高考数学大一轮复习 第十三章 选考部分 13_1 坐标系与参数方程 第2课时 参数方程教师用书 文 北师大版
- 格式:doc
- 大小:170.50 KB
- 文档页数:11
2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第1课时坐标系教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第1课时坐标系教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第1课时坐标系教师用书文北师大版的全部内容。
第1课时坐标系1.平面直角坐标系设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:错误!的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O,叫作极点,从O点引一条射线Ox,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称为极坐标系.对于平面内任意一点M,用ρ表示线段OM的长,θ表示以Ox为始边、OM为终边的角度,ρ叫作点M的极径,θ叫作点M的极角,有序实数对(ρ,θ)叫做点Μ的极坐标,记作M(ρ,θ).当点M在极点时,它的极径ρ=0,极角θ可以取任意值.(2)极坐标与直角坐标的互化设M为平面内的一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面关系式成立:错误!或错误!这就是极坐标与直角坐标的互化公式.3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ〈2π)圆心为(r,0),半径为r的圆ρ=2r cos_θ(-错误!≤θ<错误!)圆心为(r,错误!),半径为r的圆ρ=2r sin_θ(0≤θ〈π)过极点,倾斜角为α的直线θ=α(ρ∈R) 或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线ρcos θ=a(-错误!〈θ〈错误!)过点(a,错误!),与极轴平行的直线ρsin_θ=a(0<θ<π)1.(2016·北京西城区模拟)求在极坐标系中,过点(2,错误!)且与极轴平行的直线方程.解点(2,错误!)在直角坐标系下的坐标为(2cos 错误!,2sin 错误!),即(0,2).∴过点(0,2)且与x轴平行的直线方程为y=2。
2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第2课时参数方程教师用书文新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第2课时参数方程教师用书文新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第十三章选考部分13.1 坐标系与参数方程第2课时参数方程教师用书文新人教版的全部内容。
第2课时参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x,y中的一个与参数t的关系,例如x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),那么错误!就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y=tan α(x-x0)错误!(t为参数)圆x2+y2=r2错误!(θ为参数)椭圆x2a2+错误!=1(a〉b〉0)错误!(φ为参数)抛物线y2=2px (p>0)错误!(t为参数)1.直线l的参数方程为错误!(t为参数),求直线l的斜率.解将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.2.已知直线l1:错误!(t为参数)与直线l2:错误!(s为参数)垂直,求k的值.解直线l1的方程为y=-k2x+错误!,斜率为-错误!;直线l2的方程为y=-2x+1,斜率为-2。
∵l1与l2垂直,∴(-错误!)×(-2)=-1⇒k=-1.3.已知点P(3,m)在以点F为焦点的抛物线错误!(t为参数)上,求|PF|的值.解将抛物线的参数方程化为普通方程为y2=4x,则焦点F(1,0),准线方程为x=-1,又P (3,m)在抛物线上,由抛物线的定义知|PF|=3-(-1)=4.4.(2016·北京东城区模拟)已知曲线C的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是错误!(t为参数),求直线l与曲线C相交所截的弦长.解曲线C的直角坐标方程为x2+y2=1,直线l的普通方程为3x-4y+3=0。
坐标系与参数方程第一节坐标系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x λ>0,y ′=μ·yμ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标①极径:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ. ②极角:以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ. ③极坐标:有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ). 一般不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ;⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x ≠0.4.简单曲线的极坐标方程曲线极坐标方程圆心为极点,半径为r 的圆 ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos θ⎝⎛⎭⎪⎫-π2≤θ≤π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin θ(0≤θ<π) 过极点,倾斜角为α的直线θ=α(ρ∈R)或θ=π+α(ρ∈R)过点(a,0),与极轴垂直的直线ρcos θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2过点⎝⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin θ=a (0<θ<π)1.若点P 的直角坐标为(3,-3),则点P 的极坐标为______.解析:因为点P (3,-3)在第四象限,与原点的距离为23,且OP 与x 轴所成的角为-π6,所以点P 的极坐标为⎝⎛⎭⎪⎫23,-π6.答案:⎝⎛⎭⎪⎫23,-π62.圆ρ=5cos θ-53sin θ的圆心的极坐标为________. 解析:将方程 ρ=5cos θ-53sin θ两边都乘以ρ, 得ρ2=5ρcos θ-53ρsin θ, 化成直角坐标方程为x 2+y 2-5x +53y =0. 圆心坐标为⎝ ⎛⎭⎪⎫52,-532,化成极坐标为⎝ ⎛⎭⎪⎫5,5π3.答案:⎝⎛⎭⎪⎫5,5π3(答案不唯一)3.在极坐标系中A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3两点间的距离为________.解析:法一:(数形结合)在极坐标系中,A ,B 两点如图所示,|AB |=|OA |+|OB |=6.法二:∵A ⎝ ⎛⎭⎪⎫2,-π3,B ⎝ ⎛⎭⎪⎫4,2π3的直角坐标为A (1,-3),B (-2,23).∴|AB |=-2-12+23+32=6.答案:64.在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π3(θ∈R)的距离是________.解析:设圆心到直线θ=π3(θ∈R)的距离为d ,因为圆的半径为2, d =2·sin π6=1.答案:1考点一 平面直角坐标系下图形的伸缩变换基础送分型考点——自主练透[考什么·怎么考]高考对平面直角坐标系下图形的伸缩变换要求较低,极少考查,属于基础题. 1.求椭圆x 24+y 2=1经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=y后的曲线方程.解:由⎩⎪⎨⎪⎧x ′=12x ,y ′=y得到⎩⎪⎨⎪⎧x =2x ′,y =y ′.①将①代入x 24+y 2=1,得4x ′24+y ′2=1,即x ′2+y ′2=1.因此椭圆x 24+y 2=1经伸缩变换后得到的曲线方程是x 2+y 2=1.2.求双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y ,变换后所得曲线C ′的焦点坐标.解:设曲线C ′上任意一点P ′(x ′,y ′), 由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程, 可见仍是双曲线,则焦点(-5,0),(5,0)为所求.3.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:⎩⎪⎨⎪⎧X =ax a >0,Y =by b >0,求a ,b 的值.解:由⎩⎪⎨⎪⎧X =ax ,Y =by 得⎩⎪⎨⎪⎧x =1a X ,y =1b Y ,代入x 2+y 2=1中得X 2a 2+Y 2b2=1,所以a 2=9,b 2=4,即a =3,b =2.[怎样快解·准解]伸缩变换公式应用时的2个注意点(1)曲线的伸缩变换是通过曲线上任意一点的坐标的伸缩变换实现的,解题时一定要区分变换前的点P 的坐标(x ,y )与变换后的点P ′的坐标(x ′,y ′),再利用伸缩变换公式⎩⎪⎨⎪⎧x ′=ax a >0,y ′=byb >0建立联系.(2)已知变换后的曲线方程f (x ,y )=0,一般都要改写为方程f (x ′,y ′)=0,再利用换元法确定伸缩变换公式.考点二 极坐标与直角坐标的互化重点保分型考点——师生共研极坐标与直角坐标的互化是解决极坐标问题的基础,是高考常考内容之一,既有单独考查,也有与参数方程等内容的综合考查,题型为解答题,难度适中.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝⎛⎭⎪⎫θ-π4=22(ρ≥0,0≤θ<2π). (1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 的公共点的极坐标. [思维路径](1)由ρ=cos θ+sin θ及公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,可将等式两边同乘以ρ,得ρ2=ρcos θ+ρsin θ,从而可化为直角坐标方程.将ρsin ⎝ ⎛⎭⎪⎫θ-π4=22利用两角差的正弦公式展开,可得ρsin θ-ρcos θ=1,从而可化为直角坐标方程.(2)可先求出直线l 与圆O 的公共点,然后将该公共点化为极坐标. 解:(1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 故圆O 的直角坐标方程为x 2+y 2-x -y =0,直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0. (2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得⎩⎪⎨⎪⎧x 2+y 2-x -y =0,x -y +1=0,解得⎩⎪⎨⎪⎧x =0,y =1,即圆O 与直线l 在直角坐标系下的公共点为(0,1),将(0,1)转化为极坐标为⎝⎛⎭⎪⎫1,π2即为所求.[解题师说]1.极坐标方程与直角坐标方程的互化方法(1)直角坐标方程化为极坐标方程:将公式x =ρcos θ及y =ρsin θ直接代入直角坐标方程并化简即可.(2)极坐标方程化为直角坐标方程:通过变形,构造出形如ρcos θ,ρsin θ,ρ2的形式,再应用公式进行代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形技巧.2.极角的确定方法由tan θ确定角θ时,应根据点P 所在象限取最小正角.在这里要注意:当x ≠0时,θ角才能由tan θ=yx按上述方法确定.当x =0时,tan θ没有意义,这时可分三种情况处理:当x =0,y =0时,θ可取任何值;当x =0,y >0时,可取θ=π2;当x =0,y <0时,可取θ=3π2.[冲关演练]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cos ⎝ ⎛⎭⎪⎫θ-π4=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程;(2)求经过两圆交点的直线的极坐标方程. 解:(1)由ρ=2知ρ2=4,所以圆O 1的直角坐标方程为x 2+y 2=4. 因为ρ2-22ρcos ⎝⎛⎭⎪⎫θ-π4=2,所以ρ2-22ρ⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2,所以圆O 2的直角坐标方程为x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin ⎝⎛⎭⎪⎫θ+π4=22.考点三 曲线的极坐标方程的应用重点保分型考点——师生共研曲线极坐标方程的应用是每年高考的重点,主要涉及线段长度、平面图形的面积以及最值等问题,难度适中.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.[思维路径](1)可先求点P 在极坐标系中的轨迹方程,然后再化为直角坐标方程.设P (ρ,θ),则M 点的可设为(ρ1,θ),利用|OM |·|OP |=16及相关点可求.(2)由于点O 和点A 都是定点,故△AOB 面积的大小取决于B 点的位置,可设B 点的极坐标为(ρB ,α),然后利用面积公式S =12|OA |·ρB ·sin∠AOB 求解即可.解:(1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0),由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.[解题师说]1.方法要熟求简单曲线的极坐标方程的方法(1)设点M (ρ,θ)为曲线上任意一点,由已知条件,构造出三角形,利用三角函数及正、余弦定理求解|OM |与θ的关系.(2)先求出曲线的直角坐标方程,再利用极坐标与直角坐标的变换公式,把直角坐标方程化为极坐标方程.2.技巧要会用极坐标系解决问题时要注意题目中的几何关系,如果几何关系不容易通过极坐标表示时,可以先化为直角坐标方程,将不熟悉的问题转化为熟悉的问题加以解决.[冲关演练](2015·全国卷Ⅰ)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解:(1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即|MN |= 2. 由于C 2的半径为1, 所以△C 2MN 的面积为12.1.在极坐标系中,求直线ρcos ⎝ ⎛⎭⎪⎫θ+π6=1与圆ρ=4sin θ的交点的极坐标. 解:ρcos ⎝ ⎛⎭⎪⎫θ+π6=1化为直角坐标方程为3x -y =2,即y =3x -2.ρ=4sin θ可化为x 2+y 2=4y ,把y =3x -2代入x 2+y 2=4y , 得4x 2-83x +12=0, 即(x -3)2=0, 所以x =3,y =1.所以直线与圆的交点坐标为(3,1),化为极坐标为⎝⎛⎭⎪⎫2,π6.2.在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,圆心为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32与极轴的交点,求圆C 的极坐标方程.解:在ρsin ⎝ ⎛⎭⎪⎫θ-π3=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0). 因为圆C 经过点P ⎝ ⎛⎭⎪⎫2,π4,所以圆C 的半径|PC |= 22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.3.设M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,求M ,N 的最小距离.解:因为M ,N 分别是曲线ρ+2sin θ=0和ρsin ⎝ ⎛⎭⎪⎫θ+π4=22上的动点,即M ,N分别是圆x 2+y 2+2y =0和直线x +y -1=0上的动点,要求M ,N 两点间的最小距离,即在直线x +y -1=0上找一点到圆x 2+y 2+2y =0的距离最小,即圆心(0,-1)到直线x +y -1=0的距离减去半径,故最小值为|0-1-1|2-1=2-1.4.(2016·全国卷Ⅰ)在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cosθ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解:(1)消去参数t 得到C 1的普通方程为x 2+(y -1)2=a 2,则C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsinθ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去)或a =1. 当a =1时,极点也为C 1,C 2的公共点,且在C 3上. 所以a =1.5.(2018·洛阳模拟)在直角坐标系xOy 中,圆C 的方程为x 2+(y -2)2=4.以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ⎝⎛⎭⎪⎫θ+π6=53,射 线OM :θ=π6与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)将x =ρcos θ,y =ρsin θ代入x 2+(y -2)2=4, 得圆C 的极坐标方程为ρ=4sin θ.(2)设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ=4sin θ,θ=π6,解得ρ1=2,θ1=π6.设Q (ρ2,θ2),则由⎩⎪⎨⎪⎧2ρsin ⎝⎛⎭⎪⎫θ+π6=53,θ=π6,解得ρ2=5,θ2=π6.所以|PQ |=ρ2-ρ1=3.6.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=1,M ,N 分别为C 与x 轴,y 轴的交点. (1)求C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ-π3=1得ρ⎝ ⎛⎭⎪⎫12cos θ+32sin θ=1. 从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝ ⎛⎭⎪⎫233,π2.(2)由(1)知M 点的直角坐标为(2,0),N 点的直角坐标为⎝⎛⎭⎪⎫0,233.所以P 点的直角坐标为⎝ ⎛⎭⎪⎫1,33,则P 点的极坐标为⎝ ⎛⎭⎪⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R).7.(2018·福建质检)在直角坐标系xOy 中,曲线C 1的普通方程为(x -2)2+y 2=4,在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:θ=π6(ρ>0),A (2,0).(1)把C 1的普通方程化为极坐标方程;(2)设C 3分别交C 1,C 2于点P ,Q ,求△APQ 的面积. 解:(1)因为C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,所以C 1的极坐标方程为ρ2-4ρcos θ=0,即ρ=4cos θ. (2)依题意,设点P ,Q 的极坐标分别为⎝ ⎛⎭⎪⎫ρ1,π6,⎝ ⎛⎭⎪⎫ρ2,π6.将θ=π6代入ρ=4cos θ,得ρ1=23,将θ=π6代入ρ=2sin θ,得ρ2=1,所以|PQ |=|ρ1-ρ2|=23-1.依题意,点A (2,0)到曲线θ=π6(ρ>0)的距离d =|OA |sin π6=1,所以S △APQ =12|PQ |·d =12×(23-1)×1=3-12.8.(2018·贵州适应性考试)在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 2的直角坐标方程; (2)过原点且倾斜角为α⎝⎛⎭⎪⎫π6<α≤π4的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.解:(1)由曲线C 2的极坐标方程为ρcos 2θ=sin θ, 两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y .(2)射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α,把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, ∴|OA |·|OB |=4cos α·sin αcos 2α=4tan α. ∵π6<α≤π4, ∴|OA |·|OB |的取值范围是⎝ ⎛⎦⎥⎤433,4.第二节参数方程1.参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =gt ,并且对于t的每一个允许值,由方程组⎩⎪⎨⎪⎧x =ft ,y =gt所确定的点M (x ,y )都在这条曲线上,那么方程⎩⎪⎨⎪⎧x =ft ,y =g t就叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ (φ为参数).(4)双曲线x 2a 2-y 2b2=1(a >0,b >0)的参数方程为⎩⎪⎨⎪⎧x =a 1cos θ,y =b tan θ(θ为参数).1.在平面直角坐标系中,若曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=02.椭圆C 的参数方程为⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数),过左焦点F 1的直线l 与C 相交于A ,B 两点,则|AB |min =________.解析:由⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)得,x 225+y 29=1,当AB ⊥x 轴时,|AB |有最小值. 所以|AB |min =2×95=185.答案:1853.曲线C的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)4.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的方程为x 2+y 24=1,设直线l 与椭圆C 相交于A ,B 两点,则线段AB 的长为________________________________________________________________________.解析:将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t 代入x 2+y 24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0, 解得t 1=0,t 2=-167,所以|AB |=|t 1-t 2|=167.答案:167考点一 参数方程与普通方程的互化 基础送分型考点——自主练透[考什么·怎么考]参数方程与普通方程的互化是每年高考的热点内容,常与极坐标、直线与圆锥曲线的位置关系综合考查,属于基础题.1.将下列参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1t ,y =1t t 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数).解:(1)∵⎝ ⎛⎭⎪⎫1t 2+⎝ ⎛⎭⎪⎫1tt 2-12=1,∴x 2+y 2=1.∵t 2-1≥0,∴t ≥1或t ≤-1. 又x =1t,∴x ≠0.当t ≥1时,0<x ≤1, 当t ≤-1时,-1≤x <0, ∴所求普通方程为x 2+y 2=1,其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2, ∴y =-2x +4,∴2x +y -4=0. ∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3).2.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP , 则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).3.求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α,得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.[怎样快解·准解]将参数方程化为普通方程的方法将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等,对于含三角函数的参数方程,常利用同角三角函数关系式消参.如sin 2θ+cos 2θ=1等.[注意] 将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如第1题.考点二 参数方程的应用重点保分型考点——师生共研参数方程的应用是每年高考的热点,主要涉及直线与圆、圆锥曲线的参数方程以及直线与圆、圆锥曲线位置关系的应用,难度适中,属于中档题.(2017·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0,由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝ ⎛⎭⎪⎫-2125,2425.(2)直线l 的普通方程为x +4y -a -4=0, 故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,解得a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,解得a =-16.综上,a =8或a =-16.[解题师说]1.方法要熟(1)解决直线与圆、圆锥曲线的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆、圆锥曲线的位置关系来解决问题.(2)对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt(t 为参数)的参数方程,当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(3)直线参数方程的应用:直线的标准参数方程主要用来解决过定点的直线与圆锥曲线相交时的弦长或距离问题.它可以避免求交点时解方程组的繁琐运算,但应用直线的参数方程时,需先判断是否是标准形式再考虑参数的几何意义.(4)圆、圆锥曲线的参数方程突出了其工具性作用,应用时,把圆、圆锥曲线上的点的坐标设为参数方程的形式,将问题转化为三角函数问题,利用三角函数知识解决问题.2.结论要记根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0; (3)|M 0M 1||M 0M 2|=|t 1t 2|.[冲关演练]1.(2018·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值. 解:(1)由曲线C :⎩⎪⎨⎪⎧x =1cos θ,y =tan θ (θ为参数),可得曲线C 的普通方程是x 2-y2=1.当α=π3时,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0, 得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫92,332.(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0,则|PA |·|PB |=|t 1t 2|=⎪⎪⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪81+tan 2α1-tan 2α,由已知得tan α=2,故|PA |·|PB |=403.2.(2018·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△PAB 面积的最小值.解:(1)由⎩⎨⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2.由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎪⎫2,π2,设点P 的坐标为(-5+2cos t,3+2sin t ), 则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=⎪⎪⎪⎪⎪⎪-6+2cos ⎝ ⎛⎭⎪⎫t +π42.所以d min =42=22,又|AB |=2 2.所以△PAB 面积的最小值是S =12×22×22=4.考点三 极坐标、参数方程的综合应用重点保分型考点——师生共研极坐标与参数方程的综合应用是每年的必考内容,主要涉及极坐标方程与直角坐标方程的互化及应用、参数方程与直角坐标方程的互化及应用,难度适中.在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点P 的极坐标为⎝ ⎛⎭⎪⎫23,π6,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数).(1)写出点P 的直角坐标及曲线C 的直角坐标方程;(2)若Q 为曲线C 上的动点,求PQ 中点M 到直线l :ρcos θ+2ρsin θ+1=0距离的最小值.解:(1)由x =ρcos θ,y =ρsin θ, 可得点P 的直角坐标为(3,3),由⎩⎨⎧x =2cos α,y =-3+2sin α,得x 2+(y +3)2=4,∴曲线C 的直角坐标方程为x 2+(y +3)2=4. (2)直线l 的普通方程为x +2y +1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =-3+2sin α(α为参数),设Q (2cos α,-3+2sin α),则M ⎝ ⎛⎭⎪⎫32+cos α,sin α, 故点M 到直线l 的距离d =⎪⎪⎪⎪⎪⎪32+cos α+2sin α+112+22=⎪⎪⎪⎪⎪⎪5sin α+φ+525≥-5+525=52-1⎝⎛⎭⎪⎫tan φ=12, ∴点M 到直线l 的距离的最小值为52-1. [解题师说]处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[冲关演练]1.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.解:(1)消去参数t ,得l 1的普通方程l 1:y =k (x -2), 消去参数m ,得l 2的普通方程l 2:y =1k(x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k x -2,y =1kx +2.消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎨⎧ρ2cos 2θ-sin 2θ=4,ρcos θ+sin θ-2=0得cos θ-sin θ=2(cos θ+sin θ). 故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 所以交点M 的极径为 5.2.(2018·武昌调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t(t为参数,a >0).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ+π4=-2 2. (1)设P 是曲线C 上的一个动点,当a =2时,求点P 到直线l 的距离的最小值; (2)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围. 解:(1)由ρcos ⎝ ⎛⎭⎪⎫θ+π4=-22,得22(ρcos θ-ρsin θ)=-22, 化成直角坐标方程,得22(x -y )=-22, 即直线l 的方程为x -y +4=0. 依题意,设P (2cos t,2sin t ), 则点P 到直线l 的距离d =|2cos t -2sin t +4|2=⎪⎪⎪⎪⎪⎪22cos ⎝⎛⎭⎪⎫t +π4+42=22+2cos ⎝⎛⎭⎪⎫t +π4.当cos ⎝⎛⎭⎪⎫t +π4=-1时,d min =22-2.故点P 到直线l 的距离的最小值为22-2. (2)∵曲线C 上的所有点均在直线l 的右下方, ∴对∀t ∈R ,有a cos t -2sin t +4>0恒成立, 即a 2+4cos(t +φ)>-4⎝ ⎛⎭⎪⎫其中tan φ=2a 恒成立,∴a 2+4<4, 又a >0,∴0<a <2 3. 故a 的取值范围为(0,23).1.已知P为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴,建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程. 解:(1)由已知,点M 的极角为π3,且点M 的极径等于π3,故点M 的极坐标为⎝ ⎛⎭⎪⎫π3,π3. (2)由(1)知点M 的直角坐标为⎝⎛⎭⎪⎫π6,3π6,A (1,0).故直线AM 的参数方程为⎩⎪⎨⎪⎧x =1+⎝ ⎛⎭⎪⎫π6-1t ,y =3π6t(t 为参数).2.在平面直角坐标系xOy 中,曲线C 1过点P (a,1),其参数方程为⎩⎨⎧x =a +2t ,y =1+2t(t为参数,a ∈R).以O 为极点,x 轴非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|PA |=2|PB |,求实数a 的值.解:(1)∵曲线C 1的参数方程为⎩⎨⎧x =a +2t ,y =1+2t ,∴其普通方程为x -y -a +1=0.∵曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0, ∴ρ2cos 2θ+4ρcos θ-ρ2=0, ∴x 2+4x -x 2-y 2=0,即曲线C 2的直角坐标方程为y 2=4x .(2)设A ,B 两点所对应的参数分别为t 1,t 2,将曲线C 1的参数方程代入曲线C 2的直角坐标方程,化简得2t 2-22t +1-4a =0. ∴Δ=(-22)2-4×2(1-4a )>0,即a >0,t 1+t 2=2,t 1·t 2=1-4a2. 根据参数方程的几何意义可知|PA |=2|t 1|,|PB |=2|t 2|, 又|PA |=2|PB |可得2|t 1|=2×2|t 2|, 即t 1=2t 2或t 1=-2t 2.∴当t 1=2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=3t 2=2,t 1·t 2=2t 22=1-4a 2,解得a =136,符合题意.当t 1=-2t 2时,有⎩⎪⎨⎪⎧t 1+t 2=-t 2=2,t 1·t 2=-2t 22=1-4a 2,解得a =94,符合题意.综上,实数a =136或a =94.3.(2018·贵阳模拟)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t (t为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)求曲线C 1的普通方程和C 2的直角坐标方程;(2)若A ,B 分别为曲线C 1,C 2上的动点,求当AB 取最小值时△AOB 的面积. 解:(1)由⎩⎪⎨⎪⎧x =4+3cos t ,y =5+3sin t(t 为参数)得C 1的普通方程为(x -4)2+(y -5)2=9,由ρ=2sin θ,得ρ2=2ρsin θ, 将x 2+y 2=ρ2,y =ρsin θ代入上式, 得C 2的直角坐标方程为x 2+(y -1)2=1.(2)如图,当A ,B ,C 1,C 2四点共线,且A ,B 在线段C 1C 2上时,|AB |取得最小值,由(1)得C 1(4,5),C 2(0,1),则kC 1C 2=5-14-0=1,∴直线C 1C 2的方程为x -y +1=0, ∴点O 到直线C 1C 2的距离d =12=22, 又|AB |=|C 1C 2|-1-3=4-02+5-12-4=42-4,∴S △AOB =12d |AB |=12×22×(42-4)=2- 2.4.(2018·广州综合测试)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =1+t (t为参数).在以坐标原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=22cos ⎝⎛⎭⎪⎫θ-π4. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.解:(1)由⎩⎪⎨⎪⎧x =3-t ,y =1+t (t 为参数)消去t 得x +y -4=0,所以直线l 的普通方程为x +y -4=0.由ρ=22cos ⎝ ⎛⎭⎪⎫θ-π4=22⎝ ⎛⎭⎪⎫cos θcos π4+sin θsin π4=2cos θ+2sin θ, 得ρ2=2ρcos θ+2ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式, 得x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2. 所以曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)法一:设曲线C 上的点P (1+2cos α,1+2sin α), 则点P 到直线l 的距离d =|1+2cos α+1+2sin α-4|2=|2sin α+cos α-2|2=⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫α+π4-22.当sin ⎝⎛⎭⎪⎫α+π4=-1时,d max =2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 法二:设与直线l 平行的直线l ′:x +y +b =0, 当直线l ′与圆C 相切时,|1+1+b |2=2,解得b =0或b =-4(舍去), 所以直线l ′的方程为x +y =0.因为直线l 与直线l ′的距离d =|0+4|2=2 2.所以曲线C 上的点到直线l 的距离的最大值为2 2. 5.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cosθ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. 解:(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0, 曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.6.已知直线L的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数),以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ. (1)求直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值.解:(1)由⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数),得L 的普通方程为2x +y -6=0,令x =ρcos θ,y =ρsin θ,得直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0, 由曲线C 的极坐标方程,知ρ2+3ρ2cos 2θ=4, 所以曲线C 的直角坐标方程为x 2+y 24=1.(2)由(1),知直线L 的普通方程为2x +y -6=0, 设曲线C 上任意一点P (cos α,2sin α), 则点P 到直线L 的距离d =|2cos α+2sin α-6|5.由题意得|PA |=d sinπ3=415⎪⎪⎪⎪⎪⎪2sin ⎝⎛⎭⎪⎫α+π4-315,所以当sin ⎝⎛⎭⎪⎫α+π4=-1时,|PA |取得最大值,最大值为4153+215.7.(2018·石家庄一模)在平面直角坐标系中,将曲线C 1上的每一个点的横坐标保持不变,纵坐标缩短为原来的12,得到曲线C 2.以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,已知曲线C 1的极坐标方程为ρ=2.(1)求曲线C 2的参数方程;(2)过坐标原点O 且关于y 轴对称的两条直线l 1与l 2分别交曲线C 2于A ,C 和B ,D ,且点A 在第一象限,当四边形ABCD 的周长最大时,求直线l 1的普通方程.解:(1)由ρ=2,得ρ2=4,所以曲线C 1的直角坐标方程为x 2+y 2=4. 故由题意可得曲线C 2的直角坐标方程为x 24+y 2=1.所以曲线C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数).(2)设四边形ABCD 的周长为l ,点A (2cos θ,sin θ), 则l =8cos θ+4sin θ=45sin(θ+φ),⎝⎛⎭⎪⎫其中sin φ=25,cos φ=15 所以当θ+φ=2k π+π2(k ∈Z)时,l 取得最大值,最大值为45,此时θ=2k π+π2-φ(k ∈Z),所以2cos θ=2sin φ=45,sin θ=cos φ=15,此时A ⎝ ⎛⎭⎪⎫45,15.所以直线l 1的普通方程为x -4y =0.8.(2018·成都诊断)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =3-32t ,y =3+12t (t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A 的极坐标为(23,θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π.(1)求θ的值;(2)若射线OA 与直线l 相交于点B ,求|AB |的值. 解:(1)由题意知,曲线C 的普通方程为x 2+(y -2)2=4,∵x =ρcos θ,y =ρsin θ,∴曲线C 的极坐标方程为(ρcos θ)2+(ρsin θ-2)2=4, 即ρ=4sin θ. 由ρ=23,得sin θ=32, ∵θ∈⎝⎛⎭⎪⎫π2,π,∴θ=2π3.(2)易知直线l 的普通方程为x +3y -43=0,∴直线l 的极坐标方程为ρcos θ+3ρsin θ-43=0. 又射线OA 的极坐标方程为θ=2π3(ρ≥0),联立⎩⎪⎨⎪⎧θ=2π3ρ≥0,ρcos θ+3ρsin θ-43=0,解得ρ=4 3.∴点B 的极坐标为⎝ ⎛⎭⎪⎫43,2π3,∴|AB |=|ρB -ρA |=43-23=2 3.。
第2讲 参数方程一、填空题1.直线x -y +1=0与参数方程⎩⎪⎨⎪⎧x =-4+5cos t y =3+5sin t的曲线的交点个数:________.解析 ⎩⎪⎨⎪⎧x =-4+5cos t y =3+5sin t ⇒(x +4)2+(y -3)2=25则圆心(-4,3)到直线x -y +1=0的距离d =|-4-3+1|2=32<5 ∴直线与圆相交,故交点个数是2个. 答案 22.参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 ∵⎩⎪⎨⎪⎧x =cos α,y =1+sin α,(α为参数)∴⎩⎪⎨⎪⎧x =cos α ①y -1=sin α ②(α为参数)①2+②2得x 2+(y -1)2=1,此即为所求普通方程. 答案 x 2+(y -1)2=13.直线3x +4y -7=0截曲线⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)的弦长为________.解析 曲线可化为x 2+(y -1)2=1,圆心到直线的距离d =|0+4-7|9+16=35,则弦长l =2r 2-d 2=85.答案 854.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数),l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数),若l 1∥l 2,则k=________;若l 1⊥l 2,则k =________.解析 将l 1、l 2的方程化为直角坐标方程得l 1:kx +2y -4-k =0,l 2:2x +y -1=0,由l 1∥l 2,得k 2=21≠4+k1⇒k =4,由l 1⊥l 2,得2k +2=0⇒k =-1.答案 4 -15.曲线⎩⎪⎨⎪⎧x =1+t2y =4t -3(t 为参数)与x 轴交点的坐标是________.解析 令y =0,得t =34,代入x =1+t 2,得x =2516,交点为(2516,0).答案 ⎝⎛⎭⎪⎫2516,06.直线⎩⎪⎨⎪⎧x =3+t sin 40°y =-1+t cos 40°(t 为参数)的倾斜角为________.解析 将参数方程化为⎩⎪⎨⎪⎧x =3+t cos 50°,y =-1+t sin 50°,得直线的倾斜角为50°.答案 50°7.已知在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ是参数)有两个不同的交点P 和Q ,则k 的取值范围为________.解析 曲线C 的参数方程:⎩⎨⎧x =2cos θ,y =sin θ(θ是参数)化为普通方程:x 22+y 2=1,故曲线C 是一个椭圆.由题意,利用点斜式可得直线l 的方程为y =kx +2,将其代入椭圆的方程得x 22+(kx +2)2=1,整理得⎝ ⎛⎭⎪⎫12+k 2x 2+22kx +1=0,因为直线l 与椭圆有两个不同的交点P 和Q ,所以Δ=8k 2-4×⎝ ⎛⎭⎪⎫12+k 2=4k 2-2>0,解得k <-22或k >22.即k 的取值范围为 ⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞. 答案 ⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 8.如果曲线C :⎩⎪⎨⎪⎧x =a +2cos θ,y =a +2sin θ(θ为参数)上有且仅有两个点到原点的距离为2,则实数a 的取值范围是________.解析 将曲线的参数方程转化为普通方程,即(x -a )2+(y -a )2=4,由题意可知,以原点为圆心,以2为半径的圆与圆C 总相交,根据两圆相交的充要条件,得0<2a 2<4, ∴0<a 2<8,解得0<a <22或-22<a <0. 答案 (-22,0)∪(0,22) 二、解答题9.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎪⎫2,π3.(1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围. 解 (1)由已知可得A ⎝⎛⎭⎪⎫2cos π3,2sin π3,B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π,D ⎝⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1). (2)设P (2cos φ,3sin φ), 令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].10.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解 (1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33, 故直线OP 的直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0. 又圆C 的圆心坐标为(2,-3),半径r =2,圆心到直线l 的距离d =|23-33-23|3+9=32<r .故直线l 与圆C 相交.。
第2课时 参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 取的每一个允许值,由方程组所确定的点P (x ,y )都在这条曲线上,那么方程组就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程. 2.常见曲线的参数方程和普通方程1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.解 将直线l 的参数方程化为普通方程为y -2=-3(x -1),因此直线l 的斜率为-3.2.已知直线l 1:⎩⎪⎨⎪⎧x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,求k的值.解 直线l 1的方程为y =-k 2x +4+k 2,斜率为-k2;直线l 2的方程为y =-2x +1,斜率为-2. ∵l 1与l 2垂直,∴(-k2)×(-2)=-1⇒k =-1.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,求|PF |的值.解 将抛物线的参数方程化为普通方程为y 2=4x ,则焦点F (1,0),准线方程为x =-1,又P (3,m )在抛物线上,由抛物线的定义知|PF |=3-(-1)=4.4.(2016·北京东城区模拟)已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t ,y =3t (t为参数),求直线l 与曲线C 相交所截的弦长. 解 曲线C 的直角坐标方程为x 2+y 2=1, 直线l 的普通方程为3x -4y +3=0. 圆心到直线的距离d =|3×0-4×0+3|32+42=35. ∴直线l 与曲线C 相交所截的弦长为21-352=85.题型一 参数方程与普通方程的互化例1 (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.(2)在平面直角坐标系中,已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +2,y =t2(t 为参数),若l 与C 相交于A ,B 两点,求|AB |的长.解 (1)圆的半径为12,记圆心为C (12,0),连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).(2)直线l 的普通方程为x +y =2,曲线C 的普通方程为y =(x -2)2(y ≥0),联立两方程得x 2-3x +2=0,求得两交点坐标为(1,1),(2,0),所以|AB |= 2.思维升华 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a(t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.解 (1)将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9.又圆心(0,0)到直线x +y -1=0的距离d =22<3. 因此直线与圆相交,故直线与曲线有2个交点.(2)直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0), 则3-a =0,∴a =3. 题型二 参数方程的应用 例2 已知直线l的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解 (1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.在平面直角坐标系xOy 中,曲线C 1和C 2的参数方程分别为⎩⎨⎧x =5cos θ,y =5sin θ⎝ ⎛⎭⎪⎫θ为参数,0≤θ≤π2和⎩⎪⎨⎪⎧x =1-22t ,y =-22t (t 为参数),求曲线C 1与C 2的交点坐标.解 曲线C 1的普通方程为x 2+y 2=5(x ≥0,y ≥0). 曲线C 2的普通方程为x -y -1=0.解方程组⎩⎪⎨⎪⎧x -y -1=0,x 2+y 2=x ≥0,y ,得⎩⎪⎨⎪⎧x =2,y =1.∴曲线C 1与C 2的交点坐标为(2,1). 题型三 极坐标方程和参数方程的综合应用例3 (2015·课标全国Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ. (1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.解 (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝⎛⎭⎪⎫32,32. (2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π6时,|AB |取得最大值,最大值为4.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t(t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△PAB 面积的最大值. 解 (1)由圆C 的极坐标方程为ρ=22cos(θ+π4),得ρ2=22(22ρcos θ-22ρsin θ), 把⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可得圆C 的直角坐标方程为x 2+y 2-2x +2y =0,即(x -1)2+(y +1)2=2. ∴圆心坐标为(1,-1), ∴圆心的极坐标为(2,7π4).(2)由题意,得直线l 的直角坐标方程为22x -y -1=0. ∴圆心(1,-1)到直线l 的距离d =|22+1-1|22+-2=223,∴|AB |=2r 2-d 2=22-89=2103. 点P 到直线l 的距离的最大值为r +d =2+223=523,∴S max =12×2103×523=1059.1.求直线⎩⎪⎨⎪⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.解 直线方程可化为3x +y -3=0, 曲线方程可化为x 2+y 23=1.由⎩⎪⎨⎪⎧y =-3x +3,x 2+y 23=1,得x 2-x =0,∴x =0或x =1.可得交点为A (0,3),B (1,0).∴|AB |=1+3=2. ∴所截得的弦长为2. 2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt(t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角.解 直线的普通方程为bx -ay -4b =0,圆的普通方程为(x -2)2+y 2=3,直线与圆相切,则圆心(2,0)到直线的距离为3,从而有3=|2b -a ·0-4b |a 2+b2,即3a 2+3b 2=4b 2,∴b =±3a ,而直线的倾斜角的正切值为tan α=b a ,∴tan α=±3,因此切线的倾斜角为π3或2π3.3.已知直角坐标系xOy 中,直线l 的参数方程:⎩⎪⎨⎪⎧x =22t -2,y =22t (t 为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.解 ∵直线l 的直角坐标方程为x -y +2=0. ∴原点到直线的距离r =22=1.∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎪⎨⎪⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,求|AB |的长.解 直线l 的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x -y =0,曲线C 的参数方程⎩⎪⎨⎪⎧x =t -1t,y =t +1t两式经过平方相减,化为普通方程为y 2-x 2=4,联立⎩⎪⎨⎪⎧3x -y =0,y 2-x 2=4解得⎩⎪⎨⎪⎧ x =-22,y =-322或⎩⎪⎨⎪⎧x =22,y =322.所以A ⎝ ⎛⎭⎪⎫-22,-322,B ⎝ ⎛⎭⎪⎫22,322. 所以|AB |=⎝ ⎛⎭⎪⎫-22-222+⎝ ⎛⎭⎪⎫-322-3222=2 5.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数.解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.6.(2016·全国甲卷)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A 、B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y , 所以x 2+(y -3)2=3.(2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,PC 取得最小值, 此时,P 点的直角坐标为(3,0). 8.(2016·全国乙卷)在直角坐标系xOy中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2,C 1是以(0,1)为圆心,a 为半径的圆. 将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1.9.(2016·江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B两点,求线段|AB |的长.解 直线l 的方程化为普通方程为3x -y -3=0, 椭圆C 的方程化为普通方程为x 2+y 24=1,联立方程组得⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1y 1=0或⎩⎪⎨⎪⎧x 2=-17,y 2=-837,∴A (1,0),B ⎝ ⎛⎭⎪⎫-17,-837.故|AB |=⎝ ⎛⎭⎪⎫1+172+⎝ ⎛⎭⎪⎫0+8372=167.10.(2016·全国丙卷)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标系方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 解 (1)C 1的普通方程为x 23+y 2=1.C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.。