简易数控直流可变稳压电源的设计
- 格式:doc
- 大小:385.50 KB
- 文档页数:10
数控直流稳压电源设计1.数控直流稳压电源的概述现代电子装置在供电要求方面有着越来越高的要求,而数控直流稳压电源则是目前广泛应用的一种供电装置。
数控直流稳压电源不仅具有直流稳定的输出特性,而且还能实现数字化控制,具有更加高效、精确的供电能力和性能。
数控直流稳压电源适用于各种电子装置的开发和生产领域,如通信技术、医疗器械、军事通讯和工业自动化等。
2.数控直流稳压电源的设计原理数控直流稳压电源主要由下列几个模块组成。
2.1输入端输入端是稳压电源的第一步,它接收外部电源的直流或交流信号,并且对输入电压进行过滤和波形整形,以确保后续的电路可以正常工作。
2.2稳压模块稳压模块负责稳定输出电压的值。
在闭环控制下,稳压模块保证输出电压稳定在标准值附近,即使在输入电压波动或负载变化的条件下,它也能确保输出电压的稳定性和可靠性。
2.3数控模块数控模块为整个电源提供了数字化控制的功能。
它包括一个集成电路、显示屏、输入设备和计算机接口等组成部分。
通过输入输出端口与计算机相连,可实时监测和控制电源的电压、电流、功率等参数。
2.4保护模块保护模块负责保护电源免受外界环境的影响。
它包括四种保护措施:过压保护、过温保护、过载保护和短路保护,并采用相应的防护电路来实现保护功能。
3.数控直流稳压电源的设计流程数控直流稳压电源的设计流程包括以下几个步骤:3.1确定电源的基本参数这包括电源输出电压、电流、功率、负载范围等参数。
设计人员需要根据电路应用需要,确定电源所需的输出电压和电流等参数。
3.2选取和确认元件在确定电源的基本参数后,设计人员应选择与之相适应的元件,包括电容器、电感器、稳压管、集成电路等,这是设计数控直流稳压电源的关键步骤之一。
设计人员需要综合考虑元件的品质、供货和维护等方面的因素,以便在成本和性能之间取得平衡。
3.3进行电路设计在确定元件后,设计人员需要根据设计参数和基本电路原理,设计稳压电源的具体电路方案,逐步完善和优化电路。
简易数控可调稳压电源
一、任务
设计一种直流数控可调稳压电源,原理示意图如下
二、要求
1.基本要求
(1)输出电压:范围0~+9.9V,步进0.1V,纹波不大于10mV;
(2)输出电流:500mA;
(3)输出电压值由液晶显示屏显示
(4)由“+”、“-”两键分别控制输出电压步进增减;
(5)为实现上述几部件工作,自制一稳压直流电源,输出±15V,+5V。
2.发挥部分
(1)输出电压可预置在0~9.9V之间的任意一个值;
(2)用自动扫描代替人工按键,可以在液晶屏上显示输出电压的变化曲线(步进0.1V不变);
(3)扩展输出电压种类(比如三角波、梯形波等)。
(4)其它
三、说明
1.尽量使用STC公司的最新系列单片机产品。
2.数字控制部分单片机自选,能满足控制精度要求即可。
3. 可根据自己需要设计或者增加按键。
4. 自制工作稳压电源中的变压器可用现成的模块。
四、评分标准。
数控直流稳压电源的设计和制作数控直流稳压电源,是一种集数字化控制、直流电源稳定输出功能于一体的电子制品,它广泛应用于各类实验、测试、仪器、通讯系统及各种机电设备中。
今天我们就来谈谈数控直流稳压电源的设计和制作的具体过程。
一、设计1.稳压芯片选型在设计数控直流稳压电源中,首先要选用一款适合的稳压芯片。
常见的稳压芯片有LM317、LM350、LM338等,选择其中的一种根据自己的需求进行选择。
例如,LM317适合安装功率较低的电路,LM350适合于安装功率较大的电路,而LM338的输出电流可达5A以上,是一种非常适合于实验室及大功率稳压电源设计的芯片。
2.规划电源输出模块在设计中需要考虑输出模块的功能设置与实际需要相符,因此需要详细了解电源输出模块的所有类型,包括DC稳压输出、DC包络线输出、交流输出、多路并联输出等的优劣之处,然后选用适合自己需要的类型进行设计。
3.阻容电路的设计在电源输出中需要设计阻容电路,其目的是为了保护电源不受怠工放置,以及电源的过载保护等,详见下面内容。
二、制作1.准备器材在制作数控直流稳压电源之前,需要准备相应的器材和材料,例如PCB板、元器件、焊接工具等。
2.电源输出模块的焊接在制作中需要用到数控直流稳压电源输出模块,首先在PCB板上进行焊接,接下来安装电容、二极管等元器件,进行一定量的基础防护。
3.安装稳压芯片安装稳压芯片需要考虑其散热问题,此时应该做好散热片附加硅脂,以保证芯片处于稳定状态。
4.接线在焊接和装配完成后,接线工作是必要的。
在接线时,必须要认真看清接线图,把电路板上的元器件和接线线路进行一一对应,以便拼接时不会出现误差。
5.开机测试制作数控直流稳压电源时,一定要经过开机测试。
在开机时,应该观察电源的工作状态是否正常,电压是否稳定,是否存在短路等问题。
这样可以在实际应用时更加安全和稳定。
以上就是数控直流稳压电源的设计和制作的具体过程,每一步都要做好方案设计和操作步骤的准备工作,以确保电源的稳定运行。
简易数控直流稳压电源设计数控直流稳压电源是一种能够提供稳定输出电压的电源装置,常用于电子设备的测试、实验和制造过程中。
下面是一个简易的数控直流稳压电源设计。
1.设计需求和规格在开始设计之前,我们需要明确电源的输出电压和电流需求。
假设设计目标为输出电压范围为0-30V,最大输出电流为5A。
2.选择电源变压器根据设计需求,我们需要选择一个合适的电源变压器。
变压器的选择应该满足以下条件:-输入电压范围为市电的电压范围;-输出电压是设计需求的两倍,即60V;-输出功率需大于最大输出功率,即300W。
3.整流电路设计使用桥式整流电路将交流输入电压转换为直流电压。
桥式整流电路由4个二极管组成,将交流输入电压的负半周和正半周均转换为正向电流。
4.滤波电路设计滤波电路用于减小输出电压中的纹波,并提供稳定的直流输出电压。
常见的滤波电路是使用电容滤波器。
根据设计需求,选择适当的电容来达到所需的输出纹波和稳定性。
5.稳压电路设计稳压电路用于控制输出电压在设定范围内稳定。
可以使用集成稳压器芯片,例如LM317,它可以根据外部电阻器和电容器的值来控制输出电压。
6.控制电路设计为了实现数控功能,可以使用微控制器或模拟电路来控制输出电压和电流。
通过合理设置电容、电阻和电位器等元器件,可以设计出合适的控制电路。
7.保护电路设计为了确保电源和负载的安全,应设计适当的保护电路。
常见的保护电路包括过流保护、过压保护和过温保护。
可以使用电流检测器、过压保护器和温度传感器等元器件来实现这些保护功能。
8.PCB设计和制造根据上述电路设计,进行PCB布局和布线。
设计合适的PCB尺寸和布局,以容纳所有元器件,并确保电路的稳定性和可靠性。
完成设计后,可以选择将PCB文件发送给制造商进行制造。
9.组装和测试将制造好的PCB组装在电源箱中,接好输入电源线和输出连接线。
在保证安全的情况下,通电测试电源的稳定性、输出的准确性和保护电路的可靠性。
10.调试和优化根据实际测试结果,不断调试和优化电源的性能。
目录1. 课题背景 (3)1.1 指导思想 (3)1.2 方案论证 (3)1.3基本设计任务 (3)1.4电路特点 (4)2 电路设计 (4)2. 1 总体方框图 (4)2. 2 工作原理 (5)3 各主要电路及部件工作原理 (5)3.1 74LS192 (5)3.2 DC0832 (7)3.3 CC4008 (8)3.4 CC4115 (8)3.5直流稳压电源 (3)4 原理总图 (9)5 元器件清单 (10)6 调试过程 (10)6.1 通电前检查 (10)6.2 数电部分调试 (10)6.3 模电部分 (11)7 小结 (11)8 设计体会及今后的改进意见 (11)8.1 体会 (11)8.2 本方案特点及存在的问题和改进意见 (12)参考文献 (10)1.课题背景随着人们生活水平的不断提高,数字化控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数控直流稳压电源就是一个很好的典型例子,但人们对它的要求也越来越高,要为现代人工作、科研,生活、提供更好的,更方便的设施就需要从数字电子技术入手,一切向数字化,智能化方向发展.。
本次所设计的数控直流稳压电源与传统的稳压电源相比,具有操作方便,电压稳定度高的特点,其输出电压大小采用数字显示,主要用于要求电源精度比较高的设备,或科研实验电源使用,并且此设计,没有用到单片机,只用到了数字技术中的可逆计数器,D/A转换器,译码显示等电路,具有控制精度高,制作比较容易等优点。
1.1指导思想操作人员通过按键对系统发出电压调整指令,该指令与输出电路的状态信号号一起送入数控部分电路,经过处理后产生符合指令要求的输出电压信号,并经输出电路功率驱动后输出驱动电流。
当输出电路的输出电流超过极限值时,由过流保护电路产生的信号送入数控电路,关闭系统的电压输出,对系统的输出电路进行保护。
另外,数控部分还产生显示信息送入显示电路,将输出电压或其它信息报告给操作人员。
「数控直流稳压电源的设计与实现」数控直流稳压电源是一种应用广泛的电子设备,用于为各种电子设备提供稳定的直流电源。
本文将讨论数控直流稳压电源的设计与实现过程。
首先,设计一个数控直流稳压电源需要了解其基本原理。
该电源根据输入电源的不稳定性,通过电路设计和控制算法,将电源输出稳定在设定的电压值上。
主要包括输入稳压电路、反馈控制电路、功率放大电路等。
接下来,我们需要选择合适的元件来实现电源电路。
在选取稳压管、二极管等传统元件的同时,可以考虑使用集成稳压芯片和开关电源元件,以提高电源的效率和稳定性。
此外,还需要选取合适的功率放大器和控制器,以保证电源的输出电流和电压稳定性。
在电路设计完成后,需要进行仿真测试。
通过使用SPICE软件等工具,对电源电路进行仿真,以验证电路的工作原理和稳定性。
这包括输入电压范围、输出电流范围等参数的测试。
在完成电路设计和仿真测试后,需要进行电路的实际制作和调试。
这包括设计电路板、焊接元件、连接线路等步骤。
在制作完成后,需要对电路进行调试,检查是否存在电流短路、线路接错等问题,并进行修复。
最后,进行电源的性能测试。
通过连接相关的负载设备,测试电源的输出电压和电流是否稳定,并满足设计要求。
同时,通过使用示波器、数字万用表等测试仪器,验证电源的电压波形、纹波情况等参数。
总结起来,数控直流稳压电源的设计与实现包括了选取合适的元件、电路设计和仿真测试、制作和调试电路以及性能测试等步骤。
通过合理的设计和精确的调试,可以实现一个高品质的数控直流稳压电源。
简易数控直流稳压电源设计设计一台简易数控直流稳压电源可以分为以下几个步骤:1.确定电源的输出要求:确定电源的输出电压范围和电流范围。
根据实际需求,选择合适的电压和电流范围。
2.设计电源的整流电路:确定电源的输入电流和输入电压范围。
常用的整流电路包括桥式整流电路和中心点整流电路。
桥式整流电路更常见,效率较高。
3.设计电源的滤波电路:在电源的整流电路后加入滤波电容进行滤波,去除输出直流电压上的波动。
选取合适的滤波电容,使输出直流电压稳定。
4.设计电源的稳压调节电路:选择合适的稳压器件,根据需求设计稳压调节电路。
常见的稳压器件有三端稳压器和开关稳压器。
三端稳压器稳定性好,但效率较低;开关稳压器效率高,但稳定性较差。
5.设计电源的控制电路:根据需要设计数控电源的控制电路。
可以采用微处理器或者专用控制器来实现电源的数控功能,例如实现电源的开关机、电压和电流的调节、过压和过流保护等功能。
6.优化设计:根据实际需求对电源进行优化设计。
例如,可以增加短路保护、温度保护等功能。
7.制作测试:根据设计完成电源的制作和组装,进行测试。
测试包括输入输出电压电流的测试,以及控制电路的测试。
8.优化调整:根据测试结果对电源进行优化调整。
可以通过修改电路参数、更换稳压器件等方法进行优化调整。
9.最终调整:完成测试和优化调整后,进行最终调整,确保电源的稳定性和可靠性。
10.产品发布:在完成最终调整后,将电源进行产品化,进行包装和外观设计等工作,最终将产品发布市场。
需要注意的是,在设计数控直流稳压电源时,需要考虑以下几个方面:-输出电压范围和电流范围要与实际需求相匹配。
-整流电路和滤波电路的设计要使输出直流电压稳定,并且波纹尽可能小。
-稳压调节电路的选择要根据需求和性能进行考虑。
-控制电路的设计要实现所需的数控功能。
-电源的安全性和可靠性是设计时需要考虑的重要因素。
-电源的尺寸和散热量要注意合理安排,确保电源可以正常工作并且不过热。
直流数控可调稳压电源的设计
0 引言
直流稳压电源是常用的电子设备,它能保证在电网电压波动或负载发生变化时,输出稳定的电压。
一个低纹波、高精度的稳压源在仪器仪表、工业控制及测量领域中有着重要的实际应用价值。
本设计给出的稳压电源的输出电压范围为0~18 V,额定工作电流为0.5 A,并具有+、-步进电压调节功能,其最小步进为0.05 V,纹波不大于10 mV,此外,还可用LCD液晶显示器显示其输出电压值。
1系统硬件设计
本系统由电源模块、调压模块、D/A转换模块、显示与键盘模块组成,图1所示是该直流数控稳压电源的结构原理框图。
1.1系统电源模块
在图1中,220 V市电经220 V/17.5 V变压器降压后得到的双17.5 V 交流电压,经过一个全桥整流后可得到±21 V两路电压,其中一路+21 V电压供给调整管,作为电源对外输出,另一路经三端稳压器7815得到+15 V,再经过7805得到+5 V的电压。
-21 V的电压则经三端稳压器MC7915得到-15 V电压,以作为系统本身的工作电源。
1.2电压调整模块
该稳压电源中的电压调整模块电路如图2所示。
其中调整管采用复合管形式(由Q1、Q3组成),以实现大电流输出,由于该设计要求Iomax=0.5
A,Iomin=0 A,Pm=(Vimax-Vomin)Iomax=(18-0)乘以0.5=9 W,因此,本电路中的调整管可选TIP41(其Icmax=6 AIomax=0.5 A;Pcw=65 W9 W,VCEOmax=100 V18 V),当然,也可以选用2N5832。
课程名称:电子课程设计课题名称:简易数控直流可变稳压电源的设计班级:测控技术与仪器 07级2班小组成员:谯建辉 2007071066丁滔 2007071084使用仪器:直流电源,万用表学校:成都信息工程学院课程设计时间:2009年11月19日—12月31日数控直流可变稳压电源的设计1.内容摘要:数控直流可变稳压电源由输入电路,稳压输出电路和显示电路组成。
输入电路输入的电压直接由实验室直流电源提供,提供的直流电压经退耦、滤波后直接输入到三端可调式稳压器的输入端,通过改变三端可调式稳压器的电阻而得到不同的电压输出,在这里选用8通道数字模拟开关改变三端可调式稳压器可调端的电阻。
通过按键计数状态来控制8通道数字模拟开关的开关状态,计数的状态与三端可调式稳压器的输出电压一致,同时将计数状态在数码管上同步显示输出的电压。
2.设计指标:(1)用集成芯片制作一个2~9V的直流电源。
(2)最大功率要求10W以上。
(3)电压的调整步进为1V并有相应的指示。
(4)具有过压、过流保护。
3.方案选择与系统框图:方案一:该数控直流可变稳压电源主要由滤波电路,稳压电路和计数显示电路组成。
方案采用LM317组成数字可调直流稳压电压源,采用7805构成固定输出电压源。
LM317是可调式三端稳压器,能够连续输出可调的稳定的直流电压。
它只允许可调正电压,且该稳压器内部含有过流,过热保护电路;LM317通过一个电阻(R)和一个可变电位器(Rp)组成电压输出调节电路,它的输入电压Vi= 15V,输出电压为V o=1.25(1+Rp/R),在该方案中,通过8通道数字控制模拟开关4051芯片改变Rp的值,从而改变输出的电压值。
7805是固定式三端稳压器,当其输入输出的压差达到要求时,其固定输出+5V,一般要求7805的输入输出的压差在大于2V的情况下,才能保证正常输出。
8通道数字控制模拟开关4051的开关的选通,通过其使能端与其选通状态代码控制,而其选通状态代码则通过74LS193加/减计数器的计数输出状态控制。
该方案要求在稳定输出步进为1V的直流电压输出(2—9V)的同时,将输出电压在数码管上显示。
在这里,选用驱动共阴极数码显示器的BCD码四位—七段译码器—4511,将4511的译码输入端直接与74LS193计数器的计数状态输出端,将4511的译码输出端通过适当阻值的电阻,再与共阴极数码管相连接,这样就可以初步实现输出电压与显示同步。
系统框图:方案二:利用单片机,D/A 转换器,LM324设计数控可变直流稳压电源。
利用单片机编程实现按键中断后输出不同的代码,经D/A 转换,放大后就可得到期望的模拟电压输出,同时在连接单片机的显示电路中显示电压值。
4.各单元电路设计,参数计算和元器件选择:选择方案一:直流电压源输出的直流电压都有一定程度的纹波,可通过电容滤波来减小或消除纹波对后续电路的影响。
简单电容滤波电路:图中的发光二极管作为指示灯,选用100uF的电解电容C1起平滑输出的作用,选用0.1uF(104)瓷片电容起消除高频干扰作用,即用C1和C2抑制高频干扰。
电解电容C7用来提高稳压器的纹波抑制比,减小输出电压中的纹波电压;C6用来克服LM317在深度负反馈作用下可能产生的自激振荡,还可以进一步减小输出电压中的纹波分量;D1的作用是防止输入端短路时,电容C6放电而损坏稳压器;D2的作用是防止输出端短路时,C7放电而损坏稳压器。
根据公式:V o=1.25(1+Rp/R),选用R=220Ω,Vi=+12V,则Vo=1.25(1+Rp/220)=2V时,R3=Rp=132ΩV o=3V时,R4=Rp=308ΩV o=4V时,R5=Rp=484ΩV o=5V时,R6=Rp=660ΩV o=6V时,R7=Rp=836ΩV o=7V时,R8=Rp=1012ΩV o=8V时,R9=Rp=1188ΩV o=9V时,R10=Rp=1364Ω考虑到4051的各开关选通后存在内阻,且上述阻值的电阻不好找到,故在该方案中Rp采用变阻器。
除了R8,R9,R10采用0—10KΩ的变阻器外,其它均采用0—1KΩ的变阻器。
计数显示电路:显示电路是由计数器,译码器及数码管组成的。
计数器用74LS193,译码器用驱动共阴极数码显示器的BCD码四位—七段译码器—4511。
通过按键产生一个下降沿使74LS193计数,同时用74LS193的计数状态输出端来选通4051的各开关,从而达到输出固定电压输出的目的。
74LS193的功能表清零预置时钟预置数据输入输出MR PL CU CD P0 P1 P2 P3 QA QB QC QD1 ×××××××0 0 0 00 0 ××D0 D1 D2 D3 D0 D1 D2 D30 1 ↓ 1 ××××加计数0 1 1 ↓××××减计数4511译码器的特点:具有BCD转换、消隐和锁存控制、七段译码及驱动功能的CMOS电路能提供较大的拉电流。
可直接驱动LED显示器。
其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。
LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入DCBA 状态如何,七段均发亮,显示“8”。
它主要用来检测数码管是否损坏。
LE:锁定控制端,当LE=0时,允许译码输出。
LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。
A、B、C、D、为8421BCD码输入端。
A、B、C、D、E、F、G:为译码输出端,输出为高电平1有效。
5.完整电路图及其工作原理:数控直流可变稳压电源的工作原理:直流电压源输出的电压经耦合,滤波后作用到固定式三端稳压器7805和可调式三端稳压器LM317,7805稳定输出的+5V直接为74LS193,74 LS00,译码器4511提供电源电压。
根据公式:Vo=1.25(1+Rp/R),改变连接LM317的1脚上的电阻阻值,就可在其输出端得到不同的电压值。
LM317的1脚上电阻阻值的改变是通过8通道数字控制模拟开关芯片4051实现的。
因为当INH为低电平时,4051的输入端 C B A 的不同状态输入,可选通对应的开关,即可改变LM317的1脚上电阻阻值,从而控制LM317的输出电压值。
4051的输入端 C B A的状态,则通过74LS193(四位二进制加/减计数器)的计数输出状态来控制,即将74LS193的四个计数输出端的低三位分别与4051的输入端 C B A相连接。
同时将74LS193的四个计数输出端与驱动共阴极数码显示器的BCD码四位—七段译码器—4511的四位输入端相连接,通过4511译码后驱动共阴极数码管显示相应的电压值,实现电压输出与显示值同步。
6.组装调试:组装调试过程中,使用的主要仪器,仪表及工具包括:直流电压源,万用表,烙铁等。
组装时,应注意的方面:检查电路板上的铜线是否存在断线和短路问题,若存在应及时解决,可用焊锡对断线进行修补,如果断线很严重可用搭连导线解决。
在焊接的时候烙铁的温度不要太高,这样于焊接不利。
调试部分:(1)调试时,要注意各芯片的安装是否正确。
连通电源,输入+12V直流电压,用万用表测量各芯片的电源电压VCC的电压值。
该实验调试中,测得7805的输入输出端电压分别为+8.1V和+4.9V,LM317的输入输出端电压分别为+12V和3.3V。
4051的电源电压VCC为+11.9V,74LS193,74LS00,4511的电源电压均近似为+4.9V。
(2)接下来逐一排查各芯片工作是否正常。
接通电源,数码管显示数字为2,用万用表表笔测量74LS193的计数输出的高低电平的状态(一般电压值小于0.17V左右为低电平,电压值大于2.7V为高电平),经测量74LS193的计数状态输出端QD QC QB QA的电压值分别为0V,0V,4.3V,0V,这与显示值是对应的。
(3)将4051芯片拔出,开通电源,用导线分别代替各开关,调节变阻器,观察LM317的电压输出值的变化。
若输出电压值随变阻器阻值的变化而变化,且用万用表测得4051插槽的各引脚的高低电平状态与原理图上对应的预期的理论值接近,则说明连接4051各管脚的铜线无断线,短线现象。
(4)在调试显示电路中,遇到按下一次按键,数码管上显示多次计数现象和显示计数到9时,再按一次按键则出现消隐,再按键几次后,数码管显示0,1,2,…。
这显然与设计要求不符。
经过仔细排查发现计数到10时,经与非门反馈到计数器置数的管脚之间的铜线存在断路,经用焊锡修补后,计数状态输出值能正常显示2到9。
在数码管显示2到9时,可以用万用表检测74LS193的计数状态输出端对应的二进制代码与数码管显示的数字是否相符。
而对于按下一次按键,在数码管上显示多次计数现象,是由按键产生的脉冲抖动引起的,可以利用电容电压不能突变的特性,对按键进行消抖(可选用10pF 的瓷片电容对按键进行消抖处理)。
当然,要想消除抖动,可以用555定时器实现,实现按键按下一次后只产生一个一定宽度的脉冲,即按下一次按键,只产生一个下降沿作用于计数脉冲输入端。
7.元器件清单:8.PCB图或布线图:。