04_医学图像成像模式_2010
- 格式:ppt
- 大小:3.41 MB
- 文档页数:83
医学图像处理与诊断随着计算机技术的不断发展,医学图像处理在医学领域中得到了广泛应用。
医学图像处理是指将医学图像进行数字化处理,对图像进行分析和识别,以提供更加准确的诊断结果。
医学图像处理是一种高精度、高速度的技术,具有非常重要的意义。
一、医学图像的成像原理医学图像的成像原理是采用一些物理学和工程学原理,将人体内部的结构转化为数字图像进行分析和识别。
医学图像范围包括但不限于常见的X线、CT、MRI、PET、SPECT等多种成像方式。
其中,X线能提供较好的骨骼成像;CT能够对身体组织提供准确的立体成像;MRI是一种功能与解剖成像相结合的技术,能够得到更为详细的图像信息;PET和SPECT则是功能成像的代表,能够通过注射放射性物质的方式,反映出身体组织的代谢情况。
二、医学图像的基本处理流程医学图像处理的基本流程包括:图像获取、预处理、特征提取、分类识别等四个环节。
1. 图像获取图像获取是医学图像处理的第一步,主要包括影像采集、图像传输、图像格式转换等。
常用的影像采集设备有CT、MRI和PET等,其中PET的图像与其他影像不同,需要先进行分析和处理后才能用于诊断。
2. 预处理预处理是医学图像处理的重要环节,可分为一系列处理步骤。
预处理的主要目的是消除图像中的噪声、增强图像对比度、提取有效信息等。
主要包括图像平滑、图像滤波、直方图均衡化等方法。
3. 特征提取在医学图像处理中,特征提取是指从图像中提取能够区分不同组织和器官的信息,以便进行后续的分类识别。
特征提取常用的方法包括卷积神经网络、人工神经网络、局部二值模式等。
4. 分类识别分类识别是医学图像处理的核心环节,通过对提取的特征进行分类,来实现对疾病的诊断和分析。
常用的分类方法包括支持向量机、随机森林、K近邻等。
三、医学图像处理的应用医学图像处理在医学领域中得到了广泛应用,主要应用于疾病的诊断、治疗和研究等方面。
1. 病灶检测医学图像处理技术能够对图像中的病灶进行检测,提高疾病的诊断准确率。
医学成像分类医学成像是医学领域的一项重要技术,旨在帮助医生在诊断疾病时更准确地观察患者体内的情况,进而为患者提供更好的治疗方案。
医学成像技术繁多,以下是常见的医学成像分类:1. X线成像:通过将X射线通过身体,让X射线穿过身体部位,进而通过图像来观察身体部位。
常见的X线成像包括拍胸部X光片,颅骨X光片等。
2. 计算机断层成像(CT):使用X射线和计算机来生成横断面的图像。
通过CT成像,医生可以获得更详细的图像,并且可以查看三维重构的图像。
常见的CT成像包括颅脑CT、腹部CT等。
3. 磁共振成像(MRI):使用磁场和无害的无线电波来生成人体内部的高清晰度图像。
MRI技术可以提供更细节化的图像,对某些部位的诊断效果更好,常见的MRI包括头部MRI、胸部MRI等。
4. 超声成像:使用超声波来生成人体内部的图像,通过不断地改变探头的角度,医生可以获得不同的角度、深度和质量的图像。
超声成像不用辐射,对患者较为安全,且价格较低,适用于肝、胰腺、肾等脏器的诊断。
5. 核磁共振成像(NMR):通过放置多个小的磁铁和射频线圈的磁共振成像,可以生成身体内部组织的图像。
NMR技术在神经学、临床肿瘤学和心脏病学等领域中得到广泛应用。
6. 正电子发射成像(PET):PET成像通常用于检测肿瘤和其他疾病的代谢过程。
PET成像通过注射放射性同位素和扫描患者来检测器官和组织中的放射性同位素的浓度,以生成高分辨率的图像。
以上是医学成像的一些常见分类,医学成像技术的发展,提高了医生在诊断疾病时的准确度,也极大地改善了患者的诊疗质量。
医学成像技术中的医学图像处理医学成像技术是一种用于获得人体内部结构或功能信息的技术。
医学成像技术主要可以分为三种:X射线成像技术、磁共振成像技术和核医学成像技术。
医学图像处理是医学成像技术中的主要环节,其质量好坏直接决定了临床医生的判断和决策。
在医学图像处理中,医学图像的质量、分辨率、噪声等参数都需要被优化,以便于临床应用和科研研究。
因此,医学图像处理技术是医学成像技术中至关重要的一部分。
医学图像处理技术的主要作用是通过数字图像处理和图像分析技术来获取和计算图像特征和相关参数。
医学图像处理技术的发展历程可以追溯到20世纪60年代。
以前,医学图像处理技术主要采用手工检测和手工分析的方法。
这种方法需要手工选择特定的区域和特征根据医生的经验进行分析,效率低下,并且易出现误差。
随着计算机技术的飞速发展,医学图像处理技术有了长足的进步。
计算机辅助诊断(CAD)技术,由于其高效、准确、重复性好的特点,已经成为医学图像处理技术的主流。
目前,CAD技术主要包括图像预处理、特征提取和分类诊断等步骤。
关键是要采取适当的图像处理和计算机算法来分析和识别医学图像中的异常区域。
对于不同的医学图像,需要采用不同的图像处理和算法来获得最佳的处理效果。
医学图像预处理是医学图像处理的第一步。
医学图像预处理可以消除图像中的噪声和伪像,提高图像的对比度和分辨率。
医学图像预处理过程包括图像平滑、去噪、增强和标准化等步骤。
图像平滑可以去除图像中的噪声和伪像。
去噪可以消除图像中的各种噪声。
增强可以提高图像的对比度和分辨率。
标准化可以对每个像素的强度进行规范化,使像素点之间的差异更加明显。
特征提取是医学图像中最重要的一步。
特征提取是指从图像中提取出具有鉴别力的特征,以便将正常组织与异常组织进行区分。
特征提取技术可以从图像中提取出形状、纹理和强度等多种特征用于分类诊断。
形状特征可以通过分析图像中的边缘和轮廓来提取。
纹理特征可以通过分析图像中的图案和结构来提取。
医学影像成像原理名词解释《医学影像成像原理》名词解释第一章1.X线摄影(radiography ):是X线通过人体不同组织、器官结构的衰减作用,产生人体医疗情报信息传递给屏- 片系统,再通过显定影处理,最终以X 线平片影像方式表现出来的技术。
2.X 线计算机体层成像(computed tomography ,CT):经过准直器的X 线束穿透人体被检测层面;经人体薄层内组织、器官衰减后射出的带有人体信息的X线束到达检测器,检测器将含有被检体层面信息X线转变为相应的电信号;通过对电信号放大,A/D 转换器变为数字信号,送给计算机系统处理;计算机按照设计好的方法进行图像重建和处理,得到人体被检测层面上组织、器官衰减系数(| )分布,并以灰度方式显示人体这一层面上组织、器官的图像。
3.磁共振成像(magnetic resonance imaging ,MRI):通过对静磁场(B)中的人体施加某种特定频率的射频脉冲电磁波,使人体组织中的氢质子(H)受到激励而发生磁共振现象,当RF 脉冲中止后,H 在弛豫过程中发射出射频信号(MR信号),被接收线圈接收,利用梯度磁场进行空间定位,最后进行图像重建而成像的。
4.计算机X 线摄影(computed radiography ,CR):是使用可记录并由激光读出X线影像信息的成像板(IP )作为载体,经X线曝光及信息读出处理,形成数字式平片影像。
5.数字X 线摄影(digital radiography ,DR):指在具有图像处理功能的计算机控制下,采用一维或二维的X 线探测器直接把X 线影像信息转化为数字信号的技术。
6.影像板(imaging plate ,IP):是CR系统中作为采集(记录)影像信息的接收器(代替传统X 线胶片),可以重复使用,但没有显示影像的功能。
7.平板探测器(flat panel detector ,FPD :数字X线摄影中用来代替屏- 片系统作为X 线信息接收器(探测器)。
医学图像了解医学图像医学图像是反映解剖区域内部结构或内部功能的图像,它是由⼀组图像元素——像素(2D)或⽴体像素(3D)组成的。
医学图像是由采样或重建产⽣的离散性图像表征,它能将数值映射到不同的空间位置上。
像素的数量是⽤来描述某⼀成像设备下的医学成像的,同时也是描述解剖及其功能细节的⼀种表达⽅式。
像素所表达的具体数值是由成像设备、成像协议、影像重建以及后期加⼯所决定的医学图像有四个关键成分——像素深度、光度表⽰、元数据和像素数据。
这些成分与图像⼤⼩和图像分辨率有关图像深度(⼜称⽐特深度或颜⾊深度)是⽤来编码每个像素信息的⽐特数。
⽐如说,⼀个8⽐特的光栅可以有256个从0到255数值不等的图图像深度像深度光度表⽰解释了像素数据如何以正确的图像格式(单⾊或彩⾊图⽚)显⽰。
为了说明像素数值中是否存在⾊彩信息,我们将引⼊“每像素采光度表⽰样数”的概念。
单⾊图像只有⼀个“每像素采样”,⽽且图像中没有⾊彩信息。
图像是依靠由⿊到⽩的灰阶来显⽰的,灰阶的数⽬很明显取决于⽤来储存样本的⽐特数。
在这⾥,灰阶数与像素深度是⼀致的。
医疗放射图像,⽐如CT图像和磁共振(MR)图像,是⼀个灰阶的“光度表⽰”。
⽽核医学图像,⽐如正电⼦发射断层图像(PET)和单光⼦发射断层图像(SPECT),通常都是以彩⾊映射或调⾊板来显⽰的元数据是⽤于描述图像的信息。
它可能看起来会⽐较奇怪,但是在任何⼀个⽂件格式中,除了像素数据之外,图像还有⼀些其他的相关信元数据息。
这样的图像信息被称为“元数据”,它通常以“数据头”的格式被储存在⽂件的开头,涵盖了图像矩阵维度、空间分辨率、像素深度和光度表⽰等信息像素数据是储存像素数值的位置。
根据数据类型的不同,像素数据使⽤数值显⽰所需的最⼩字节数,以整点或浮点数的格式储存像素数据图像⼤⼩ = 数据头⼤⼩(包括元数据) + ⾏数栏数像素深度(图像帧数)医学图像格式放射图像有6种主要的格式,分别为DICOM(医学数字成像和通讯)、NIFTI(神经影像信息技术)、PAR/REC(Philips磁共振扫描格式)、ANALYZE(Mayo医学成像)、NRRD(近原始栅格数据)和MNIC现代神经影像学技术脑电图(EEG),单光⼦发射体层成像(SPECT),正电⼦发射型计算机断层显像(PET),功能性磁共振成像(fMRI),侵⼊性光学成像(Invasive Optical Imaging),颅内电极记录(Intracranial Recording),脑⽪层电图(ECoG)。