知道木星的质量约为地球质量的多少倍吗?分析:这是除法运算,木星的质量约为地球质量的(1.90×1024)÷(5.98×1021)倍.(1.90×1024)÷(5.98×1021)=242421211.9010 1.90105.9810 5.9810⨯=⨯⨯=29995×310≈0.318×310 问题2:(1)回顾计算()()21241098.51090.1⨯÷⨯的过程,说说你计算的根据是什么? 答:这是根据除法的意义得到的(1.90×1024)÷(5.98×1021)把系数相除的结果1.905.98≈0.318作为结果的一个因子;同底数幂相除得24211010=310作为另一个因子. (2)仿照(1)的计算方法,计算下列各式:a a 283÷分析: a a 283÷就是()()a a 283÷的意思, 解:363x y xy ÷分析: 363x y xy ÷ 就是()()363x y xy ÷的意思 解:2323312ab x b a ÷分析: 2323312ab x b a ÷就是()()2323312ab x b a ÷的意思 解:(3)讨论(2)中的三个式子是什么样的运算.答:这三个式子都是单项式除以单项式的运算.问题3同学们你能根据上面的计算,尝试总结一下单项式除以单项式的运算法则吗? (提示:从系数、相同字母、只在被除式中出现的字母三个方面总结)得到结论:单项式相除,(1)系数相除,作为商的系数;(2)同底数幂相除,作为商的因式;(3)只在被除式中出现的字母,则连同它的指数作为商的一个因式.问题4:上面问题2中的几个运算是仿照问题1计算出来的,下面同学们思考一下可不可以再用自己现有的知识和数学方法解决问题2的计算呢?并观察结果是否一样?提示:还可以从乘法与除法互为逆运算的角度考虑答:计算2323312ab x b a ÷,就是要求一个单项式,使它与23ab 的乘积等于32312x b a ∵ 3ab 2·(4a 2x 3)=12a 3b 2x 3 2323312ab x b a ÷=324x a上述两种算法有理有据,所以结果正确问题5:由问题2和问题4尝试总结出一般的单项式除以单项式的法则吗?单项式除以单项式的法则:单项式相除,把系数和同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.三、应用提高(一)巩固应用例1. (1)28x 4y 2÷7x 3y(2)-5a 5b 3c ÷15a 4b(3)(2x 2y )3·(-7xy 2)÷14x 4y3 (4)5(2a +b )4÷(2a +b )2解:(1)28x 4y 2÷7x 3y=(28÷7)·x 4-3·y2-1 =4xy .(2)-5a 5b 3c ÷15a 4b=(-5÷15)a 5-4b 3-1c =-13ab 2c . (3)(2x 2y )3·(-7xy 2)÷14x 4y3 =8x 6y 3·(-7xy 2)÷14x 4y3 =[8×(-7)]·x 6+1y 3+2÷14x 4y3 =(-56÷14)·x 7-4·y5-3 =-4x 3y 2.(4)5(2a +b )4÷(2a +b )2=(5÷1)(2a +b )4-2 =5(2a +b )2 =5(4a 2+4ab +b 2)=20a 2+20ab +5b2 解题心得:(1)、(2)直接运用单项式除法的运算法则;(3)要注意运算顺序:先乘方,•再乘除,再加减;(4)鼓励学生悟出:将(2a +b )视为一个整体来进行单项式除以单项式的运算.四、落实训练(一)当堂训练1.计算:(1)()ab ab 5103-÷ (2)23268ab b a ÷-(3)()3242321yx y x -÷- (4)()()56103106⨯÷⨯2.把图中左边括号里的每一个式子分别除以y x 22,然后把商式写在右边括号里. ⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧−−→−⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧--÷x y x yz x y x y x y x 221161242222343 (三)回顾提升教师:通过这节课的学习你有哪些收获?学生回顾交流,教师补充完善:1.掌握了单项式的除法法则.2.理解了单项式除法法则是在同底数幂的除法基础上进行的五、检测反馈(1)()xy y x 6242-÷ (2)()42255r r ÷-(3)()222747m p m m ÷(4)()232642112⎪⎭⎫ ⎝⎛÷-t s t s2.一颗人造卫星的速度是72.8810⨯米/时,一驾喷气飞机的速度是61.810⨯米/时,这颗人造地球卫星的速度是这驾喷气式飞机的速度的多少倍?3.已知1米=910纳米,某种病毒的直径为100纳米,多少个这种病毒能排成1毫米长?。
人教版数学八年级上册14.1:整式的除法教案(含答案)课题:整式的除法1.理解并掌握单项式除以单项式、多项式除以单项式法则.2.让学生会运用法则,熟练进行整式的除法运算.重点:单项式除以单项式、多项式除以单项式的运算.难点:除式带有负号时,注意符号的变化.一、情景导入,感受新知问题提出:林宁今年刚刚3岁,是幼儿园最里聪明的孩子,李老师教他做算术,告诉他5×6=30后,他马上就知道30÷5=6,你说他是怎样计算的呢?二、自学互研,生成新知【自主探究】(一)阅读教材P103例7之后三段文字及例8(1)、(2),完成下面的内容:怎样计算-8a2b3÷6ab2呢?-8a2b3÷6ab2=(-8÷6)·a2-1·b(3-2)=-ab.归纳:一般地,单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(二)阅读教材P103例8之前两段文字及例8(3),完成下面的内容:计算:(a4b7-a2b6)÷(-ab2)2;解:原式=6a2b3-b2.归纳:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.三、典例剖析,运用新知【合作探究】例1:计算:(1)-3a2b4c÷12ab3;解:原式=-abc;(2)6xy3z5÷2xyz2;解:原式=3y2z3;(3)(-a)10÷(-a)7;解:原式=(-a)10-7=-a3;(4)(a3)2÷(a3)2.解:原式=a6÷a6=1.例2:计算:(1)(12a3b3c3-6a2b+3ab)÷3ab;(2)[(a+b)5-(a+b)3]÷(a+b)3.【分析】本题利用多项式除以单项式法则计算;(2)题中,把(a+b)看成一个整体,那么此式也可以看作是多项式除以单项式.解:(1)(12a3b3c3-6a2b+3ab)÷3ab=12a3b3c3÷3ab-6a2b÷3ab+3ab÷3ab=4a2b2c3-2a+1.(2)[(a+b)5-(a+b)3]÷(a+b)3=(a+b)5÷(a+b)3-(a+b)3÷(a+b)3=(a+b)2-1=a2+2ab+b2-1.例3:已知一个多项式与单项式-7x2y3的积为21x4y6-28x7y4+14x6y6,试求这个多项式.解:设所求多项式为A,则A=(21x4y6-28x7y4+14x6y6)÷(-7x2y3)=-3x2y3+4x5y-2x4y3.①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌,小组交流.四、课堂小结,回顾新知单项式除以单项式运算时,要注意:1.系数相除与同底数的幂相除的区别:后者运算时是将指数相减,然而前者是有理数的除法.2.对于单项式除以单项式,仅仅考虑整除的情况.五、检测反馈、落实新知1.已知4x3ym÷36xny2=y2,则(A)A.m=4,n=3B.m=4,n=2C.m=1,n=3D.m=2,n=32.计算-5x6y3z÷15x4y3的结果是(C)A.3x2 B.-3x2zC.-x2z D.x2z3.化简求值:(28a3b2c+35a2b3-14a2b2)÷(-7ab),其中a=-1,b =-2,c=3.解:原式=-4a2bc-5ab2+2ab.当a=-1,b=-2,c=3时,原式=-4×(-1)2×(-2)×3-5×(-1)×(-2)2+2×(-1)×(-2)=24+20+4=48.六、课后作业:巩固新知(见学生用书)。
初二数学整式的除法知识点总结①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
希翼同学们认真学习上面的知识点,相信老师对整式的除法知识点的总结一定能很好的匡助同学们的学习的。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希翼同学们很好的掌握下面的.内容。
水平的数轴称为 x 轴或者横轴,竖直的数轴称为 y 轴或者纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④ 原点重合①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;普通情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希翼同学们都能考试成功。
《农田里的数学除数是两位数的除法》四年级数学上册教学反思今天我讲了:除数是两位数的除法,感觉教学效果不太好,反思教学过程,感悟颇多。
早就听有经验的老师说过,这堂课不太好上,学生们接受的要慢一些,今天看来确实有一定的难度,本来教学设计就有点生硬、过程无趣,学生迟迟找不到感觉和好的方法,惟独一步一步慢慢引导。
除数是两位数的除法,是小学生学习整数除法的最后阶段,教学重点是确定商的.书写位置,除的顺序及试商的方法,匡助学生解决笔算的算理;难点就是试商。
课上我先让学生回顾除数是一位数除法的计算过程,孩子们能够说出要先从最高位开始除起,最高位不够除,就要看前两位,除到哪一位就把商写在哪一位。
在学习除数是两位数的除法的笔算时,学生已经有了口算的基础,在试商时,学生按老师要求先把想的内容写下来,例如: 24560=?想: 604=240,240 最接近 245,所以商试 4。
初二数学整式的除法运算数学中,整式的除法运算是我们学习的一个重要内容。
本文将详细介绍初二数学整式的除法运算,包括概念、步骤和注意事项等。
整式是指由常数、未知数及其系数经过加、减、乘运算组成的代数式。
我们将讨论的整式除法是指对两个整式进行相除运算,得到商式和余式。
一、整式除法的概念整式除法是指对一个整式f(x)除以另一个整式g(x),得到唯一的商式q(x)和余式r(x)的运算。
其中,被除式f(x)除以除式g(x)的结果是商式q(x),余项为r(x),满足等式f(x) = g(x)·q(x) + r(x)。
二、整式除法的步骤整式除法的运算步骤如下:1. 将被除式和除式按照指数降序排列,确保各项系数对应。
2. 令被除式的首项与除式的首项相除,得到商数的首项。
3. 用商数的首项乘以除式的每一项,并与相应的被除式的项相减,得到一个新的多项式。
4. 重复步骤3,直到无法进行减法运算为止,最后所得的多项式为余项。
5. 将商数和余项以及除数等整齐地写在一起,形成整式的除法运算式。
三、整式除法的注意事项在进行整式的除法运算时,需要注意以下几点:1. 每一步的计算都要注意保持各项对齐,以确保正确的运算。
2. 注意将每一步的结果写明,避免出错或遗漏。
3. 在计算过程中,要仔细检查每一步的运算,以确保准确性。
4. 若被除式中某些项的指数小于除式中对应项的指数,可以在被除式前面添加0。
5. 在进行多次步骤3时,可以化简相同指数的项。
示例:现假设有被除式f(x)=3x^3-5x^2+2x-4和除式g(x)=x-2,我们来进行整式的除法运算。
按照上述步骤,我们可以依次进行计算,最终得到商式q(x)=3x^2+1、余式r(x)=0。
四、总结通过以上的介绍,我们了解了初二数学整式的除法运算。
整式除法是一个基础概念,掌握它对于后续的多项式运算和方程的解法有着重要意义。
在进行整式除法时,要注意步骤的执行和运算的准确性,以确保得到正确的结果。
12.4.1 单项式除以单项式教学目标:1、使学生掌握单项式除以单项式的方法,并且能运用方法熟练地进行计算.2、培养学生应用数学的意识.重点难点:重点:单项式除以单项式方法的总结以及运用方法进行计算.难点:运用方法进行计算.教学过程:一、复习提问:①、叙述并写出幂的运算性质及怎样用公式表示?②、叙述单项式乘以单项式的法则③、叙述单项式乘以多项式的法则.④、练习x6÷x2= ,(—b)3÷b = 4y2÷y2 = (-a)5÷(-a) 3=y n+3÷y n = , (-xy) 5÷(-xy)2 = ,(a+b)4÷(a+b)2= ,y9 ÷(y4 ÷y) = ;二、创设问题情境问题:地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)解(1.9×1027)÷(5.98×1024)=(1.9÷5.98)×1027-24≈0.318×103=318.答:木星的重量约是地球的318倍.教师提问:对于一般的两个单项式相除,这种方法可运用吗?概括:两个单项式相除,只要将系数及同底数幂分别相除就可以了三、例题与练习例1计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)-21a2b3c÷3ab.分析:对于(1)、(2),可以按两个单项式相除的方法进行;对于(3),字母c只在被除数中出现,结果仍保留在商中.说明:解题的依据是单项式除法法则,计算时,要弄清两个单项式的系数各是什么,哪些是同底数幂,哪些是只在被除式里出现的字母,此外,还要特别注意系数的符号.由学生归纳小结如:一般地,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除数里含有的字母,则连同它的指数作为商的一个因式.练习1:计算:(1)(2)练习2:计算:课本第40页练习例2:计算:练习:计算(1)(2)教学小结:单项式除以单项式,有什么方法?布置作业:习题12.4 第1题的(1)、(2)、(3)八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在Rt △ABC 中,∠ACB=90°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,若∠A=26°,则∠CDE 度数为( ).A .45°;B .64° ;C .71°;D .80°.【答案】C 【分析】由折叠的性质可求得∠ACD=∠BCD ,∠BDC=∠CDE ,在△ACD 中,利用外角可求得∠BDC ,则可求得答案.【详解】由折叠可得∠ACD=∠BCD ,∠BDC=∠CDE ,∵∠ACB=90°,∴∠ACD=45°,∵∠A=26°,∴∠BDC=∠A+∠ACD=26°+45°=71°,∴∠CDE=71°,故选:C.【点睛】考查三角形内角和定理以及折叠的性质,掌握三角形的内角和定理是解题的关键.2.点()23P -,关于y 轴的对称点的坐标是( ) A .(2,-3)B .(-2,-3)C .(-2,3)D .(-3,2)【答案】B【分析】根据关于y 轴的对称点的点的特点是保持y 不变,x 取相反数即可得出. 【详解】根据关于y 轴的对称点的点的特点得出,点()23P -,关于y 轴的对称点的坐标是(-2,-3) 故答案选B .【点睛】本题考查了坐标点关于y 轴对称点的坐标,属于坐标轴中找对称点的基础试题.3.下列命题中为假命题的是( )A .两直线平行,内错角相等B .对顶角相等C .两个锐角的和是钝角D .如果a 是整数,那么a 是有理数【答案】C 【分析】根据平行线的性质可判断A 项,根据对顶角的性质可判断B 项,举出反例可判断C 项,根据有理数的定义可判断D 项,进而可得答案.【详解】解:A 、两直线平行,内错角相等,是真命题,故本选项不符合题意;B 、对顶角相等,是真命题,故本选项不符合题意;C 、两个锐角的和不一定是钝角,如20°和30°这两个锐角的和是50°,仍然是锐角,所以原命题是假命题,故本选项符合题意;D 、如果a 是整数,那么a 是有理数,是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、平行线的性质、对顶角的性质和有理数的定义等知识,属于基础题型,熟练掌握上述基本知识是解题的关键.4.下列长度的三条线段能组成三角形的是( )A .3,4,8B .2,5,3C .52,72,5D .5,5,10 【答案】C【解析】选项A ,3+4<8,根据三角形的三边关系可知,不能够组成三角形;选项B ,2+3=5,根据三角形的三边关系可知,不能够组成三角形;选项C ,52+72>5,根据三角形的三边关系可知,能够组成三角形;选项D ,5+5=10,根据三角形的三边关系可知,不能够组成三角形;故选C.5.如图,在等边ABC ∆中,BD CE =,将线段AE 沿AC 翻折,得到线段AM ,连结EM 交AC 于点N ,连结DM 、CM 以下说法:①AD AM =,②60MCA ∠=︒,③2CM CN =,④MA DM =中,正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】由△ABD ≌△ACE ,△ACE ≌△ACM ,△ABC 是等边三角形可以对①②进行判断,由AC 垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段AE沿AC翻折,∴AE=AM,∠CAE=∠CAM,∴AD AM=,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM =60°,∴∠CMN=30°,∴在Rt△CMN中,12=CN CM,即2CM CN=,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM +∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴MA DM=故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.6.因式分解x2+mx﹣12=(x+p)(x+q),其中m、p、q都为整数,则这样的m的最大值是()A.1 B.4 C.11 D.12【解析】分析:根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p、q的关系判断即可.详解:∵(x+p)(x+q)= x2+(p+q)x+pq= x2+mx-12∴p+q=m,pq=-12.∴pq=1×(-12)=(-1)×12=(-2)×6=2×(-6)=(-3)×4=3×(-4)=-12∴m=-11或11或4或-4或1或-1.∴m的最大值为11.故选C.点睛:此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.7.如图,∠MON=600,且OA平分∠MON,P是射线OA上的一个点,且OP=4,若Q是射线OM上的一个动点,则PQ的最小值为().A.1 B.2 C.3 D.4【答案】B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,然后利用30°角对应的直角边等于斜边的一半进一步求解即可.【详解】当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,∠MON=60°∴∠AOQ=30°∵ PQ⊥OM,OP =4,∴OP=2PQ,∴PQ=2,所以答案为B选项.【点睛】本题主要考查了垂线段以及30°角对应的直角边的相关性质,熟练掌握相关概念是解题关键.8.视力表中的字母“E”有各种不同的摆放方向,下列图中两个“E”不成..轴对称的是()A.B.C.D.【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A 选项中两个“E ” 成轴对称,故本选项不符合题意;B 选项中两个“E ” 成轴对称,故本选项不符合题意;C 选项中两个“E ” 成轴对称,故本选项不符合题意;D 选项中两个“E ” 不成轴对称,故本选项符合题意;故选D .【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.9.如图,AC 和BD 相交于O 点,若OA=OD ,用“SAS”证明△AOB ≌△DOC 还需()A .AB=DCB .OB=OC C .∠C=∠D D .∠AOB=∠DOC【答案】B【解析】试题分析:在△AOB 和△DOC 中,{OA ODAOB DOC OB OC=∠=∠=,∴△AOB ≌△DOC (SAS ),则还需添加的添加是OB=OC ,故选B.考点:全等三角形的判定.10.已知直线y =-x +4与y =x +2如图所示,则方程组42y x y x =-+⎧⎨=+⎩的解为()A .31x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .40x y =⎧⎨=⎩【答案】B 【解析】二元一次方程组42y x y x =-+⎧⎨=+⎩的解就是组成二元一次方程组的两个方程的公共解,即两条直线y =-x +4与y =x +2的交点坐标13x y =⎧⎨=⎩. 故选B点睛:本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.二、填空题11.在平面直角坐标系中,将点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为_________.【答案】 (-1,0)【分析】根据横坐标右移加,左移减;纵坐标上移加,下移减,即可得到.【详解】解:点()3, 2P -先向右平移2个单位长度, 再向下平移2个单位长度后所得到的点坐标为(-3+2,2-2),即(-1,0)故答案为:(-1,0)【点睛】此题主要考查了坐标与图形的变化-平移:向右平移a 个单位,坐标P (x ,y )得到P '(x+a ,y);向左平移a 个单位,坐标P (x ,y )得到P '(x-a ,y);向上平移a 个单位,坐标P (x ,y )得到P '(x ,y+a);向下平移a 个单位,坐标P (x ,y )得到P '(x ,y-a).12.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.【答案】t=﹣0.006h+1【解析】根据题意得到每升高1m 气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m 气温下降6℃,∴每升高1m 气温下降0.006℃,∴气温t (℃)与高度h (m )的函数关系式为t=﹣0.006h+1,故答案为:t=﹣0.006h+1.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.13.若3m a =,7n a =,则m n a +=_________.【答案】21【分析】根据同底数幂相乘逆用运算法则,即可得到答案.【详解】解:3721n n m m a a a +=•=⨯=,故答案为:21.【点睛】本题考查了同底数幂相乘,解题的关键是熟练掌握运算法则进行计算.14.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.【答案】y=-x-1 ,满足()y=ax+a a 0<即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足a 0< ,再代入(-1,0)求出a 和b 的等量关系即可.【详解】设一次函数解析式()y=ax+b a <0代入点(-1,0)得0=-a+b ,解得()a=b a 0<所以()y=ax+a a 0<我们令a=-1y=-x-1故其中一个符合条件的一次函数解析式是y=-x-1.故答案为:y=-x-1.【点睛】本题考察了一次函数的解析式,根据题意得出a 和b 的等量关系,列出其中一个符合题意的一次函数解析式即可.15.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC =_____.【答案】75°.【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】∵∠CEA=60°,∠BAE=45°,∴∠ADE=180°﹣∠CEA﹣∠BAE=75°,∴∠BDC=∠ADE=75°,故答案为75°.【点睛】本题考查了三角板的性质,三角形内角和定理等知识,熟练掌握相关的知识是解题的关键.16.如图是甲、乙两名跳远运动员的10次测验成绩(单位:米)的折线统计图,观察图形,写出甲、乙这10次跳远成绩之间的大小关系:2S甲_____2S乙(填“>“或“<”).【答案】<【分析】方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,判断即可.【详解】解:由图可得,甲10次跳远成绩离散程度小,而乙10次跳远成绩离散程度大,∴2S甲<2S乙,故答案为:<.【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】1【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画1个三角形,故答案为:1.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.三、解答题18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?【答案】(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:2050×100%=40%,在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.(4)户外活动的平均时间为:150×(10×0.5+20×1+12×1.5+8×2)=1.18(小时),∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.19.在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10斤A级别和20斤B级别茶叶的利润为4000元,销售20斤A级别和10斤B级别茶叶的利润为3500元(1)分别求出每斤A级别茶叶和每斤B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200斤用于出口.设购买A级别茶叶a斤(70≤a≤120),销售完A、B两种级别茶叶后获利w元.①求出w与a之间的函数关系式;②该经销商购进A、B两种级别茶叶各多少斤时,才能获取最大的利润,最大利润是多少?【答案】(1)一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元;(2)①w =-50a+1;②购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【分析】(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.【详解】解:(1)设一斤A级别的茶叶的销售利润为x元,一斤B级别茶叶的销售利润为y元由题意得:10+204000 20+103500x yx y=⎧⎨=⎩解得:10150 xy=⎧⎨=⎩答:一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元.(2)①由题意得,w=100a+150(200-a)=-50a+1.②∵-50<0∴w的值随a值的增大而减小∵70≤a≤120,∴当a=70时,w取得最大值,此时w=26500,200-70=2.所以,购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【点睛】本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.20.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B的度数.【答案】70°【解析】分析:在CH上截取DH=BH,通过作辅助线,得到△ABH≌△ADH,进而得到CD=AD,则可求解∠B的大小.详解:在CH上截取DH=BH,连接AD,如图∵BH=DH,AH⊥BC,∴△ABH≌△ADH,∴AD=AB∵AB+BH=HC,HD+CD=CH∴AD=CD∴∠C=∠DAC,又∵∠C=35°∴∠B=∠ADB=70°.点睛:掌握全等三角形及等腰三角形的性质,能够求解一些简单的角度问题.21.如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(﹣2,4),B(﹣4,2),C(﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC关于x轴对称的图形△A1B1C1(点A、C分布对应A1、C1);(2)请在y轴上找出一点P,满足线段AP+B1P的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【详解】(1)如图所示:(2)如图所示:点P即为所求.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.22.计算(1)18631272(2)5-2)2﹣13132)【答案】(1)323;(2)45-【分析】(1)先把各项化为最简二次根式,然后合并同类二次根式即可;(2) 利用完全平方公式及二次根式的混合运算法则进行计算即可.【详解】解:(1)原式=2×2622⨯+3 22+3 =323;(2)原式=(5﹣54)﹣(13﹣4)=5﹣54﹣13+4=﹣5【点睛】本题主要考查了二次根式的混合运算,二次根式的性质与化简..理解二次根式的性质、以及二次根式的加减乘除运算法则是解答本题的关键.23.如图,已知点B 、E 、C 、F 在一条直线上,AB=DF ,AC=DE ,∠A=∠D(1)求证:AC ∥DE ;(2)若BF=13,EC=5,求BC 的长.【答案】(1)证明见解析;(2)4.【分析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案.【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFE (SAS ),∴∠ACE=∠DEF ,∴AC ∥DE ;(2)∵△ABC ≌△DFE ,∴BC=EF ,∴CB ﹣EC=EF ﹣EC ,∴EB=CF ,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.24.(1)计算: ((323-6236-21224⨯; (2)解方程:23211x x x x ++=-- . 【答案】(1)632-;(2)无解.【分析】(1)利用平方差公式,二次根式的乘法和除法进行计算,然后合并同类项,即可得到答案;(2)先去分母,然后去括号,移项合并,系数化为1,求出方程的解,再通过检验,即可得到答案.【详解】解:(1)原式=2232(23)(6)43--⨯⨯ =12632--=632-;(2)23211x x x x ++=-- ∴2232x x x x +-=+,∴33x =,∴1x =;检验:当1x =时,20x x -=,∴1x =是增根,∴原分式方程无解.【点睛】本题考查了二次根式的混合运算,二次根式的性质,平方差公式,以及解分式方程,解题的关键是掌握运算法则进行解题.25.如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF ⊥DE 于点F .(1)求证:△ACD ≌△BEC ;(2)求证:CF 平分∠DCE .【答案】(1)详见解析;(2)详见解析.【分析】(1)根据平行线性质求出∠A =∠B ,根据SAS 推出△ACD ≌△BEC ;(2)根据全等三角形性质推出CD =CE ,根据等腰三角形性质即可证明CF 平分∠DCE .【详解】(1)∵AD ∥BE ,∴∠A =∠B ,在△ACD 和△BEC 中,∵=AD BC A B AC BE =⎧⎪∠∠⎨⎪=⎩,∴△ACD ≌△BEC (SAS ),(2)∵△ACD ≌△BEC ,∴CD =CE ,又∵CF ⊥DE ,∴CF 平分∠DCE .【点睛】本题主要考查三角形的判定定理和性质定理以及等腰三角形的性质定理,掌握SAS 判定三角形全等,是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知是正比例函数,则m的值是()A.8 B.4 C.±3 D.3【答案】D【解析】直接利用正比例函数的定义分析得出即可.【详解】∵y=(m+2)x m2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【点睛】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k 为常数且k≠0,自变量次数为2.2.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图①可以用来解释(a+b)2-(a-b)2=4ab.那么通过图②中阴影部分面积的计算验证了一个恒等式,此等式是()A.a2-b2=(a+b)(a-b) B.(a-b)2=a2-2ab+b2C.(a+b)2=a2+2ab+b2D.(a-b)(a+2b)=a2+ab-b2【答案】B【解析】图(4)中,∵S正方形=a1-1b(a-b)-b1=a1-1ab+b1=(a-b)1,∴(a-b)1=a1-1ab+b1.故选B3.如图,一棵树在一次强台风中,从离地面5m处折断,倒下的部分与地面成30°角,这棵树在折断前的高度是()A.5m B.10m C.15m D.20m【答案】C【分析】根据30°所对的直角边是斜边的一半,得斜边是10,从而求出大树的高度.【详解】如图,在Rt△ABC中,∠BCA=90°,CB=5,∠BAC=30°,∴AB=10,∴大树的高度为10+5=15(m).故选C.【点睛】本题考查了直角三角形的性质:30°所对的直角边等于斜边的一半,掌握这条性质是解答本题的关键.4.若分式211aa--有意义,则a满足的条件是()A.a≠1的实数B.a为任意实数C.a≠1或﹣1的实数D.a=﹣1 【答案】A【解析】根据分式有意义的条件进行求解即可得.【详解】解:∵分式2a1a1--有意义,∴a﹣1≠0,解得:a≠1,故选A.【点睛】本题考查了分式的意义的条件,熟知分母不为0时分式有意义是解题的关键.5.下列计算正确的是()A.(a2)3=a5B.10ab3÷(﹣5ab)=﹣2ab2C.(15x2y﹣10xy2)÷5xy=3x﹣2yD.a–2b3•(a2b–1)–2=6 6 b a【答案】C【分析】根据合并同类项、幂的乘方和积的乘方进行计算即可.【详解】解:A 、(a 2)3=a 6,故错误;B 、10ab 3÷(-5ab )=-2b 2,故错误;C 、(15x 2y-10xy 2)÷5xy=3x-2y ,故正确;D 、a -2b 3•(a 2b -1)-2=65ba ,故错误;故选C. 【点睛】本题考查了整式的混合运算,掌握合并同类项、幂的乘方和积的乘方的运算法则是解题的关键. 6.下列美丽的图案中,不是轴对称图形的是( )A .B .C .D .【答案】A【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项正确;B 、是轴对称图形,故本选项错误;C 、是轴对称图形,故本选项错误;D 、是轴对称图形,故本选项错误.故选A .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 7.要使分式242x x -+有意义,则x 的取值范围是( )A .2x ≠-B .2x =C .2x =-D .2x ≠±【答案】A【分析】分式有意义的条件是分母不能为0即可.【详解】要使分式22-4x x +有意义,分母不为0,即x+1≠0,∴x≠-1,则x 的取值范围是x≠-1.故选择:A .【点睛】本题考查分式有意义的条件问题,掌握分式有意义就是满足分母不为0,会解不等式是关键. 8.无论x 取什么数,总有意义的分式是( )A .341x x + B .2(1)x x + C .231x x + D .22x x - 【答案】C 【分析】按照分式有意义,分母不为零即可求解.【详解】A .341x x +,x 3+1≠1,x ≠﹣1; B .21x x ()+,(x+1)2≠1,x ≠﹣1; C .231x x +,x 2+1≠1,x 为任意实数; D .22x x-,x 2≠1,x ≠1. 故选C .【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.9.某校八(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是( )A .38B .39C .40D .42 【答案】B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为38402+=39, 故选:B .【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.10.如图,在ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则:ED BC 等于( )A .3:2B .3:1C .1:2D .1:1【答案】C 【分析】由题意根据题意得出△DEF ∽△BCF ,利用点E 是边AD 的中点得出答案即可.【详解】解:∵▱ABCD ,∴AD ∥BC ,∴△DEF ∽△BCF ,∵点E 是边AD 的中点,∴AE=ED=12AD=12BC , ∴:ED BC =1:2. 故选:C .【点睛】本题主要考查平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF 是解题关键.二、填空题11.如图,在Rt ABC ∆中,90,1BAC AB AC ∠=︒==,点P 是边AB 上一动点(不与点A B 、重合),过点P 作BC 的垂线交BC 于点D ,点F 与点B 关于直线PD 对称,连接AF ,当AFC ∆是等腰三角形时,BD 的长为__________.【答案】242-1 【分析】由勾股定理求出BC ,分两种情况讨论:(1)当AF CF = ,根据等腰直角三角形的性质得出BF 的长度,即可求出BD 的长;(2)当CF CA = ,根据BF BC CF =- 求出BF 的长度,即可求出BD 的长.【详解】∵等腰t R ABC 中,1AB AC ==∴23BC = 分两种情况 (1)当AF CF =,45FAC C ==︒∠∠∴90AFC ∠=︒∴AF BC ⊥∴122BF CF BC === ∵直线l 垂直平分BF∴1224BD BF == (2)当12CF CA ==,21BF BC BF =-=- ∵直线l 垂直平分BF∴12122BD BF -== 故答案为:24或2-1. 【点睛】 本题考查了三角形线段长的问题,掌握勾股定理以及等腰直角三角形的性质是解题的关键.12.已知平行四边形ABCD 中,10AB cm =,8BC cm =,30ABC ∠︒=,则这个平行四边形ABCD 的面积为_____2cm .【答案】40【分析】作高线CE ,利用30︒角所对直角边等于斜边的一半求得高CE ,再运用平行四边形的面积公式计算即可.【详解】过C 作CE ⊥AB 于E ,在Rt △CBE 中,∠B=30︒,8BC =, ∴142CE BC =⨯=, 10440ABCD S AB CE ==⨯=.故答案为:40.【点睛】本题考查了平行四边形的性质,解题的关键是熟悉平行四边形的面积公式,熟练运用 “30︒角所对直角边等于斜边的一半”求解.13.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,点E ,F 分别在边AB ,AC 上,将△AEF 沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.14.分解因式:3m 2﹣6mn+3n 2=_____.【答案】3(m-n )2【解析】原式=2232)m mn n -+(=23()m n - 故填:23()m n - 15.计算:2323a b c ⎛⎫-= ⎪⎝⎭____________. 【答案】62249a b c【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果. 【详解】332232262222222(2)(2)()4()3(3)(3)9a b a b a b a b c c c c ---===, 故答案为:62249a b c 【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.16.在实数范围内分解因式:2225x x --=____.【答案】1111112()()22x x ---+ 【分析】将原式变形为21112()22x --,再利用平方差公式分解即可得. 【详解】2225x x -- =21112()42x x -+- =21112()22x -- =21112()24x ⎡⎤--⎢⎥⎣⎦111111=2()()2222x x ---+, 故答案为:1111112()()2222x x ---+. 【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.17.如图,在四边形ABCD 中,AD ∥BC ,AD =5,BC =18,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间t 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形,则t 的值为_____.【答案】2秒或3.5秒【分析】由AD ∥BC ,则PD=QE 时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形,①当Q 运动到E 和C 之间时,设运动时间为t ,则得:9-3t=5-t ,解方程即可;②当Q 运动到E 和B 之间时,设运动时间为t ,则得:3t-9=5-t ,解方程即可.。
人教版数学八年级上册15.3.2《整式的除法》教案一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,主要内容包括单项式除以单项式、多项式除以单项式以及多项式除以多项式的运算方法。
这一节内容在数学学习中占据重要地位,是学生进一步学习函数、不等式等数学知识的基础。
通过本节内容的学习,学生能够掌握整式除法的基本运算方法,提高运算能力,并为后续学习打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减、乘法等基本运算,具备一定的数学基础。
但学生在进行整式除法运算时,容易出错,对除法运算的理解不够深入。
因此,在教学过程中,需要关注学生的学习困难,通过具体例子引导学生理解整式除法的运算规律,提高学生的运算能力。
三. 教学目标1.知识与技能目标:使学生掌握整式除法的基本运算方法,能够熟练地进行整式除法运算。
2.过程与方法目标:通过自主探究、合作交流,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学学习的成就感。
四. 教学重难点1.重点:整式除法的基本运算方法。
2.难点:理解整式除法的运算规律,能够灵活运用整式除法解决实际问题。
五. 教学方法采用“引导探究法”和“合作交流法”,教师引导学生通过观察、分析、归纳等方法,发现整式除法的运算规律,培养学生的问题解决能力。
同时,鼓励学生进行合作交流,分享学习心得,提高学生的沟通能力。
六. 教学准备1.教师准备:教师需熟练掌握整式除法的运算方法,了解学生的学习情况,准备相关教学素材。
2.学生准备:学生需预习整式除法相关内容,了解基本概念,准备参与课堂讨论。
七. 教学过程1.导入(5分钟)教师通过一个简单的例子,引导学生回顾整式的加减、乘法运算,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示整式除法的例子,引导学生观察、分析,发现整式除法的运算规律。
学生通过自主探究,总结整式除法的基本方法。
人教版数学八年级上册15.3.2《整式的除法》说课稿一. 教材分析《整式的除法》是人教版数学八年级上册第15章第三节的一部分,它是初中数学中重要的基础知识。
本节内容主要介绍整式除法的基本概念、运算方法和应用。
通过本节的学习,学生能够掌握整式除法的运算规则,并能运用整式除法解决实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了整式的加减乘运算,具备一定的代数基础。
但学生在进行整式除法运算时,容易混淆运算规则,对除法运算的理解不够深入。
因此,在教学过程中,需要关注学生的学习情况,引导学生正确理解整式除法的概念和运算规则。
三. 说教学目标1.知识与技能目标:学生能够理解整式除法的基本概念,掌握整式除法的运算方法,能够熟练进行整式除法的计算。
2.过程与方法目标:通过自主学习、合作交流,培养学生运算能力和抽象思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:整式除法的基本概念,整式除法的运算方法。
2.教学难点:整式除法运算中,如何正确处理多项式的除法运算。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解相结合的教学方法。
2.教学手段:利用多媒体课件,进行直观演示和讲解,帮助学生理解整式除法的概念和运算方法。
六. 说教学过程1.导入新课:通过复习整式的加减乘运算,引出整式除法运算的概念。
2.自主学习:学生自主学习整式除法的基本概念和运算方法。
3.合作交流:学生分组讨论,总结整式除法的运算规则。
4.教师讲解:针对学生不易理解的地方,进行重点讲解和演示。
5.练习巩固:学生进行适量练习,巩固整式除法的运算方法。
6.拓展应用:引导学生运用整式除法解决实际问题。
七. 说板书设计板书设计如下:1.定义:已知两个整式A和B,若存在一个整式C,使得A = BC,则称B是A的除数,C是A除以B的商。
2.运算规则:(1)同底数幂相除,底数不变,指数相减。
整式的除法(1)一 教学目标经历探索整式除法运算法则的过程,会进行简单的整式除法运算。
理解整式除法运算的算理,发展有条理的思考及表达能力。
二 教学重点与难点理解运算法则及其探索过程,能用自己的语言叙述如何运算。
三 教学过程(一)回顾与思考:1、 用字母表示幂的运算性质:(1) a m n m n aa +=∙ (2) (a )m mn n a = (3) a m ÷a n m n a-= (4) a 10= (a ≠0) (5)a p p a 1=-2、 计算:(1) a101020a a =÷ (2) a n n na a =÷2 (3) (-c)224)(c c =-÷(4) (a 66159533321)()()a a aa a a =-=-=÷--÷∙ (5) (x 2081224242664)()()x xx x ==-∙÷+- (二)新课引入计算下列各题,并说明你的理由:(1) (x 25)x y ÷(2) (8m 2n 2)÷(2m )2n(3) (a )3(224b a c b ÷ 解:(1) (x 25)x y ÷=25x y x =y x xxxy xx xxxxxy 3== 省略分数及其运算,上述过程相当于:(1) (x 25)x y ÷=(x y x y xy x 32525)==∙÷- (2) (8m 2n 2)÷(2m )2n =(8÷2) (m ))(222n n m ÷÷=4m1222--n =4n观察和归纳:(1) (x 5y) ÷ x 2 = x 5 − 2 ·y(2) (8m 2n 2) ÷ (2m 2n) = (8÷2 )·m 2 − 2·n 2 − 1 ;(3) (a 4b 2c) ÷ (3a 2b ) = (1÷3 )·a 4 − 2·b 2 −1·c .(三)新知点拨仔细观察一下,并分析与思考下列几点:单项式除以单项式,其结果(商式)仍是一个单项式;商式的系数=(被除式的系数)÷ (除式的系数)(同底数幂) 商的指数=(被除式的指数) —(除式的指数)被除式里单独有的幂,写在商里面作因式。
八年级数学整式的除法教案1. 教学目标1.理解整式的概念和性质。
2.掌握整式的加减乘除的基本方法。
3.能够运用整式的基本运算解决实际问题。
2. 教学重点1.整式的除法运算。
2.基本除法原理及应用。
3. 教学难点1.理解整式的概念和性质。
2.熟练掌握整式的除法运算。
4. 教学内容4.1 整式的概念和性质1.整式的概念所谓整式,是指由数和变量经过有限次加、减、乘运算所组成的代数式。
示例:$ax^2+bx+c,\\quad 4x^3-2x+1,\\quad 5a^2b^3-3ab^2+c$2.整式的性质整式的性质有以下几点:•任何数和变量的乘积都是一个整式。
•两个整式相加、相减或相乘仍是整式。
•整式相加、相减或相乘仍满足交换律、结合律、分配律等运算法则。
4.2 整式的除法运算1.整式的除法定义在整式的除法运算中,被除式可以被除式不为零的整式整除的情况下,商式即为被除式除以除式的商,余数是被除式除以除式的余数。
示例:(x3+3x2−2x−3)÷(x−1)=x2+4x+2......(余数1)解析:上面的的整式除法中,x3+3x2−2x−3是被除式,x−1是除式,x2+ 4x+2是商式,余数为1。
2.整式的基本除法原理整式的基本除法原理是指,任何整式除以一次式的结果都是一个次数低于被除式的整式。
示例:(x3+3x2−2x−3)÷(x−1)=x2+4x+2......(余数1)解析:上面的的整式除法中,所得的商式为x2+4x+2,次数为2,低于被除式x3+3x2−2x−3的次数。
4.3 基本除法原理及应用1.基本除法原理的应用基本除法原理的应用主要是为了确定整式除法的结果和余数。
示例:求x4+2x3+2x2+x−2除以x+1的商式和余数。
解析:根据基本除法原理,我们可得x4+2x3+2x2+x−2÷x+1的结果为x3+x2+x−1,余数为−1。
2.整式除法的实际应用整式的除法运算应用到数学的各个领域中,例如计算几何、解方程等等。