高中物理碰撞与动量守恒考点专题训练,历届高中物理碰撞与动量守恒高考真题及答案解析
- 格式:pdf
- 大小:1.27 MB
- 文档页数:26
物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b ,小车质量M =3kg ,AO 部分粗糙且长L =2m ,动摩擦因数μ=0.3,OB 部分光滑.另一小物块a .放在车的最左端,和车一起以v 0=4m/s 的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB 部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a 、b 两物块视为质点质量均为m =1kg ,碰撞时间极短且不粘连,碰后一起向右运动.(取g =10m/s 2)求:(1)物块a 与b 碰后的速度大小;(2)当物块a 相对小车静止时小车右端B 到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
【优化方案】2014届高考物理一轮复习专题十六碰撞与动量守恒(含答案解析)1. (2012·高考重庆卷)质量为m的人站在质量为2m的平板小车上,以共同的速度在水平地面上沿直线前行,车所受地面阻力的大小与车对地面压力的大小成正比.当车速为v0时,人从车上以相对于地面大小为v0的速度水平向后跳下.跳离瞬间地面阻力的冲量忽略不计,则能正确表示车运动的v-t图象为( )2.(2012·高考大纲全国卷)如图,大小相同的摆球a和b的质量分别为m和3m,摆长相同,并排悬挂,平衡时两球刚好接触.现将摆球a向左拉开一小角度后释放.若两球的碰撞是弹性的,下列判断正确的是( )A.第一次碰撞后的瞬间,两球的速度大小相等B.第一次碰撞后的瞬间,两球的动量大小相等C.第一次碰撞后,两球的最大摆角不相同D.发生第二次碰撞时,两球在各自的平衡位置3.(2012·高考天津卷)质量为0.2 kg的小球竖直向下以6 m/s的速度落至水平地面,再以4 m/s的速度反向弹回,取竖直向上为正方向,则小球与地面碰撞前后的动量变化为________kg·m/s.若小球与地面的作用时间为0.2 s,则小球受到地面的平均作用力大小为________N.(取g=10 m/s2).4.(2012·高考山东卷)光滑水平轨道上有三个木块A、B、C,质量分别为m A=3m、m B=m C=m,开始时B、C均静止,A以初速度v0向右运动,A与B碰撞后分开,B又与C发生碰撞并粘在一起,此后A与B间的距离保持不变.求B与C碰撞前B的速度大小.5.(2012·高考新课标全国卷)如图,小球a、b用等长细线悬挂于同一固定点O.让球a静止下垂,将球b向右拉起,使细线水平.从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°.忽略空气阻力,求(1)两球a、b的质量之比;(2)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比.答案:1.【解析】选B.人和小车作用时由动量守恒定律得,3mv 0=-mv 0+2mv ,解得v =2v 0,故小车作用后速度从2v 0开始减少,故答案为B.2.【解析】选AD.a 球释放后与b 球发生弹性碰撞,由动量守恒定律,可得:mv =mv 1+3mv 2,由能量守恒定律可得:12mv 2=12mv 21+123mv 22 联立两式可得:v 1=-12v ,v 2=12v ,A 项正确,B 项不正确. 由mgh =12mv 2可知,两球碰后所上升的高度相同,摆角相同,C 项错.由T =2πl g ,两球振动周期相同,会同时到达平衡位置发生第二次碰撞,D 项正确.3.【解析】本题目考查了Δp =mv ′-mv 和F 合力·t =Δp .代入数据得Δp =0.2×4-0.2×(-6)=2(kg ·m/s)由(F -mg )t =Δp 代入数据得F =12 N.【答案】2 124.【解析】法一:把A 、B 、C 看成一个系统,整个过程中由动量守恒定律得 m A v 0=(m A +m B +m C )v ①B 、C 碰撞过程中由动量守恒定律m B v B =(m B +m C )v ②联立解得v B =65v 0. 法二:设A 与B 碰撞后,A 的速度为v ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 到B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0.【答案】65v 0 5.【解析】(1)设球b 的质量为m 2,细线长为L ,球b 下落至最低点,但未与球a 相碰时的速率为v ,由机械能守恒定律得m 2gL =12m 2v 2①式中g 是重力加速度的大小.设球a 的质量为m 1,在两球碰后的瞬间,两球共同速度为v ′,以向左为正.由动量守恒定律得m 2v =(m 1+m 2)v ′②设两球共同向左运动到最高处,细线与竖直方向的夹角为θ,由机械能守恒定律得 12(m 1+m 2)v ′2=(m 1+m 2)gL (1-cos θ)③ 联立①②③式得m 1m 2=11-cosθ-1④代入题给数据得m 1m 2=2-1.⑤(2)两球在碰撞过程中的机械能损失是 Q =m 2gL -(m 1+m 2)gL (1-cos θ)⑥ 联立①⑥式,Q 与碰前球b 的最大动能E k (E k =12m 2v 2)之比为 QE k =1-m 1+m 2m 2(1-cos θ)⑦联立⑤⑦式,并代入题给数据得 QE k=1-22.⑧【答案】(1)2-1 (2)1-22。
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律3.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A在木板B上滑动时,系统的动能转化为摩擦热,设木板B的长度为L,假设A刚好滑到B的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A相对B静止后的速度大小;对子弹和A共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.4.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV 2=mv 1(1分) 损失的动能为:ΔE′=12mv 21-12×2mV 22(2分) 联立解得:ΔE′=13(1)22+×mv 2因为ΔE′=f·x (1分), 可解得射入第二钢板的深度x 为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解5.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。
高考物理动量守恒定律真题汇编(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
专题七碰撞与动量守恒【考情探究】课标解读考情分析备考指导考点内容动量、动量定理1。
理解冲量和动量。
2.通过理论推导和实验,理解动量定理,能用动量定理解释生产生活中的有关现象。
动量守恒定律是高考命题的重点和热点,常常与牛顿运动定律、能量守恒定律等知识综合考查。
常见的考查形式有:(1)动量定理在流体中的应用;(2)满足动量守恒定律条件的分析判断,对单一过程进行简单应用;(3)在碰撞、反冲等问题中,综合应用动量守恒定律、动量定理、能量守恒定律和牛顿运动定律。
1。
在学生初步形成的运动与相互作用观念和能量观念的基础上,引导学生通过研究碰撞现象拓展对物理世界的认识和理解。
2。
通过探究碰撞过程中的守恒量,进一步发展学生运动与相互作用观念和能量观念,使其了解物理规律具有适用范围和条件。
3。
通过实验探究和理论推导,让学生经历科学论证过程,理解动量定理的物理实质与牛顿第二定律的一致性.4.能从理论推导和实验验证的角度,理解动量守恒定律,深化对物体之间相互作用规律的理解。
5.能用动量和机械能的知识分析和解释机械运动现象,解决一维碰撞问题。
动量守恒定律及其应用1.通过理论推导和实验,理解动量守恒定律,能用动量守恒定律解释生产生活中的有关现象。
2.知道动量守恒定律的普适性.3.通过实验,了解弹性碰撞和非弹性碰撞的特点。
4.定量分析一维碰撞问题并能解释生产生活中的弹性碰撞和非弹性碰撞现象。
动量和能量的综合1。
能从牛顿运动定律、动量守恒定律、能量守恒定律思考物理问题.2.体会用守恒定律分析物理问题的方法,体会自然界的和谐与统一.【真题探秘】基础篇固本夯基【基础集训】考点一动量、动量定理1。
(多选)为了进一步探究课本中的迷你小实验,某同学从圆珠笔中取出轻弹簧,将弹簧一端固定在水平桌面上,另一端套上笔帽,用力把笔帽往下压后迅速放开,他观察到笔帽被弹起并离开弹簧向上运动一段距离。
不计空气阻力,忽略笔帽与弹簧间的摩擦,在弹簧恢复原长的过程中()A。
2020衡水名师原创物理专题卷专题十六 碰撞与动量守恒定律考点62 动量 冲量 动量定理 (1、2、3、5、11)考点63 动量守恒定律及其应用 (4、6、7、9、10、15、16、17、19) 考点64 碰撞及其能量变化的判断 (8、12、13、14、20) 考点65实验:验证动量守恒定理 (18)第I 卷(选择题 68分)一、选择题(本题共17个小题,每题4分,共68分。
每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.【2017·西藏自治区拉萨中学高三上学期期末】考点62 易下列运动过程中,在任意相等时间内,物体动量变化相等的是( )A .平抛运动B .自由落体运动C .匀速圆周运动D .匀减速直线运动 2.【2017·山东省枣庄市高三上学期期末质量检测】考点62 易质量为60kg 的建筑工人,不慎从高空跌下,由于弹性安全带的保护,使他悬挂起来;已知弹性安全带的缓冲时间是1.2s ,安全带长5m ,不计空气阻力影响,g 取10m/s 2,则安全带所受的平均冲力的大小为( )A .100 NB .500 NC .600 ND .1100 N3.【2017·长春外国语学校高三上学期期末考试】考点62易关于速度、动量和动能,下列说法正确的是( )A .物体的速度发生变化,其动能一定发生变化B .物体的动量发生变化,其动能一定发生变化C .物体的速度发生变化,其动量一定发生变化D .物体的动能发生变化,其动量一定发生变化4.【2017·安徽省合肥市第一中学高三第三阶段考试】考点63易如图所示, 12F F 、等大反向,同时作用在静止于光滑水平面上的A 、B 两物体上,已知两物体质量关系 A B M M ,经过相等时间撤去两力,以后两物体相碰且粘为一体,这时A 、B将A .停止运动B .向右运动C .向左运动D .仍运动但方向不能确定 5.【2017·湖北省部分重点中学高三新考试大纲适应性考试】考点62中质量为m 的运动员从下蹲状态竖直向上起跳,经过时间 t,身体仲直并刚好离开地面,离开地面时速度为 0υ.在时间t 内( )A .地面对他的平均作用力为 mgB .地面对他的平均作用力为 t m υC .地面对他的平均作用力为 )(g t m -υD .地面对他的平均作用力为)(t g m υ+ 6.【2017年全国普通高等学校招生统一考试物理(全国1卷正式版)】考点63 中将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg m/s ⋅B .5.7×102 kg m/s ⋅C .6.0×102kg m/s ⋅ D .6.3×102kg m/s ⋅ 7.【2017·四川省成都市高三第一次诊断性检测】考点63难如图所示,小车静止在光滑水平面上,AB 是小车内半圆弧轨道的水平直径,现将一小球从距A 点正上方h 高处由静止释放,小球由A 点沿切线方向经半圆轨道后从B 点冲出,在空中能上升的最大高度为0.8h ,不计空气阻力.下列说法正确的是( )A .在相互作用过程中,小球和小车组成的系统动量守恒B .小球离开小车后做竖直上抛运动C .小球离开小车后做斜上抛运动D .小球第二次冲出轨道后在空中能上升的最大高度为0.6h8.【河南省南阳市第一中学2017届高三上学期第二次周考】考点64难如图所示,倾角为 的固定斜面充分长,一质量为m 上表面光滑的足够长的长方形木板A 正以速度v 0沿斜面匀速下滑,某时刻将质量为2 m 的小滑块B 无初速度地放在木板A 上,则在滑块与木板都在滑动的过程中( )A .木板A 的加速度大小为3gsinθB .木板A 的加速度大小为零C .A 、B 组成的系统所受合外力的冲量一定为零D .木板A 的动量为13mv0时,小滑块B 的动量为23mv09.【2017·西藏自治区拉萨中学高三上学期期末】考点63 中如图所示,小车AB 放在光滑水平面上,A 端固定一个轻弹簧,B 端粘有油泥,AB 总质量为M ,质量为m 的木块C 放在小车上,用细绳连接于小车的A 端并使弹簧压缩,开始时AB 和C 都静止,当突然烧断细绳时,C 被释放,使C 离开弹簧向B 端冲去,并跟B 端油泥粘在一起,忽略一切摩擦,以下说法正确的是( )A .弹簧伸长过程中C 向右运动,同时AB 也向右运动B .C 与B 碰前,C 与AB 的速率之比为M :mC .C 与油泥粘在一起后,AB 立即停止运动D .C 与油泥粘在一起后,AB 继续向右运动10.【江西省南昌市十所省重点中学命制2017届高三第二次模拟突破冲刺理综物理试题(一)】考点63 中如图所示,质量分别为m1和m2的两个小球A 、B 带有等量异种电荷,通过绝缘轻弹簧相连接,置于绝缘光滑的水平面上.当突然加一水平向右的匀强电场后,两小球A 、B 将由静止开始运动,在以后的运动过程中,对两个小球和弹簧组成的系统(设整个过程中不考虑电荷间库仑力的作用,且弹簧不超过弹性限度),以下说法中错误的是()A. 两个小球所受电场力等大反向,系统动量守恒B. 电场力分别对球A和球B做正功,系统机械能不断增加C. 当弹簧长度达到最大值时,系统机械能最大D. 当小球所受电场力与弹簧的弹力相等时,系统动能最大11.【2017·哈尔滨市第六中学上学期期末考试】考点62中如图甲所示,一质量为m的物块在t=0时刻,以初速度v0从足够长、倾角为θ的粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示.t0时刻物块到达最高点,3t0时刻物块又返回底端.下列说法正确的是()A.物块从开始运动到返回底端的过程中重力的冲量大小为3mgt0sinθB.物块从t=0时刻开始运动到返回底端的过程中动量变化量大小为023vmC.斜面倾角θ的正弦值为085gtvD.不能求出3t0时间内物块克服摩擦力所做的功12.【吉林省普通高中2017届高三下学期第四次调研考试试卷理综物理】考点64 中如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为2B Am m=,规定向右为正方向,A、B两球的动量均为6Kg.m/s,运动中两球发生碰撞,碰撞前后A球动量变化为﹣4Kg.m/s,则()A. 左方是A球B. 右方是A球C. 碰撞后A、B两球速度大小之比为2:5D. 经过验证两球发生的碰撞不是弹性碰撞13.【四川省成都外国语学校2017届高三11月月考】考点64中如图所示在足够长的光滑水平面上有一静止的质量为M的斜面,斜面表面光滑、高度为h、vv0tt0 2t03t0Oθv0(甲)(乙)倾角为θ.一质量为m(m<M)的小物块以一定的初速度沿水平面向右运动,不计冲上斜面过程中的机械能损失.如果斜面固定,则小物块恰能冲到斜面的顶端.如果斜面不固定,则小物块冲上斜面后能达到的最大高度为()A.h B.mhm M+C.mhM D.Mhm M+14.【四川省成都外国语学校2017届高三12月一诊模拟】考点64易在光滑水平面上,一质量为m,速度大小为v的A球与质量为2m静止的B球碰撞后,A球的动能变为1/9,则碰撞后B球的速度大小可能是( )A. 13v B.23v C.49v D.59v16.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63易甲、乙两船的质量均为M,它们都静止在平静的湖面上,质量为M的人从甲船跳到乙船上,再从乙船跳回甲船,经过多次跳跃后,最后人停在乙船上.假设水的阻力可忽略,则()A.甲、乙两船的速度大小之比为1:2B.甲船与乙船(包括人)的动量相同C.甲船与乙船(包括人)的动量之和为零D.因跳跃次数未知,故无法判断17.【黑龙江省牡丹江市第一高级中学2017届高三12月月考】考点63难如图所示,在光滑水平面上有一质量为M的木块,木块与轻弹簧水平相连,弹簧的另一端连在竖直墙上,木块处于静止状态,一质量为m的子弹以水平速度v0击中木块,并嵌在其中,木块压缩弹簧后在水平面做往复运动.木块自被子弹击中前到第一次回到原来位置的过程中,木块受到的合外力的冲量大小为()A.MmvM m+B.2MvC.2MmvM m+D.2mv第II卷(非选择题 42分)二、非选择题(共3小题,共42分,按题目要求作答,计算题应写出必要的文字说明、方程式和重要步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)18.【2017届辽宁省大连市高三第二次模拟考试理科综合物理试卷】考点65 难如图甲所示,在验证动量守恒定律实验时,小车A的前端粘有橡皮泥,推动小车A使之做匀速运动。
专题十七 碰撞与动量守恒1.(2013·高考新课标全国卷Ⅰ,35题)(2)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为D.现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为D.已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小.【解析】(2)从碰撞时的能量和动量守恒入手,运用动能定理解决问题.设在发生碰撞前的瞬间,木块A 的速度大小为v ;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量和动量守恒定律,得12m v 2=12m v 21+12(2m )v 22 ① m v =m v 1+(2m )v 2 ②式中,以碰撞前木块A 的速度方向为正.由①②式得v 1=-v 22③设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得μmgd 1=12m v 21④μ(2m )gd 2=12(2m )v 22 ⑤ 据题意有 d =d 1+d 2 ⑥ 设A 的初速度大小为v 0,由动能定理得μmgd =12m v 20-12m v 2⑦ 联立②至⑦式,得v 0= 285μgd .答案:(2) 285μgd2.(2013·高考新课标全国卷Ⅱ,35题)(2)如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹黄分离的过程中,(ⅰ)整个系统损失的机械能;(ⅱ)弹簧被压缩到最短时的弹性势能. 【解析】(2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大.(ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得m v 0=2m v 1 ①此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得m v 1=2m v 2 ② 12m v 21=ΔE +12(2m )v 22 ③ 联立①②③式得ΔE =116m v 20. ④(ⅱ)由②式可知v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此速度为v 3,此时弹簧被压缩至最短,其弹性势能为E p .由动量守恒定律和能量守恒定律得m v 0=3m v 3 ⑤ 12m v 20-ΔE =12(3m )v 23+E p ⑥ 联立④⑤⑥式得E p =1348m v 20. ⑦答案:(2)(ⅰ)116m v 20 (ⅱ)1348m v 20 3.(2013·高考天津卷,2题)我国女子短道速滑队在今年世锦赛上实现女子3 000 m 接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则( )A .甲对乙的冲量一定等于乙对甲的冲量B .甲、乙的动量变化一定大小相等方向相反C .甲的动能增加量一定等于乙的动能减少量D .甲对乙做多少负功,乙对甲就一定做多少正功【解析】选B.乙推甲的过程中,他们之间的作用力大小相等,方向相反,作用时间相等,根据冲量的定义,甲对乙的冲量与乙对甲的冲量大小相等,但方向相反,选项A 错误;乙推甲的过程中,遵守动量守恒定律,即Δp 甲=-Δp 乙,他们的动量变化大小相等,方向相反,选项B 正确;在乙推甲的过程中,甲、乙的位移不一定相等,所以甲对乙做的负功与乙对甲做的正功不一定相等,结合动能定理知,选项C 、D 错误.4.(2013·高考重庆卷,9题)在一种新的“子母球”表演中,让同一竖直线上的小球A 和小球B ,从距水平地面高度为ph (p >1)和h 的地方同时由静止释放,如图所示.球A 的质量为m ,球B 的质量为3m .设所有碰撞都是弹性碰撞,重力加速度大小为g ,忽略球的直径、空气阻力及碰撞时间.(1)求球B 第一次落地时球A 的速度大小;(2)若球B 在第一次上升过程中就能与球A 相碰,求p 的取值范围; (3)在(2)情形下,要使球A 第一次碰后能到达比其释放点更高的位置,求p 应满足的条件.【解析】(1)小球B 第一次落地时,两球速度相等,由v 2=2gh 得v =2gh . (2)B 球从开始下落到第一次落地所用时间t 1=v g =2h g①由于小球B 在第一次上升过程中就能与A 球相碰,则B 球运动时间应满足t 1<t 2<2t 1②由相遇条件知12gt 22+v (t 2-t 1)-12g (t 2-t 1)2=ph ③ 由①②③解得1<p <5.(3)设t =t 2-t 1,由①③式得t =p -142hg,则A 、B 两球相遇时的速度分别为v A =v +gt =2gh +g p -142h g =2gh p +34v B =v -gt =2gh -g p -142h g =2gh 5-p4若A 球碰后刚好能达到释放点,由两球相碰为弹性碰撞知 12m v 2A +12·3m v 2B =12m v ′ 2A +12·3m v ′2B m v A -3m v B =-m v A ′+3m v B ′ v A ′=v A可解得此时v B ′=v B ,v A =3v B.要使A 球碰后能到达比其释放点更高的位置,须满足v A <3v B ,解得p <3.由v B =2gh ·5-p4知,5-p 4<1,解得p >1,所以p 的取值范围是1<p <3.答案:(1)2gh (2)1<p <5 (3)1<p <3 5.(2013·高考山东卷,38题) (2)如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小.【解析】(2)因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量定恒定律得m A v 0=m A v A +m C v C ①A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB ,由动量守恒定律得 m A v A +m B v 0=(m A +m B )v AB ②A 与B 达到共同速度后恰好不再与C 碰撞,应满足 v AB =v C ③ 联立①②③式,代入数据得 v A =2 m/s. ④ 答案:(2)2 m/s 6.(2013·高考广东卷,35题)如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求:(1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .【解析】P 1与P 2发生完全非弹性碰撞时,P 1、P 2组成的系统遵守动量守恒定律;P 与(P 1+P 2)通过摩擦力和弹簧弹力相互作用的过程,系统遵守动量守恒定律和能量守恒定律.注意隐含条件P 1、P 2、P 的最终速度即三者最后的共同速度;弹簧压缩量最大时,P 1、P 2、P 三者速度相同.(1)P 1与P 2碰撞时,根据动量守恒定律,得 m v 0=2m v 1解得v 1=v 02,方向向右P 停在A 点时,P 1、P 2、P 三者速度相等均为v 2,根据动量守恒定律,得2m v 1+2m v 0=4m v 2解得v 2=34v 0,方向向右.(2)弹簧压缩到最大时,P 1、P 2、P 三者的速度为v 2,设由于摩擦力做功产生的热量为Q ,根据能量守恒定律,得从P 1与P 2碰撞后到弹簧压缩到最大 12×2m v 21+12×2m v 20=12×4m v 22+Q +E p 从P 1与P 2碰撞后到P 停在A 点 12×2m v 21+12×2m v 20=12×4m v 22+2Q 联立以上两式解得E p =116m v 20,Q =116m v 20根据功能关系有Q =μ·2mg (L +x )解得x =v 2032μg-L .答案:(1)v 1=12v 0,方向向右 v 2=34v 0,方向向右(2)v 2032μg -L 116m v 20 7.(2013·高考江苏卷,5题)水平面上,一白球与一静止的灰球碰撞,两球质量相等.碰撞过程的频闪照片如图所示,据此可推断,碰撞过程中系统损失的动能约占碰撞前动能的( )A .30%B .50%C .70%D .90%【解析】选A.根据v =x t 和E k =12m v 2解决问题.量出碰撞前的小球间距与碰撞后的小球间距之比为12∶7,即碰撞后两球速度大小v ′与碰撞前白球速度v 的比值,v ′v =712.所以损失的动能ΔE k =12m v 2-12·2m v ′2,ΔE kE k0≈30%,故选项A 正确.8.(2013·高考江苏卷,12题C) (3)如图所示,进行太空行走的宇航员A 和B 的质量分别为80 kg 和100 kg ,他们携手远离空间站,相对空间站的速度为0.1 m/s.A 将B 向空间站方向轻推后,A 的速度变为0.2 m/s ,求此时B 的速度大小和方向.【解析】(3)根据动量守恒定律,(m A +m B )v 0=m A v A +m B v B ,代入数值解得v B =0.02 m/s ,离开空间站方向.答案:(3)0.02 m/s ,离开空间站方向 9.(2013·高考福建卷,30题)(2)将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。
高中物理动量定理专项训练100(附答案)含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。
求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。
【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。
2.一质量为0.5kg的小物块放在水平地面上的A点,距离A点5m的位置B处是一面墙,如图所示,物块以v0=9m/s的初速度从A点沿AB方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.μ=(2)F=130N【答案】(1)0.32【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
考点分类:考点分类见下表考点一应用动量定理求解连续作用问题机枪连续发射子弹、水柱持续冲击煤层等都属于连续作用问题.这类问题的特点是:研究对象不是质点(也不是能看成质点的物体),动量定理应用的对象是质点或可以看做质点的物体,所以应设法把子弹、水柱质点化,通常选取一小段时间内射出的子弹或喷出的水柱作为研究对象,对它们进行受力分析,应用动量定理,或者综合牛顿运动定律综合求解.考点二“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.(3)应用此关系时要注意一个问题:公式v1、v2和x 一般都是相对地面而言的.考点三 动量守恒中的临界问题1.滑块不滑出小车的临界问题如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.#网2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v 甲大于乙物体的速度v 乙,即v 甲>v 乙,而甲物体与乙物体不相碰的临界条件是v 甲=v 乙. 3.涉及物体与弹簧相互作用的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面体(斜面体放在光滑水平面上)的过程中,由于弹力的作用,斜面体在水平方向将做加速运动.物体滑到斜面体上最高点的临界条件是物体与斜面体沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.考点四 弹簧类的慢碰撞问题慢碰撞问题指的是物体在相互作用的过程中,有弹簧、光滑斜面或光滑曲面等,使得作用不像碰撞那样瞬间完成,并存在明显的中间状态,在研究此类问题时,可以将作用过程分段研究,也可以全过程研究.典例精析★考点一:应用动量定理求解连续作用问题◆典例一:正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】f =13nmv2 【解析】◆典例二:一股水流以10 m/s 的速度从喷嘴竖直向上喷出,喷嘴截面积为0.5 cm2,有一质量为0.32 kg 的球,因受水对其下侧的冲击而停在空中,若水冲击球后速度变为0,则小球停在离喷嘴多高处?【答案】1.8 m【解析】小球能停在空中,说明小球受到的冲力等于重力F =mg ①小球受到的冲力大小等于小球对水的力.取很小一段长为Δl 的小水柱Δm ,其受到重力Δmg 和球对水的力F ,取向下为正方向.学*(F +Δmg)t =0-(-Δmv)②其中小段水柱的重力Δm·g 忽略不计,Δm =ρS·Δl★考点二:“人船模型”问题的特点和分析◆典例一:如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?【答案】m m +M L Mm +M L【解析】设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒,所以有mv 1=Mv 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=mm +M L . ◆典例二:如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A.mh M +mB.Mh M +mC.mh +D.Mh +【答案】C★考点三:动量守恒中的临界问题◆典例一:两质量分别为M1和M2的劈A 和B,高度相同,放在光滑水平面上,A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示.一质量为m 的物块位于劈A 的倾斜面上,距水平面的高度为h.物块从静止滑下,然后滑上劈B.求物块在B 上能够达到的最大高度.【答案】h′=1212()()M M M m M m ++h.◆典例二 甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M=30 kg,乙和他的冰车的质量也是30 kg.游戏时,甲推着一个质量为m=15 kg 的箱子和他一起以大小为v0=2.0 m/s 的速度滑行,乙以同样大小的速度迎面滑来,如图所示.为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住.若不计冰面的摩擦力,求甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞.【答案】5.2 m/s【解析】法一 取甲开始运动的方向为正方向,设甲推出箱子后的速度为v1,箱子的速度为v,以甲和箱子为系统,则由动量守恒定律得(m+M)v0=Mv1+mv.设乙抓住箱子后其速度为v2,以箱子和乙为系统,则由动量守恒定律得mv-Mv0=(m+M)v2.而甲、乙不相撞的条件是v2≥v1,当甲和乙的速度相等时,甲推箱子的速度最小,此时v1=v2.联立上述三式可得v=222222m mM M m mM+++v0=5.2 m/s.即甲至少要以对地5.2 m/s 的速度将箱子推出,才能避免与乙相撞.法二 若以甲、乙和箱子三者组成的整体为一系统,由于不相撞的条件是甲、乙速度相等,设为v1,则由动量守恒定律得(m+M)v0-Mv0=(m+2M)v1,代入具体数据可得v1=0.4 m/s.再以甲和箱子为一系统,设推出箱子的速度为v,推出箱子前、后系统的动量守恒(m+M)v0=Mv1+mv,代入具体数据得v=5.2 m/s.考点四 弹簧类的慢碰撞问题◆典例一:(2018·四川南充模拟)如图所示,质量为M 的滑块静止在光滑的水平桌面上,滑块的光滑弧面底部与桌面相切,一质量为m 的小球以速度v0向滑块滚来,设小球不能越过滑块,求:(1)小球到达最高点时小球和滑块的速度分别为多少? (2)小球上升的最大高度.【答案】v=0mv M m+,h=202()Mv M m g +1.【2016·全国新课标Ⅰ卷】(10分)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中。