2011全国中考数学压轴题分类汇编
- 格式:doc
- 大小:5.31 MB
- 文档页数:218
2011年全国各地数学中考题汇编——抛物线压轴题1、(黄冈市2011)24.(14分)如图所示,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0).⑴求b 的值. ⑵求x 1•x 2的值⑶分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.⑷对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.答案:24.解:⑴b =1⑵显然11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组2114y kx y x =+⎧⎪⎨=⎪⎩的两组解,解方程组消元得21104x kx --=,依据“根与系数关系”得12x x =-4⑶△M 1FN 1是直角三角形是直角三角形,理由如下:由题知M 1的横坐标为x 1,N 1的横坐标为x 2,设M 1N 1交y 轴于F 1,则F 1M 1•F 1N 1=-x 1•x 2=4,而FF 1=2,所以F 1M 1•F 1N 1=F 1F 2,另有∠M 1F 1F =∠FF 1N 1=90°,易证Rt △M 1FF 1∽Rt △N 1FF 1,得∠M 1FF 1=∠FN 1F 1,故∠M 1FN 1=∠M 1FF 1+∠F 1FN 1=∠FN 1F 1+∠F 1FN 1=90°,所以△M 1FN 1是直角三角形.⑷存在,该直线为y =-1直线y =-1即为直线M 1N 1.第22题图第22题解答用图如图,设N 点横坐标为m ,则2、(黄石市2011年)25.(本小题满分10分)已知二次函数2248y x mx m =-+-(1)当2x ≤时,函数值y 随x 的增大而减小,求m 的取值范围。
(2)以抛物线2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接正三角形AMN (M ,N 两点在抛物线上),请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。
(2012年1月最新最细)2011全国中考真题解析120考点汇编☆压轴题4127.(2011山东淄博24,分)抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),与直线y=x 交于点A(﹣2,﹣2),B(2,2).(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且MN=2错误!未找到引用源。
,若M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由.考点:二次函数综合题;解二元一次方程组;待定系数法求二次函数解析式;勾股定理;平行四边形的性质。
专题:计算题。
分析:(1)把C的坐标代入求出c的值,把A、B的坐标代入抛物线的解析式得到方程组,求出方程组的解即可求出抛物线的解析式;(2)以点P,M,Q,N为顶点的四边形能为平行四边形,当M在OA上,N在OB 上时,以点P,M,Q,N为顶点的四边形为平行四边形,求出N的横坐标,求出ND、MD,根据勾股定理求出m即可.解答:(1)解:∵抛物线y=ax2+bx+c与y轴交于点C(0,﹣2),代入得:c=﹣2,∴y=ax2+bx﹣2,把A(﹣2,﹣2),B(2,2)代入得:24222422a ba b-=--⎧⎨=+-⎩错误!未找到引用源。
,解得:121ab⎧=⎪⎨⎪=⎩错误!未找到引用源。
,∴y=12错误!未找到引用源。
x2+x﹣2,答:抛物线的解析式是y=12错误!未找到引用源。
x2+x﹣2.(2)解:以点P,M,Q,N为顶点的四边形能为平行四边形.理由如下:∵M、N在直线y=x上,∴OP=PM,OQ=QN,只有M在OA上,N在OB上时,ON=OM时,以点P,M,Q,N为顶点的四边形为平行四边形,过M作MC⊥y轴于C,交NQ的延长线于D,∵MN=2,M点的横坐标为m,∴N的横坐标是﹣m,MD=ND=|2m|,由勾股定理得:(2m)2+(2m)()222=,∵m<0,m=12 -.答:以点P,M,Q,N为顶点的四边形能为平行四边形,m的值是12 -.点评:本题主要考查对一次函数的性质,用待定系数法求二次函数的解析式,解二元一次方程组,平行四边形的性质,勾股定理等知识点的理解和掌握,能用待定系数法求二次函数的解析式和得到MD=ND=|2m|是解此题的关键.128.(2011•山西)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O 出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C﹣B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t >0).△MPQ的面积为S.(1)点C的坐标为,直线l的解析式为错误!未找到引用源。
冲刺2010 ——2009年中考数学压轴题汇编(含解题过程)(2009年北京)25.如图,在平面直角坐标系xOy中,ABC三个机战的坐标分别为()6,0A-,()6,0B,(0,C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。
(要求:简述确定G点位置的方法,但不要求证明)(2009年重庆市)26.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E . (1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.26.解:(1)由已知,得(30)C ,,(22)D ,, 90ADE CDB BCD ∠=-∠=∠°,1tan 2tan 212AE AD ADE BCD ∴=∠=⨯∠=⨯=. ∴(01)E ,. ····························································································· (1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,······················································································ (2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ··················································· (3分) (2)2EF GO =成立. ············································································ (4分)26题图x点M 在该抛物线上,且它的横坐标为65, ∴点M 的纵坐标为125. ··········································································· (5分) 设DM 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴DM 的解析式为132y x =-+. ······························································ (6分) ∴(03)F ,,2EF =. ·············································································· (7分) 过点D 作DK OC ⊥于点K ,则DA DK =.90ADK FDG ∠=∠=°, FDA GDK ∴∠=∠.又90FAD GKD ∠=∠=°, DAF DKG ∴△≌△. 1KG AF ∴==. 1GO ∴=. ···························································································· (8分) 2EF GO ∴=. (3)点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,. ∴222(1)2PG t =-+,222(3)2PC t =-+,2GC =.①若PG PC =,则2222(1)2(3)2t t -+=-+,解得2t =.∴(22)P ,,此时点Q 与点P 重合. ∴(22)Q ,. ···························································································· (9分) ②若PG GC =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时GP x ⊥轴. GP 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ························································································ (10分)x③若PC GC =,则222(3)22t -+=,解得3t =,(32)P ∴,,此时2PC GC ==,PCG △是等腰直角三角形. 过点Q 作QH x ⊥轴于点H ,则QH GH =,设QH h =,(1)Q h h ∴+,.2513(1)(1)166h h h ∴-++++=.解得12725h h ==-,(舍去).12755Q ⎛⎫∴ ⎪⎝⎭,. ····································· (12分) 综上所述,存在三个满足条件的点Q ,即(22)Q ,或713Q ⎛⎫⎪⎝⎭,或12755Q ⎛⎫⎪⎝⎭,.(2009年重庆綦江县)26.(11分)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.*26.解:(1)抛物线2(1)0)y a x a =-+≠经过点(A -x093a a∴=+=-··············································································1分∴二次函数的解析式为:2333y x x=-++ ···········································3分(2)D为抛物线的顶点D∴过D作DN OB⊥于N,则DN=3660AN AD DAO=∴==∴∠=,° ············································4分OM AD∥①当AD OP=时,四边形DAOP是平行四边形66(s)OP t∴=∴=··········································5分②当DP OM⊥时,四边形DAOP是直角梯形过O作OH AD⊥于H,2AO=,则1AH=(如果没求出60DAO∠=°可由Rt RtOHA DNA△∽△求1AH=)55(s)OP DH t∴===················································································6分③当PD OA=时,四边形DAOP是等腰梯形26244(s)OP AD AH t∴=-=-=∴=综上所述:当6t=、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. ·7分(3)由(2)及已知,60COB OC OB OCB∠==°,,△是等边三角形则6262(03)OB OC AD OP t BQ t OQ t t=====∴=-<<,,,过P作PE OQ⊥于E,则PE= ·······························································8分116(62)22BCPQS t∴=⨯⨯⨯-232t⎫-⎪⎝⎭···················································································9分当32t=时,BCPQS························································· 10分∴此时33393324444OQ OP OE QE PE==∴=-==,=,P图5PQ ∴===············································· 11分(2009年河北省)26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t(1)当t = 2时,AP =,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC ,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.图16P图4P图3F(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】(2009年河南省)23.(11分)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.解.(1)点A 的坐标为(4,8) …………………1分 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4∴抛物线的解析式为:y =-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3. …………………11分(2009年山西省)26.(本题14分)如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关t 的函数关系式,并写出相应的t 的取值范围.26.(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.(第26题)由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=.········································································ (2分)由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C 点的坐标为()56,. ······························· (3分) ∴111263622ABC C S AB y ==⨯⨯=△·. ·················································· (4分) (2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. ·········································································· (5分) 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ·········································································· (6分) ∴8448OE EF =-==,. ································································ (7分)(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++. (10分) (2009年山西省太原市)29.(本小题满分12分)问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E(不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,(图3)(图1)(图2)图(1)A B CDEFM N求AMBN的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)29.问题解决解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.方法指导:为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图(2)ABCD EFMN 图(1-1)A BC EF M∴()22221x x =-+.解得54x =,即54BN =. ········································· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=,222DM DE EM +=,∴2222AM AB DM DE +=+.····························································· 5分 设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ····································································· 6分∴15AM BN =. ····················································································· 7分 方法二:同方法一,54BN =. ································································ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==. 同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ························· 5分∵114AM AG MG AM =--=5,=.4 ····················································· 6分 ∴15AM BN =. ··················································································· 7分 类比归纳25(或410);917; ()2211n n -+ ································································· 10分N 图(1-2)A B C DE FM G第23题图(1)第23题图(2)联系拓广2222211n m n n m -++ ······················································································ 12分评分说明:1.如你的正确解法与上述提供的参考答案不同时,可参照评分说明进行估分. 2.如解答题由多个问题组成,前一问题解答有误或未答,对后面问题的解答没有影响,可依据参考答案及评分说明进行估分.(2009年安徽省)23.已知某种水果的批发单价与批发量的函数关系如图(1)所示.(1)请说明图中①、②两段函数图象的实际意义.【解】(2)写出批发该种水果的资金金额w (元)与批发量m (kg )之间的函数关系式;在下图的坐标系中画出该函数图象;指出金额在什 么范围内,以同样的资金可以批发到较多数量的该种水果.【解】(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商拟每日售出60kg 以上该种水果, 且当日零售价不变,请你帮助该经销商设计进货和销售的方案, 使得当日获得的利润最大. 【解】)23.(1)解:图①表示批发量不少于20kg 且不多于60kg 的该种水果,可按5元/kg 批发;……3分图②表示批发量高于60kg 的该种水果,可按4元/kg 批发. ………………………………………………………………3分(2)解:由题意得: 2060 6054m m w m m ⎧=⎨⎩≤≤())>(,函数图象如图所示.………………………………………………………………7分 由图可知资金金额满足240<w ≤300时,以同样的资金可 批发到较多数量的该种水果.……………………………8分(3)解法一:设当日零售价为x 元,由图可得日最高销量32040w m =- 当m >60时,x <6.5 由题意,销售利润为2(4)(32040)40[(6)4]y x m x =--=--+………………………………12分当x =6时,160y =最大值,此时m =80即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分 解法二:设日最高销售量为x kg (x >60)则由图②日零售价p 满足:32040x p =-,于是32040xp -= 销售利润23201(4)(80)1604040x y x x -=-=--+………………………12分 当x =80时,160y =最大值,此时p =6即经销商应批发80kg 该种水果,日零售价定为6元/kg ,当日可获得最大利润160元.……………………………………………14分(2009年江西省)25.如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离; (2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.25.(1)如图1,过点E作EG BC⊥于点G. ····················1分∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.············2分∴112BG BE EG====,即点E到BC ·····································3分(2)①当点N在线段AD上运动时,PMN△的形状不发生改变.∵PM EF EG EF⊥⊥,,∴PM EG∥.∵EF BC∥,∴EP GM=,PM EG==同理4MN AB==.··················································································4分如图2,过点P作PH MN⊥于H,∵MN AB∥,∴6030NMC B PMH==︒=︒∠∠,∠.∴12PH PM==∴3cos302MH PM=︒=.则35422NH MN MH=-=-=.在Rt PNH△中,PN==∴PMN△的周长=4PM PN MN++=.·······································6分②当点N在线段DC上运动时,PMN△的形状发生改变,但MNC△恒为等边三角A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)图1A DEBFCG图2A DEBFCPNGH形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==. ··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形.∴tan 301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(5-时,PMN △为等腰三角形. ···················· 10分 (2009年广东广州)25.(本小题满分14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
中考数学压轴题汇编(7套)1、按右图所示的流程,输入一个数据x ,根据y 与x 的关系式就输出一个数据y ,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大。
(1)若y 与x 的关系是y =x +p(100-x),请说明:当p =12时,这种变换满足上述两个要求;(2)若按关系式y=a(x -h)2+k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。
(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【解】(1)当P=12时,y=x +()11002x -,即y=1502x +。
∴y 随着x 的增大而增大,即P=12时,满足条件(Ⅱ)……3分 又当x=20时,y=1100502⨯+=100。
而原数据都在20~100之间,所以新数据都在60~100之间,即满足条件(Ⅰ),综上可知,当P=12时,这种变换满足要求;……6分(2)本题是开放性问题,答案不唯一。
若所给出的关系式满足:(a )h ≤20;(b )若x=20,100时,y 的对应值m ,n 能落在60~100之间,则这样的关系式都符合要求。
如取h=20,y=()220a x k -+,……8分∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a ×802+k=100 ②由①②解得116060a k ⎧=⎪⎨⎪=⎩, ∴()212060160y x =-+。
………14分 2、已知(1)A m -,与(2B m +,是反比例函数ky x=图象上的两个点.(1)求k 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)由(1)2(33)m m -=+,得m =-k = ····· 2分(2)如图1,作B E x ⊥轴,E 为垂足,则3CE =,BE =,BC =,因此30BCE =∠.由于点C 与点A 的横坐标相同,因此CA x ⊥轴,从而120ACB =∠. 当AC 为底时,由于过点B 且平行于AC 的直线与双曲线只有一个公共点B , 故不符题意. ····························· 3分 当BC 为底时,过点A 作BC 的平行线,交双曲线于点D , 过点A D ,分别作x 轴,y 轴的平行线,交于点F .由于30DAF =∠,设11(0)DF mm =>,则1AF =,12AD m =,由点(1A--,,得点11(1)D m --,.因此11(1)(23)m --+=解之得1m =10m =舍去),因此点6D ⎛ ⎝⎭.此时的长度不等,故四边形ADBC 是梯形. ······ 5分如图2,当AB 为底时,过点C 作AB 的平行线,与双曲线在第一象限内的交点为D . 由于AC BC =,因此30CAB =∠,从而150ACD =∠.作DH x ⊥轴,H 为垂足, 则60DCH =∠,设22(0)CH m m =>,则2DH =,22CD m = 由点(10)C -,,得点22(1)D m -+, 因此22(1)3m m -+=.解之得22m =(21m =-舍去),因此点(1D . 此时4CD =,与AB 的长度不相等,故四边形ABDC 是梯形. ········ 7分 如图3,当过点C 作AB 的平行线,与双曲线在第三象限内的交点为D 时,同理可得,点(2D -,,四边形ABCD 是梯形. ·············· 9分综上所述,函数y x=图象上存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形,点D 的坐标为:6D ⎛ ⎝⎭或(1D 或D 10分图1图23、如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.解:(1)抛物线的对称轴5522a x a -=-=………2分(2)(30)A -, (54)B , (04)C ,…………5分把点A 坐标代入254y ax ax =-+中,解得16a =-………6分 215466y x x ∴=-++…………………………………………7分(3)存在符合条件的点P 共有3个.以下分三类情形探索. 设抛物线对称轴与x 轴交于N ,与CB 交于M . 过点B 作BQ x ⊥轴于Q ,易得4BQ =,8AQ =,5.5AN =,52BM =① ········································································································· 以AB 为腰且顶角为角A 的PAB △有1个:1P AB △.222228480AB AQ BQ ∴=+=+= ················· 8分在1Rt ANP △中,1PN ====152P ⎛∴ ⎝⎭, ························· 9分 ②以AB 为腰且顶角为角B 的PAB △有1个:2P AB △.在2Rt BMP △中,22MP ====10分25822P ⎛∴ ⎝⎭, ························11分 ③以AB 为底,顶角为角P 的PAB △有1个,即3P AB △.画AB 的垂直平分线交抛物线对称轴于3P ,此时平分线必过等腰ABC △的顶点C .过点3P 作3P K 垂直y 轴,垂足为K ,显然3Rt Rt PCK BAQ △∽△. 312P K BQ CK AQ ∴==. 3 2.5P K = 5CK ∴= 于是1OK = ··············· 13分3(2.51)P ∴-, ··························· 14分注:第(3)小题中,只写出点P 的坐标,无任何说明者不得分. 4、如图12,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 ,∴ k = 4 ×2 = 8 . (2) 解法一:如图12-1,∵ 点C 在双曲线上,当y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) . 过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON . S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 . S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 . 解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F , ∵ 点C 在双曲线8y x=上,当y = 8时,x = 1 . ∴ 点C 的坐标为 ( 1, 8 ). ∵ 点C 、A 都在双曲线8y x=上 , ∴ S △COE = S △AOF = 4 。
2011年全国各地中考数学专集答案三、反比例函数1.解:(1)作AM⊥x轴于M,BN⊥x轴于N,设AM交OB于点E则S△AOM=S△BON∴S△AOE=S梯形BEMN,∴S△AOB=S梯形BAMN由题意知,A(a,-4a),B(2a,-2a)∴AM=-4a,BN=-2a,MN=-a∴S△AOB=12(-4a-2a)(-a)=3 ·······································································4分(2)作BE⊥x轴于E∵四边形ABCD为正方形,∴BC=CD,∠BCD=90°∴∠BCE+∠OCD=90°又∠BCE+∠EBC=90°,∴∠EBC=∠OCD∴Rt△EBC≌Rt△OCD,∴BE=CO又A(a,-4a),B(2a,-2a),点C在x轴上,点D在y轴上∴C(a,0),D(0,-2a),∴-2a=-a分2又∵点P在反比例函数=-2x(x<0)图象上,且纵坐标为53∴P(-65,53)把x=-65代入y=x+2,得y=45,∴EM=45S△EOF=S△AOF-S△AOE=12×2×53-12×2×45=1315 ··················································4分(2)以AE、EF、BF为边的三角形是直角三角形理由如下:由题意知△AOB 是等腰直角三角形,则△AME 又-2<a <0,0<b <2,AM =2-(-a)=2+a∴AE 2=(2AM)2=2a2+8a +8而BN =2-b ,∴BF 2=(2BN)2=2b2-8b +8PE =PM -EM =PM -AM =b -(2+a)=b -a -2又ab =-2,∴EF 2=(2PE)2=2a2+2b2+8a -8b ∵|a|≠|b|,∴AE ≠BF又(2a2+8a +8 )+(2b2-8b +8)=2a 2+2b2+8a -8∴AE 2+BF 2=EF 2故以AE 、EF 、BF 为边的三角形是直角三角形 ···················································· 9分3.解:(1)∵y =3,∴3=63x∴x =2 3∴a =33+23=5 3 ···················································································· 2分 (2)①∵tan ∠AOB =333=33,∴∠AOB =30° 又∵OA =OB ,∴当α=30°时,点B 的坐标为(-33,-3)∴k =(-33)(-3)=9 3 ················································································ 4分 ②能 ··········································································································· 5分 ∵A (-33,3),OA =OB ,∴OB =OA 将△OAB 绕点O 按逆时针方向旋转α由①知反比例函数为y =93 x,若点B 在则(-6cos α)(-6sin α)=93,即sin αcos α∵0°<α<90°,sin α1-sin 2α=34整理得:16sin 4α-16sin 2α+3=0,∴sin 2α∴sin α=1 2或sin α= 32,∴α=30°或α=当α=30°时,点A 在x 轴上,舍去当α=60°时,点A 坐标为(-33,-3)∴α=60° ········································图34.解:(1)过点A 分别作AM ⊥y 轴于M ,AN ⊥x 轴于N ,如图1∵△AOB 是等腰直角三角形,∴AM =AN ∴设点A 的坐标为(a ,a )∵点A 在直线y =3x -4上,∴a =3a -4,解得a =2 ∴A (2,2) ················································· 1分∵反比例函数y =kx(x >0)的图象经过点A∴2=k2,∴k =4 ············································ 2分∴反比例函数的解析式为y =4x·························· 3分(2)∵A (2,2),∴AO 2=22+22=8把x =0代入y =3x -4,得y =-4 ∴C (0,-4),∴OC =4在Rt △COD 中,CD 2=OC 2-OD 2 ① 在Rt △AOD 中,AD 2=OA 2-OD 2 ②①-②,得CD 2-AD 2=OC 2-OA 2=16-8 ··········· 7分 (3)①若∠P AQ =90°,AP =AQ ,如图2连接BQ在△AOP 和△ABQ 中∵AO =AB ,∠OAP =∠BAQ =90°-∠P AB ,AP =AQ ∴△AOP ≌△ABQ ,∴∠ABQ =∠AOP =45° 又∠ABO =45°,∴∠OBQ =90°,即QB ⊥OB ∵A (2,2),∴B (4,0)把x =4代入y =4x,得y =1∴Q 1(4,1) ················································· 8分 ②若∠AQP =90°,AQ =PQ ,如图3过A 作AC ⊥x 轴于C ,过Q 分别作QD ⊥AC 于D ,QE ⊥x 轴于E 在Rt △ADQ 和Rt △PEQ 中∵AQ =PQ ,∠AQD =∠PQE =90°-∠DQP ∴Rt △ADQ ≌Rt △PEQ ,∴AD =PE ,DQ =EQ设Q (m ,4 m ),则OE =m ,CE =DQ =EQ =4m由OC +CE =OE ,得2+ 4m=m ,∴m =1± 5∵m >0,∴m =1-5 不合题意,舍去,∴m =1+ 5 ∴Q 2(5+1,5-1) ····································10分 ③若∠APQ =90°,P A =PQ ,如图4过A 作AC ⊥x 轴于C ,过Q 作QD ⊥x 轴于D在Rt △ACP 和Rt △PDQ 中∵P A =PQ ,∠APC =∠PQD =90°-∠DPQ∴Rt △ACP ≌Rt △PDQ ,∴AC =PD ,CP =DQ设Q (n ,4 n ),则OD =n ,CP =DQ =4n,PD =AC =2由OC +CP +PD =OD ,得2+ 4n+2=n ,∴n =2±2 2∵n >0,∴n =2-22 不合题意,舍去,∴n =2+2 2∴Q 3(22+2,22-2) ······························································· 12分 综上所述,在反比例函数的图象上一共存在三个符合条件的点Q ,其坐标分别为: ∴Q 1(4,1),Q 2(5+1,5-1),Q 3(22+2,22-2)5.解:(1)∵反比例函数y =4-2mx(x >0)的图象在第四象限 ∴4-2m <0,∴m >2 ···································································· 2分 (2)∵点A (2,-4)在反比例函数y =4-2mx的图象上 ∴-4=4-2m2,解得m =6 ····························································· 4分 ∴反比例函数为y =-8x过点A 、B 分别作AM ⊥OC 于点M ,BN ⊥OC 于点N ∴∠BNC =∠AMC =90°又∵∠BCN =∠ACM ,∴△BCN ∽△ACM ∴BNAM=BCAC∵BCAB=1 3,∴BCAC = 1 4 ,即BNAM =1 4∵AM =4,∴BN =1∴点B 的纵坐标是-1 ············································∵点B 在反比例函数y =-8x的图象上,∴当y =-1时,x =8∴点B 的坐标是(8,-1)······························································ 7分 ∵一次函数y =kx +b 的图象过点A (2,-4)、B (8,-1)∴⎩⎪⎨⎪⎧2k +b =-48k +b =-1 解得⎩⎪⎨⎪⎧k =12b =-5∴一次函数的解析式是y =12x -5 ····················································· 8分(3)0<x<2或8<x<5+41 ····························································· 10分6.解:(1)k =1×2=2 ·················································································· 2分(2)当k >2时,如图1,点E 、F 分别在P 点的右侧和上方作EC ⊥x 轴于C ,作FD ⊥y 轴于D ,EC 与FD 相交于点G ,则四边形OCGD 为矩形 ∵PF ⊥PE∴S △PEF=1 2 PE ·PF = 1 2 ( k 2 -1)( k -2)= 14k 2-k+1 ··············∵四边形PFGE 为矩形,∴S △GEF=S △PEF S △OEF=S 矩形OCGD-S △GEF-S △ODF-S △OCE=k 2 ·k -(1 4 k 2-k +1)-k = 1 4k2-1 ·························· 5分 ∵S △OEF =2S △PEF ,∴ 1 4 k 2-1=2( 14k 2-k+1)解得k =2或k =6∵k =2时,E 、F 重合,∴k =6∴E 点坐标为(3,2) ········································· 6分 (3)存在点E 及y 轴上的点M ,使得△MEF 与△PEF 全等①当k <2时,如图2,只可能△MEF ≌△PEF 作FH ⊥y 轴于H ,由△FHM ∽△MBE 得:BMHF=EMMF∵HF =1,EM =EP =1-k2,MF =PF =2-k∴ BM 1 = 1-k 22-k ,∴BM =12··································· 7分在Rt △BME 中,由勾股定理得:EM 2=BE 2+BM 2 ∴(1-k 2 )2=(k 2)2+(1 2)2,解得k =3 4此时E 点坐标为(38,2) ···································· 8分②当k >2时,如图3,只可能△MFE ≌△PEF 作FQ ⊥y 轴于Q ,由△FQM ∽△MBE 得:BMQF=EMMF∵QF =1,EM =PF =k -2,MF =PE =k2-1BM 1= k -2k2-1,∴BM =2 ······································ 9分 在Rt △MBE 中,由勾股定理得:EM 2=BE 2+BM 2∴(k -2)2=(k 2)2+22,解得k =0(不合题意,舍去)或k =163此时E 点坐标为(83,2)综上所述,符合条件的E 点坐标为(3 8,2)和(83,2) ······················ 10分图37.解:(1)∵点B (2,1)在曲线y =mx(x >0)上∴m =1×2=2 ··············································································· 1分 设直线l 的解析式为y =kx +b ∵直线l 经过点A (1,0),B (2,1)∴⎩⎪⎨⎪⎧k +b =02k +b =1 解得⎩⎪⎨⎪⎧k =1b =-1 ∴直线l 的解析式为y =x -1 ··························································· 4分 (2)∵点P (p ,p -1)在直线y =2上∴p -1=2,即p =3,∴P (3,2)把y =2分别代入y =2 x和y =- 2x,得x =1和x ∴M (1,2),N (-1,2)∴PM =2,PN =4,P A =22,PB = 2∴PMPN=PBP A=1 2,又∵∠BPM =∠APN ∴△PMB ∽△PNA ·····································(3)存在∵点P (p ,p -1)(p >1),∴点P 在直线l 上∵点P (p ,p -1)(p >1),∴M 、N 两点的纵坐标都为p -1 把y =p -1分别代入y =2 x和y =- 2 x ,得x =2 p -1和x =-2 p -1∴M (2 p -1,p -1),N (-2p -1,p -1)∵S △AMN=4S △APM,△AMN 和△APM 等高,∴①当1<p<2时,点P 在点M 的左侧MN =4p -1,PM =2p -1-p∴4p -1=4(2p -1-p)整理得p2-p -1=0,解得p =1±52∵1<p<2,∴p =1-52不合题意,舍去 ∴p =1+52·············································②当p >2时,点P 在点M 的右侧 MN =4p -1,PM =p -2p -1∴4p -1=4(p -2p -1)整理得p2-p -3=0,解得p =1±132∵p>2,∴p=1-132不合题意,舍去∴p=1+132··············································································14分综上所述,存在实数p=1+52或p=1+132,使得S△AMN8.解:(1)点P在线段AB上,理由如下:∵点O在⊙P上,且∠AOB=90°∴AB是⊙P的直径∴点P在线段AB上(2)过点P作PP1⊥x轴,PP2⊥y轴由题意可知PP1、PP2是△AOB的中位线故S△AOB=12OA·OB=12×2PP1·2PP2=2PP1·PP2∵P是反比例函数y=6x(x>0)图象上的任意一点∴PP1·PP2=6∴S△AOB=2PP1·PP2=12(3)连接MN,则点Q在线段MN上,且S△MON=S△AOB=12∴OA·OB=OM·ON,即OAOM=ONOB又∵∠AON=∠MOB,∴△AON∽△MOB ∴∠OAN=∠OMB∴AN∥MB9.解:(1)∵点E、F在函数y=kx(x>0)的图象上,∴设E(x1,kx1)(x1>0),F(x2,kx2)(x2>0) ·································· 1分∴S1=12·x1·kx1=k2,S2=12·x2·kx2=k2 ··················∵S1+S2=2,∴k2+k2=2,∴k=2 ·················· 4分(2)∵四边形OABC为矩形,OA=2,OC=4设E(k2,2),F(4,k4) ······························· 5分∴BE=4-k2,BF=2-k4 ······························· 6分∴S△BEF=12(4-k2)(2-k4)=116k2-k+4 ·········· 7分S△OCF=12×4×k4=k2,S矩形OABC=2×4=8 ········ 8分∴S四边形OAEF=S矩形OABC-S△BEF-S△OCF=8-(116k2-k +4)-k 2=-1 16 k 2+ k2 +4=- 116( k -4)2+5 ···················· 9分 ∴当k =4时,S 四边形OAEF=5,∴AE =2当点E 运动到AB 的中点时,四边形OAEF 的面积最大,最大值是5 ······ 10分10.解:(1)∵y =(3-m)x2+2(m -3)x +4m -m2=(3-m)(x2-2x +1)+4m -m2-3+m=(3-m)(x -1)2-m2+5m -3∴A (1,-m2+5m -3) ································································ 1分∵点A 在双曲线y =3x上,∴1×(-m2+5m -3)=3解得m =2或m =3∵二次项系数3-m ≠0,∴m ≠3∴m =2,A (1,3) ····································································· 2分 ∵直线y =mx +b 经过点A ,∴2×1+b =3,∴b =1 ···························· 3分 ∴直线AB 的解析式为y =2x +1 ····················································· 4分 (2)由y =2x +1,可得B (0,1),C (-1 2,0)将直线AB 绕点O 顺时针旋转90°,得点B 的对应点为D (1,0),点C 的对应点为E (0,12)可得直线DE 的解析式为y =-1 2 x +12············································· 5分由 ⎩⎪⎨⎪⎧y =2x +1y =- 1 2 x +1 2得两直线交点为G (- 1 5,3 5) ····························· 6分 可得DE ⊥BC ,BD =2,BG =55∴sin ∠BDE =BGBD=OBAB=1010······················································ 8分 (3)N 1(5,1),N 2(-3,1) ····················································· 10分 解答过程如下(本人添加,仅供参考)连接AF ,易得F (3,1),AF =22,∠AFB =MF =6+1-3=4,当点N 在点F 右侧时,则∠AFB =∠F AN +∠∵∠AMF +∠ANF =45°,∴∠F AN =∠AMF 又∠AFN =∠AFM ,∴△AFN ∽△MF A ∴AFNF=MFAF,即22NF=422,∴NF =2 ∴N 1(5,1)由抛物线的对称性可得,当点N 在点F11.解:(1)根据反比例函数图形的对称性可知点∵∠BAC =60°,AB =4,∴∠BON =∴在△BON 中,ON=OB cos60°=1,∴点B 的坐标为(1,3),点A ∵点B 在直线y =mx 和双曲线y =k x∴m =31=3,k =1×3= 3 (2)∵∠QON +∠NOP =90°,∠MOP +∴∠QON =∠MOP又∵∠OMP =∠ONQ =90°,∴△∴MPQN=OMON,即xQN=3 1,∴QN 在Rt △PCQ 中,PC =1-x ,QC =33x ∴L =PC 2+QC 2=43x 2+4即L 与x 的函数关系式为L =43x 2+4(-1≤x ≤1) (3)S △PQC=1 2 PC ·QC = 1 2 ( 1-x )(3 3 x +3)=32整理得x2+2x =0,解得x 1=0或x 2=-2此时点P 的坐标为(0,-3)或(-2,-3)12.解:(1)在y =ax +1中,令y =0,得x =-1a;令x =0,得y =1∴A (-1a,0),B (0,1)∴S △AOB=1 2 ×|-1 a |×1=32∴a =±33················································································ 1分 ①当a =33 时,直线的解析式为y =33x +1 ∵点C (-23,m )为直线与双曲线在第三象限的交点 ∴k >0,m<0,且k 、m 满足⎩⎪⎨⎪⎧m =33×(-23)+1m =k-23解得:⎩⎨⎧k =23m =-1∴a =33,m =-1,k =2 3 ·························································· 4分 ②当a =-33 时,直线y =-3 3 x +1经过一、二、四象限,与双曲线y =kx不可能在第三象限有交点∴a =-33不合题意,舍去 ···························································· 5分综上所述,a =33,m =-1,k =2 3 (2)由(1)知,A (-3,0),B (0,1∴OA =3,OB =1,∴∠OBA =60°由作图可知,点D 在y ①当点D 在y 轴负半轴上时作CE ⊥y 轴于E ,则E (0,-1),∴∵△BCD 为等边三角形,∴DE =BE =∴OD =3,∴D 1(0,-3) ············ 7②当点D 在第二象限时∵∠BCD =∠OBA =60°,∴DC ∥y 轴 ∴点D 的横坐标为-2 3∵B (0,1),C (-23,-1),∴BC ∴DC =4,∴点D 的纵坐标为3 ∴D 2(-23,3)综上所述,D 点的坐标为(0,-3)或(-23,3) ··························· 9分13.解:(1)由⎩⎪⎨⎪⎧y =2x +8y =kx得2x2+8x -k =0 ∴x 1+x 2=-4,x 1x 2=-k 2由⎩⎪⎨⎪⎧x 1+x 2=-4x 1-x 2=2 解得x 1=-1,x 2=-3 ∴k =-2x 1x 2=-6 ······································································· 3分(2)由(1)知,反比例函数为y =-6x把x 1=-1,x 2=-3分别代入上式,得y 1=6,y 2=2 ∴A (-1,6),B (-3,2)设一次函数y =2x +8的图象与x 轴交于点C ,则C (-4,0)∴S △AOB=S △AOC-S △BOC=1 2 ×4×6-12×4×2 =8 ················································································ 6分(3)设过点A 且与OB 平行的直线与x 轴交于点D ,与抛物线交于点E分别过A 、B 、E 作x 轴的垂线,垂足分别为AA 1、BB 1、EE 1 ∵B (-3,2),∴OB =(-3)2+22=13∵AD ∥BO ,∴∠ADA 1=∠BOB 1∴sin ∠BOB 1=2 13 ,cos ∠BOB 1=313∵AD ∥BO ,∴∠ADA 1=∠BOB 1∴sin ∠ADA 1=sin ∠BOB 1=2 13 ,cos ∠ADA 1=cos ∠BOB 1=313∴AD = AA 1sin ∠ADA 1=313,A 1D =AD ·cos ∠ADA 1=9由题意,AE =13,∴ED =213∴E 1D =ED ·cos ∠ADA 1=6,EE 1=ED ·sin ∠ADA 1=4 OE 1=A 1D -A 1O -E 1D =9-1-6=2∴E (2,4) ··············································································· 8分 设所求抛物线的解析式为y =ax2+bx +c ,则: ⎩⎪⎨⎪⎧a -b +c =69a -3b +c =24a +2b +c =4解得:a =-8 15,b =-2 15,c =32 5∴抛物线的解析式为y =- 8 15x2- 2 15 x +325······································ 10分14.解:(1)设直线得⎩⎨⎧b =232k +b =0 解得⎩⎨⎧k =-3b =23∴直线AB 的解析式为y =-3x +23将D (-1,a )代入y =-3x +23,得a =33∴D (-1,33),将D (-1,33)代入y =mx中,得m =-33∴反比例函数的解析式为y =-3 3x(2)解方程组得⎩⎪⎨⎪⎧y =-3x +23y =-33x得⎩⎨⎧x 1=3y 1=- 3 ⎩⎨⎧x 2=-1y 2=33 ∴点C 坐标为(3,-3)过点C 作CH ⊥x 轴于点H 在Rt △OMC 中,CH =3,OH =3∴tan ∠COH =CHOH=33,∴∠COH =30° 在Rt △AOB 中,tan ∠ABO =AOOB=232=3∴∠ACO =∠ABO -∠COH =30° (3)如图,∵OC ′⊥AB ,∠ACO =30°∴α=∠COC ′=90°-30°=60°,∠BOB ′=α=60° ∴∠AOB ′=90°-∠BOB ′=30° ∵∠OAB =90°-∠ABO =30° ∴∠AOB ′=∠OAB ,∴AB ′=OB ′=2故当α为60度时OC ′⊥AB ,此时线段AB ′的长为15.解:(1)∵E (2,4),∴k =2×4=8∵点F 的横坐标为6,点F 的纵坐标为8 6=43∴F (6,43)设经过O 、E 、F 三点的抛物线的解析式为y =ax2+bx∴⎩⎪⎨⎪⎧4a +2b =436a +6b =4 3解得a =-4 9,b =26 9∴所求抛物线的解析式为y =- 4 9x2+ 269x ·············· 3分(2)设直线EF 的解析式为y =kx +b 1∴⎩⎪⎨⎪⎧2k +b =46k +b =4 3解得k =-2 3,b 1=163∴直线EF 的解析式为y =-2 3x +16 3过O 作OP ∥EF ,交抛物线于点P ,则点P 即为所求的点 ∴直线OP 的解析式为y =-23x解方程组 ⎩⎨⎧y =-23x y =- 4 9x2+ 26 9x得⎩⎪⎨⎪⎧x 1=0y 1=0 ⎩⎪⎨⎪⎧x 2=8y 2=-16 3。
1,2011宁夏2、2011宁夏3.(2011.24广州14分)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1- S2为常数,并求出该常数。
4.(2011广州,25,14分)如图7,⊙O中AB是直径,C是⊙O上一点,∠ABC=450,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上。
(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=2OM;(3)将△DCE绕点C逆时针旋转α(00<α<900)后,记为△D1CE1(图8),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=2OM1是否成立?若是,请证明:若不是,说明理由。
5、2011福建莆田6、2011福建莆田7、8、9、2011甘肃兰州10、11,12,13(2011北京)14、15、16(福建龙岩2011)17、18(哈尔滨2011)19、(连云港2011)20,21,(湖北襄阳2011)22、(烟台2011)23、24、(广东茂名)(江苏盐城)25、(江苏盐城)26、(广西桂林10分)如图,在锐角△ABC 中,AC 是最短边;以AC 中点O 为圆心,12AC长为半径作⊙O ,交BC 于E ,过O 作OD ∥BC 交⊙O 于D ,连结AE 、AD 、DC . (1)求证:D 是 AE 的中点; (2)求证:∠DAO =∠B +∠BAD ; (3)若12C EF OCDS S ∆∆=,且AC =4,求CF 的长.27.(广西桂林12分)已知二次函数21342y x x =-+的图象如图.(1)求它的对称轴与x 轴交点D 的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x 轴,y 轴的交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 的位置关系,并说明理由.28、29、(湖北孝感)30(湖北黄石)31、32、(湖南怀化)33、(天津)34、(辽宁大连)35、(广东清远)36、(福建泉州)37、(广东深圳)38、(陕西)39、(河南)40(河南)41、(江苏苏州)42、(江苏苏州)43.(上海)已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.44.(上海14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13E M P ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图45、(广东)46、(广东)47、(河北)48、(河北)49、(四川宜宾)50、(浙江嘉兴、舟山)51、(浙江嘉兴、舟山)52(江西南昌)53(山东日照)54、(山东威海)55、(山东德州)56、57、(浙江金华)58、59、60、(浙江义乌)61、(江苏无锡)62、63(安徽)64、65、66、67(四川乐山)65、四川乐山6667、四川乐山68、69、(安徽芜湖)69、安徽芜湖70、江西71,72山东临沂71.(2011•临沂)如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.72.26(2011•临沂)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PM垂直x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.73.74(2011)济南中考74.济南中考75. 7、(2011•青岛)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A、cmB、4cmC、cmD、cm76. 14、(2011•青岛)如图,以边长为1的正方形ABCD的边AB为对角线作第二个正方形AEBO1,再以BE为对角线作第三个正方形EFBO2,如此作下去,…,则所作的第n个正方形的面积S n=_________.77. 24、(2011•青岛)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA 的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.。
全国各省市中考数学压轴题精选精析(按省市归类)、(•北京)如图,在平面直角坐标系中,我把由两条射线,和以为直径的半圆所组成的图形叫作图形(注:不含线段).已知(﹣,),(,),∥,且半圆与轴的交点在射线的反向延长线上.()求两条射线,所在直线的距离;()当一次函数的图象与图形恰好只有一个公共点时,写出的取值范围;当一次函数的图象与图形恰好只有两个公共点时,写出的取值范围;()已知▱(四个顶点,,,按顺时针方向排列)的各顶点都在图形上,且不都在两条射线上,求点的横坐标的取值范围.考点:一次函数综合题;勾股定理;平行四边形的性质;圆周角定理。
专题:综合题;分类讨论。
分析:()利用直径所对的圆周角是直角,从而判定三角形为等腰直角三角形,其直角边的长等于两直线间的距离;()利用数形结合的方法得到当直线与图形有一个交点时自变量的取值范围即可;()根据平行四边形的性质及其四个顶点均在图形上,可能会出现四种情况,分类讨论即可.解答:解:()分别连接、,则点在直线上,如图,∵点在以为直径的半圆上,∴∠°,∴⊥,在△中,由勾股定理得,,∵∥,∴两条射线、所在直线的距离为.()当一次函数的图象与图形恰好只有一个公共点时,的取值范围是或﹣<<;当一次函数的图象与图形恰好只有两个公共点时,的取值范围是<<()假设存在满足题意的平行四边形,根据点的位置,分以下四种情况讨论:①当点在射线上时,如图.∵四点按顺时针方向排列,∴直线必在直线的上方,∴两点都在弧上,且不与点、重合,∴<<.∵∥且,∴<<∴﹣<<﹣,②当点不在弧上时,如图,∵点、、、四点按顺时针方向排列,∴直线必在直线的下方,此时,不存在满足题意的平行四边形.③当点在弧上时,设弧的中点为,则∥,当点在弧上时,如图,过点作的垂线交弧于点,垂足为点,可得是的中点.∴四边形为满足题意的平行四边形,∴≤<.当点在弧上时,如图,直线必在直线的下方,此时不存在满足题意的平行四边形.④当点在射线上时,如图,直线必在直线的下方,此时,不存在满足题意的平行四边形.综上,点的横坐标的取值范围是﹣<<﹣或≤<.点评:本题是一道一次函数的综合题,题目中还涉及到了勾股定理、平行四边形的性质及圆周角定理的相关知识,题目中还渗透了分类讨论思想.、(•河北)如图,在平面直角坐标系中,点从原点出发,沿轴向右以毎秒个单位长的速度运动秒(>),抛物线经过点和点,已知矩形的三个顶点为(,),(,﹣),(,).()求,(用含的代数式表示):()当<<时,设抛物线分别与线段,交于点,.①在点的运动过程中,你认为∠的大小是否会变化?若变化,说明理由;若不变,求出∠的值;②求△的面积与的函数关系式,并求为何值时,;()在矩形的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出的取值范围.考点:二次函数综合题。
2011年各地中考数学压轴题精选21-30解析版2011广东广州4、(2011•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.考点:二次函数综合题;解一元一次方程;解二元一次方程组;根的判别式;根与系数的关系;待定系数法求一次函数解析式;二次函数图象上点的坐标特征;待定系数法求二次函数解析式;抛物线与x轴的交点;相似三角形的判定与性质。
专题:计算题。
分析:(1)把C(0,1)代入抛物线即可求出c;(2)把A(1,0)代入得到0=a+b+1,推出b=﹣1﹣a,求出方程ax2+bx+1=0,的b2﹣4ac的值即可;(3)设A(a,0),B(b,0),由根与系数的关系得:a+b=,ab=,求出AB=,把y=1代入抛物线得到方程ax2+(﹣1﹣a)x+1=1,求出方程的解,进一步求出CD过P作MN⊥CD于M,交X轴于N,根据△CPD∽△BPA,得出=,求出PN、PM的长,根据三角形的面积公式即可求出S1﹣S2的值即可.解答:(1)解:把C(0,1)代入抛物线得:0=0+0+c,解得:c=1,答:c的值是1.(2)解:把A(1,0)代入得:0=a+b+1,∴b=﹣1﹣a,ax2+bx+1=0,b2﹣4ac=(﹣1﹣a)2﹣4a=a2﹣2a+1>0,∴a≠1且a>0,答:a的取值范围是a≠1且a>0;(3)证明:∵0<a<1,∴B在A的右边,设A(a,0),B(b,0),∵ax2+(﹣1﹣a)x+1=0,由根与系数的关系得:a+b=,ab=,∴AB=b﹣a==,把y=1代入抛物线得:ax2+(﹣1﹣a)x+1=1,解得:x1=0,x2=,∴CD=,过P作MN⊥CD于M,交X轴于N,则MN⊥X轴,∵CD∥AB,∴△CPD∽△BPA,∴=,∴=,∴PN=,PM=,∴S1﹣S2=••﹣••=1,即不论a为何只,S1﹣S2的值都是常数.答:这个常数是1.点评:本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组,解一元一次方程,相似三角形的性质和判定,根的判别式,根与系数的关系,二次函数图象上点的坐标特征,二次函数与X轴的交点等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,题型较好,难度适中.2011广东广州25、(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE 是直角,点D在线段AC上.(1)证明:B、C、E三点共线;(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.考点:圆周角定理;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理;旋转的性质。
2011年中考数学压轴题精选(91-100题)答案n=2+c,解:法1:由题意得【091】(1) 1分 2n-1=2+c.解得……2分 1 法2:∵抛物线y=x2-x+c的对称轴是x=,211 且-(-1) =2-,∴ A、B两点关于对称轴对称. 22 ∴ n=2n-11分∴ n=1,c=-1. 2分 15 ∴有 y=x2-x-1 3分=(x-)2-. 245 ∴二次函数y=x2-x-1的最小值是-. ……4分4 (2)解:∵点P(m,m)(m>0),∴PO=2m.∴22≤2m ≤2+2. ∴2≤m≤1+2. ……5分法1:∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴ m=m2-m+c,即c=-m2+2m. ∵开口向下,且对称轴m=1,∴当2≤m≤1+2 时,有-1≤c≤0. (6)分法2:∵2≤m≤1+2,∴1≤m-1≤2. ∴1≤(m-1)2≤2.∵点P(m,m)(m>0)在二次函数y=x2-x+c的图象上,∴m=m2-m+c,即1-c=(m-1)2. ∴1≤1-c≤2.∴-1≤c≤0. ……6分∵点D、E关于原点成中心对称,法1:∴ x2=-x1,y2=-y1. y1=x12-x1+c, ∴∴2y1=-2x1,y1=-x1. -y1=x12+x1+c. 设直线DE:y=kx. 有-x1=kx1. 由题意,存在x1≠x2. ∴存在x1,使x1≠0. 7分∴ k=-1. ∴直线DE: y=-x. 8分法2:设直线DE:y=kx. 则根据题意有 kx=x2-x+c,即x2-(k+1) x+c=0. ∵-1≤c≤0,∴(k+1)2-4c≥0.∴方程x2-(k+1) x+c=0有实数根. 7分∵ x1+x2=0,∴ k+1=0. ∴ k=-1. ∴直线DE: y=-x. 8分 y=-x, 33 若则有 x2+c+=0.即 x2=-c-. 3 88 y=x2-x+c+. 8333 ① 当-c-=0时,即c=-时,方程x2=-c-有相同的实数根,8883 即直线y=-x与抛物线y=x2-x+c+有唯一交点. ……9分8333 ② 当-c->0时,即c<-时,即-1≤c<-时,888 13 方程x2=-c-有两个不同实数根,83 即直线y=-x与抛物线y=x2-x+c+有两个不同的交点. ……10分83333 ③ 当-c-<0时,即c>-时,即-<c≤0时,方程x2=-c-没有实数根,88883 即直线y=-x与抛物线y=x2-x+c+没有交点. ……11分8【092】解:(1)如图,在坐标系中标出O,A,C三点,连接OA,OC.y∵∠AOC≠90°,∴∠ABC=90°,327 A B 12故BC⊥OC, BC⊥AB,∴B(,1).(1分,)xO-112345 C 7-12即s=,t=1.直角梯形如图所画.(2分)(大致说清理由即可)(2)由题意,得,y=x2+mx-m与 y=1(线段AB)相交,2 y=x mx m, y=1.由(x-1)(x+1+m)=0,(3分)∴1=x2+mx-m,x 1,x m 1得.123x2∵=1<,不合题意,舍去.(4分)1x∴抛物线y=x2+mx-m与AB边只能相交于(,1),23759 m 2222∴≤-m-1≤,∴.①(5分)2mm 4m, 24又∵顶点P()是直角梯形OABC的内部和其边上的一个动点,m70 7 m 022∴,即.② (6分)442∵,(或者抛物线22m 4m2) 4m(m 2 1 1( 1)y=x2+mx-m顶点的纵坐标最大值是1)∴点P一定在线段AB的下方.(7分)又∵点P在x轴的上方,2m 4m 0m(m 4) 0,4∴, 2或者 m 4 0m 4 0 .(*8分)m 0,m 0,∴ 4 m(9分) 0. ③(9分)2m 4m2m2 ( )m(3m 8) 0.3432又∵点P在直线y=x的下方,∴,(10分)即或者 3m 8 03m 8 0.(*8分处评分后,m 0,m 0,分),或m 0.3 ④ 8m此处不重复评分)8 m (113 4 .(12分)由①②③④ ,得说明:解答过程,全部不等式漏写等号的扣1分,个别漏写的酌情处理.BOACOABCPDPHH【093】解:(1)连结与交于点,则当点运动到点时,直线平分矩形的面积.理由如下: H ∵矩形是中心对称图形,且点为矩形的对称中心. OABCDP又据经过中心对称图形对称中心的任一直线平分此中心对称图形的面积,因为直线过矩形OABCDPH的对称中心点,所以直线平分矩形的面积.…………2分 3P(,2)2P 由已知可得此时点的坐标为. y kx bDP, 3420k b 2.k b 设直线的函数解析式为. 5k b 021313,.则有解得420y x 1313DP所以,直线的函数解析式为:. 5分△△DOMABCM(2)存在点使得与相似. yM(0,y)DP如图,不妨设直线与轴的正半轴交于点.m OMBCOMAB.因为,若△DOM与△ABC相似,则有或 DOM ABCODABODBC,)m144ODAB54.所以点满足条件.当时,y3OMBC1515m y M(0即,解得 3,)m233ODBC53.所以点满足条件.当y4OMAB2020m y M(0时,即,解得15M(0, )34也满足条件.由对称性知,点152015M(0,)M(0,)M(0, )123△△DOMABC434M、、.综上所述,满足使与相似的点有3个,分别为9分5 P2(3)如图,过D作DP⊥AC于点P,以P为圆心,半径长为画圆,过点D分别作的切线DE、DF,5 P2点E、F是切点.除P点外在直线AC上任取一点P1,半径长为画圆,过点D分别作的切线DE1、DF1,点E1、F1是切点.在△DEP和△DFP中,∠PED=∠PFD,PF=PE,PD=PD,22∴S四边形DEPF=2S∴△DPE≌△DPF.15 DE PE DE PE DE△DPE=2×.∴当DE取最小值时,S四边形DEPF的值最小.y∵,,222DE DP PE222DE DP PE∴.11P22DE DE 0 DPDP,1111F2222DE DE DP DPCB∴.∵11E DE DEP x∴.由点的任意性知:DE是11A DOFD点与切点所连线段长的最小值.……12分1在△ADP与△AOC中,∠DPA=∠AOC,P1∠DAP=∠CAO,∴△ADP∽△AOC.DPCODP432 DP.∴E55DACA8.∴.∴,即1102425347122DE DP PE 25410 3471347144∴S四边形DEPF=,即S=. 14分(注:本卷中所有题目,若由其它方法得出正确结论,请参照标准给分.)2y ax bx c,则【094】解:(1)令二次函数16a 4b c 0 a b c 0 c 2 1分 42 c 2 2分 132y x x 21 a23 bA,B,C22 过三点的抛物线的解析式为4分3 O,022 5分2 AB(2)以为直径的圆圆心坐标为53 OC OO为圆切线6分 OCD DCO 90° CDO OC CDCOO OCO 90 COO DCO°△OCO∽△CDOOO/OC OC/OD 8分38/2 2/OD OD 23坐标为 9分(3)存在 10分 3X 2抛物线对8 0, 3 D称轴为 33( r,r)F( r,r)r22E设满足条件的圆的半径为,则的坐标为或132y x x 222E而点在抛物线上2222 2929r 1 r 1 2122 13332 r ( r) ( r) 22929 1 1 x22EF故在以为直径的圆,恰好与轴相切,该圆的半径为,12分 5注:解答题只要方法合理均可酌情给分C0(,2) B【095】(1)(4,0),. 2分132y x x 222. 4分△ABC(2)是直角三角形.5分132x x 2 0y 022证明:令,则. x 1,x 4.12 A( 1,0). 6分 AB 5,AC 5,BC 25解法一:. 7. △ABC是直角三角形.8分分222 AC BC 5 20 25 ABCOAO1 AO 1,CO 2,BO 4, BOOC2解法二:, △AOC∽△COB.7分AOC COB 90°ACO CBO. CBO BCO 90°,.即. △ABC是直角三角形.8ACO BCO 90° ACB 90°分 ①COGFAB H (3)能.当矩形两个顶点在上时,如图1,交于. y GF ∥AB , E D △CGF ∽△CAB . O A B x F H GFCH G C ABCO . 9分 图1 62CH x GF xDE x5解法一:设,则,, 2DG OH OC CH 2 x 5. 22 2 S ·2 x xx 2x 矩形DEFG55 2255 x 522 =. 10分 5x S2当时,最大. 5 DE ,DG 1 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 10 5xDE GF DG x2解法二:设,则. 10 5x55522 S x · x 5x (x 1) 矩形DEFG2222.10分 x 1S 当时,最大. 5 DG 1,DE 2. △ADG ∽△AOC , ADDG11 , AD , OD ,OE 2 AOOC22. 1 D ,0 E(2,0)2 ,. 11分 y 7 D O A B x G G C②CABF 当矩形一个顶点在上时,与重合,如图2, GDAG DG ∥BC △AGD ∽△ACBBCAF ,.. AC 5,BC 25GD x 解法一:设,, x1 x 2S x ·5 x 5x GF AC AG 5 矩形DEFG 22 2 . 15 2 x 5 22=. 12分 x 5S 当时,最大. 3 535 D ,0 22 AD AG GD OD GD 5,AG 2 222,. 13分 AC 5BC 25AG 5 x GD 25 2xDE x GC x 解法二:设,,,,.. 2 55 5 2x x 2 x·25 2x 2x 25x S22 S2 矩形DEFG= 12分当时,最大, 3,AG 535D,022 AD AG GD OD . GD 52 222 .. 13分 1 ,0 2 AB综上所述:当矩形两个顶点在上时,坐标分别为,(2,0); 3 ,0 2 AB当矩形一个顶点在上时,坐标为14分【096】(1)因所求抛物线的顶点M的坐标为故可设其关系式为………………(1分) (2,4), 2 y ax 2 4又抛物线经过O(0,0),于是得,………………(2分) 解2 a0 2 4 0得a=-1 ………………(3分) 2 y x 2 4∴所求函数关系式为,即. ……………(4分)2y x 4x(2)① 点P不在直线ME上. ………………(5分) 根据抛物线的对称性可知E点的坐标为(4,0),又M的坐标为(2,4),设直线ME的于是得,关系式为y=kx+b. 4k b 0k 2 2k b 4b 8 解得 8所以直线ME的关系式为y=-2x+8. ……(6分) 55 55 P, 22 22由已知条件易得,当t ……………(7分) 时,OA=AP,∵ P点的坐标不满足直线ME的关系式y=-2x+8. 5 2∴当t时,点P不在直线ME 上. ………………(8分) ② S存在最大值. 理由如下:………………(9分) ∵点A在x轴的非负半轴上,且N在抛物线上,∴ OA=AP=t. ∴点P,N的坐标分别为(t,t)、(t,-t 2+4t) ∴ AN=-t 2+4t (0≤t≤3) , ∴ AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)≥0 , ∴ PN=-t 2+3 t …(10分) (ⅰ)当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD,∴1122S=DC·AD=×3×2=3. ………………(11分) (ⅱ)当PN≠0时,以点P,N,C,D为顶点的多边形是四边形∵4222 PN∥CD,AD⊥CD,2213 11 t∴S=(CD+PN)·AD=[3+(-t 2+3 t)]×2=-t 2+3 t+3=321S 最大24. …………(12分) 其中(0<t<3),由a=-1,0<<3,此时3 2时,以点P,N,C,D为顶点的多边形面积有最大值,综上所述,当t214这个最大值为. ………………(13分) 说明:(ⅱ)中的关系式,当t=0和t=3时也适合. 3)(4,D.【097】解:(1)点的坐标为(2分)392y x x84(2)抛物线的表达式为.(4分)Px(3)抛物线的对称轴与轴的交点符合条件.1yO x ∴.1 M P OA∥CB∵, P A 6 POM CDO3B OPM DCO 90°C D ,∵13y x 4Rt△POM∽Rt△CDO∴.(6分)1 9x 3∵抛物线的对称轴,P(3,0)P∴点的坐标为.(7分)11POOD过点作的垂线交抛物线的对称轴于点.2y∵对称轴平行∴.2 POM DCO 90°∵,于轴, PMO DOC∴点也符合条2Rt△PMO∽Rt△DOC∴.(8分)21 OPM ODCP∴,件,.22PO CO 3, PPO DCO 90°121Rt△PPO≌Rt△DCO∴.(9分)21PP CD 4∴.12P∵点在第一象限,2PP(3,4)∴点的坐标为,22P(3,0)P(3,4)P∴符合条件的点有两个,分别是,.(11分)12【098】解:(1)当t=4时,B(4,0) 设直线AB的解析式为y= kx+b . 把 A(0,6),B(4,0) 代入得:3 b=6k =- 2 , 解得: , 4k+b=0 b=63∴直线AB的解析式为:y=-x+6.………………………………………4分 2 (2) 过点C作CE⊥x轴于点E 由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC. BE CE BC1 AOBOAB2∴,11t∴BE= OB= AO=3,CE= ,222t∴点C的坐标为(t+3,).…………………………………………………………2分2方法一:1011t115 y S梯形AOEC= OE·(AO+EC)= (t+3)(6+)=t2+t+9,22244 A 11 D S△ AOB= AO·OB= ×6·t=3t,22 C 11t3S△ BEC= BE·CE= ×3×= t,2224 B x O E ∴S△ ABC= S梯形AOEC- S△AOB-S△ BEC 11531 = t2+t+9-3t-t = t2+9. 4444方法二:1∵AB⊥BC,AB=2BC,∴S△ABC= AB·BC= BC2. 21在Rt△ABC 中,BC2= CE2+ BE2 = t2+9,41即S△ABC= t2+9.…………………………………………………………2分4(3)存在,理由如下:y ①当t≥0时. Ⅰ.若AD=BD.又∵BD∥y轴 A D ∴∠OAB=∠ABD,∠BAD=∠ABD,∴∠OAB=∠BAD. C 又∵∠AOB=∠ABC,∴△ABO∽△ACB,OBBC1 t1 B O x E AOAB2,∴= ,∴t=3,即B(3,0). ∴62Ⅱ.若AB=AD.延长AB 与CE交于点G, 1 C 又∵BD∥CG∴AG=AC过点A画AH⊥CG 于H.∴CH=HG= CG y D 2GEAO18由△AOB∽△GEB,得=,∴GE= . BEOBt A H t181t18 E 又∵HE=AO=6,CE=∴+6=×(+)2t22t x O B G ∴t2-24t-36=0 解得:t=12±65. 因为t≥0,所以t=12+65,即B(12+65,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为钝角,故BD ≠ AB. D 当t≥12时,BD≤CE<BC<AB. ∴当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F. tt A 可求得点C的坐标为(t+3,),∴CF=OE=t+3,AF=6-,22由BD∥y轴,AB=AD得,∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB∴∠BAO=∠FAC, E O 又∵∠AOB=∠AFC=90°,∴△AOB∽△AFC, x B C F 11t6 BOAO tt 3 6 CFAF2 ,∴,∴∴t2-24t-36=0 解得:t=12±65.因为-3≤t<0,所以t=12-65,即B (12-65,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD, y 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F, A tt可求得点C的坐标为(t+3,),∴CF= -(t+3),AF=6-,22∵AB=BD,∴∠D=∠BAD. E B xO 又∵BD∥y轴,∴∠D=∠CAF,∴∠BAC=∠CAF. 又∵∠ABC=∠AFC=90°,AC=AC,∴△ABC≌△AFC,∴AF=AB,CF=BC, F C t∴AF=2CF,即6- =-2(t+3),解得:t=-8,即B(-8,0). 2综上所述,存在点B使△ABD为等腰三角形,此时点B坐标为: D B1 (3,0),B2 (12+65,0),B3 (12-65,0),B4(-8,0). ...........................4分【099】解:(1) 弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等. (写对一个给1分,写对两个给2分) (2) 情形1 如图21,AB为弦,CD为垂直于弦AB 的直径. ..............................3分结论:(垂径定理的结论之一). (4)分证明:略(对照课本的证明过程给分). ……………………………………………………………7分情形2 如图22,AB为弦,CD为弦,且AB与CD在圆内相交结论:. D 证明:略. mn 于点P. PA PB PC PD n情形3 (图略)AB为弦,CD为弦,且与在圆外相交于结论:. m 证明:略. A B P 点P. PA PB PC PD OC 情形4 如图23,AB为弦,CD为弦,且AB∥CD. 第25题图结论: = . BC AD 证明:略. (上面四种情形中做一个即可,图1分,结论1分,证明3分;其它正确的情形参照给分;若提出的是错误的结论,则需证明结论是错误的)(3) 若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称. …………………………………………8分 BAC x BAD x ABC 90 x设,则,.…………………………………………9分ABC又D是的中D 180 ABC2 CAD CAD AC点,所以,2 2x 180 (90 x)即 (10)分x BAC 30 解得.………………………………………………………………………………………11分3AB AC AF 3 FB2(若求得或等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆12 n E C D C D n G m B A O O F OB的十二等分点,然后说明)【100】解:(1)令得2 (2b) 4(m a)(m a) 0222a b m由勾股定理的逆定理和抛物线的对称性知a b△ABM是一个以、为直角边的等腰直角三角形2y a(x 2) 1(2)设,∵△ABM是等腰直角三角形∴斜边上的中线等于斜边的一半,又顶点M(-2,-1) 1AB 12∴,即AB=2,∴A(-3,0),B(-1,0) 2y a(x 2) 1a 1将B(-1,0) 代入中得∴抛物线的解析式为,即y k x(3)设22y (x 2) 1y x 4x 3平行于轴的直线为y k 2解方程组得,(21y x 4x 3k 1)x 2 k 1x 2 k 1k 1 k2k 1x∴线段CD的长为,∵以CD为直径的圆与轴相切,据题意得,1 51 51 5k ( 2,)( 2,)2k k 1222∴,解得,∴圆心坐标为和 13。
2011年全国各地中考数学压轴题分类汇编目录一、图象信息二、一元二次方程三、反比例函数四、二次函数五、概率六、三角形七、平行四边形、矩形、菱形、正方形、梯形八、圆九、综合型问题十、动态综合型问题一、图象信息1.甲、乙两车在连通A 、B 、C 三地的公路上行驶,甲车从A 地出发匀速向C 地行驶,同时乙车从C 地出发匀速向B 地行驶,到达B 地并在B 地停留1小时后,按原路原速返回到C 地.在两车行驶的过程中,甲、乙两车距B 地的路程y (千米)与行驶时间x (小时)之间的函数图象如图所示,请结合图象回答下列问题:(1)求甲、乙两车的速度,并在图中( )内填上正确的数; (2)求乙车从B 地返回到C 地的过程中,y 与x 之间的函数关系式;(3)当甲、乙两车行驶到距B 地的路程相等时,甲、乙两车距B 地的路程是多少?2.有一批物资,先用火车从M 地运往距M 地180千米的火车站,再由汽车运往N 地.甲车在驶往N 地的途中发生故障,司机马上通知N 地,并立即检查和维修.N 地在接到通知后第12分钟时,立即派乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到N 地,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达N 地.下图是甲、乙两车离N 地的距离y (千米)与时间x (小时)之间的函数图象。
请结合图象信息解答下列问题: (1)请直接在坐标系中的( )内填上数据;(2)求直线CD 的函数解析式,并写出自变量的取值范围; (3)求乙车的行驶速度.3.如图1,某容器由A 、B 、C 三个长方体组成,其中A 、B 、C 的底面积分别为25cm 2、10cm 2、5cm 2,C 的容积是容器容积的 14(容器各面的厚度忽略不计).现以速度v (单位:cm 3/s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象. (1)求A 的高度h A 及注水的速度v ;(2)求注满容器所需时间及容器的高度.)(图1图24.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示_______槽中水的深度与注水时间之间的关系,线段DE 表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是__________________________;(2)注水多长时间时,甲、乙两个水槽中水的深度相同? (3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积; (4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).5.小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m /min 的速度从邮局沿同一条道路步行回家,小明在邮局停留2 min 后沿原路以原速返回.设他们出发后经过t min 时,小明与家之间的距离为s 1 m ,小明爸爸与家之间的距离为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间函数关系的图象。
(1)求s 2与t 之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?6.因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3)与时间t (h )之间的函数关系. 求:(1)线段BC 的函数表达式; (2)乙水库供水速度和甲水库一个排灌闸的灌溉速度; (3)乙水库停止供水后,经过多长时间甲水库蓄水量又 降到了正常水位的最低值?甲槽乙槽 图1 图2)Q (7.小华观察钟面(图1),了解到钟面上的分针每小时旋转360度,时针毎小时旋转30度.他为了进一步探究钟面上分针与时针的旋转规律,从下午2 :00开始对钟面进行了一个小时的观察.为了探究方便,他将分针与分针起始位置OP (图2)的夹角记为y 1,时针与OP 的夹角记为y 2度(夹角是指不大于平角的角),旋转时间记为t 分钟.观察结束后,利用获得的数据绘制成图象(图3),并求出y 1与t 的函数关系式:y 1=⎩⎪⎨⎪⎧6t (0≤t ≤30)-6t +360(30<t ≤60)请你完成:(1)求出图3中y 2与t 的函数关系式;(2)直接写出A 、B 两点的坐标,并解释这两点的实际意义; (3)若小华继续观察一个小时,请你在图3中补全图象.8.周六上午8∶00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/小时的平均速度步行返回,同时他的爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇,接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x 小时,小名离家的路程y (干米)与x (小时)之间的函数图象如图所示.(1)小明去基地乘车的平均速度是______千米/小时,爸爸开车的平均速度是______千米/小时; (2)求线段CD 所表示的函数关系式;(3)小明能否在12∶00前回到家?若能,请说明理由;若不能,请算出12∶00时他离家的路程.9.由于受金融危机的影响,某店经销的甲型号手机今年的售价比去年每部降价500元.如果卖出相同数量的手机,那么去年销售额为8万元,今年销售额只有6万元. (1)今年甲型号手机每部售价为多少元?(2)为了提高利润,该店计划购进乙型号手机销售,已知甲型号手机每部进价为1000元,乙型号手机每部进价为800元,预计用不多于1.84万元且不少于1.76万元的资金购进这两种手机共20部,请问有几种进货方案?(3)若乙型号手机的售价为1400元,为了促销,公司决定每售出一部乙型号手机,返还顾客现金a 元,而甲型号手机仍按今年的售价销售,要使(2)中所有方案获利相同,a 应取何值?图1图2图3 )x (小时)10.星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成 .已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围; (2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.11(1)若某用户六月份用水量为18吨,求其应缴纳的水费;(2)记该用户六月份用水量为x 吨,缴纳水费为y 元,试列出y 与x 的函数式;(3)若该用户六月份用水量为40吨,缴纳水费y 元的取值范围为70≤y ≤90,试求m 的取值范围.12.在平面直角坐标系中,点P 从原点O 出发,每次向上平移2个单位长度或向右平移1个单位长度. (1)实验操作:在平面直角坐标系中描出点P 从点O 出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:(2)观察发现:任一次平移,点P 可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数________________的图象上;平移2次后在函数________________的图象上……由此我们知道,平移n 次后在函数________________的图象上.(请填写相应的解析式)(3)探索运用:点P 从点O 出发经过n 次平移后,到达直线y =x 上的点Q ,且平移的路径长不小于50,不超过56,求点Q 的坐标.13.某学校要在围墙旁建一个长方形的中药材种植实习苗圃,苗圃的一边靠墙(墙的长度不限),另三边用木栏围成,建成的苗圃为如图所示的长方形ABCD .已知木栏总长为120米,设AB 边的长为x 米,长方形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式,当x 为何值时,S 取得最值(请指出是最大值还是最小值)?并求出这个最值;(2)学校计划将苗圃内药材种植区域设计为如图所示的两个相外切的等圆.其圆心分别为O 1和O 2,且墙18米 苗圃园O 1到AB 、BC 、AD 的距离与O 2到CD 、BC 、AD 的距离都相等,并要求在苗圃内药材种植区域外四周至少要留够0.5米宽的平直路面,以方便同学们参观学习.当(1)中S 取得最值时,请问这个设计是否可行?若可行,求出圆的半径;若不可行,请说明理由.14.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a 米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米. (1)请用a 表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a 的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说明理由.15.李明在小岛上的A 处,上午8时测得在A 的北偏东60º的D 处有一艘轮船,9时20分测得该船航行到北偏西60º的C 处,9时40分测得该船到达位于A 正西方5千米的港口B 处,如果该船始终保持匀速直线运动,求:(1)A 、C 之间的距离; (2)轮船的航行速度.16.长江沿岸的甲乙两港相距300千米,甲港在乙港的上游,满载货物的货轮从乙港出发,到达甲港卸货后,再空载返回乙港,货轮离开乙港的路程s (千米)随时间t (小时)的变化关系如图所示.已知货轮空载时在静水中的速度比满载时在静水中的速度快5千米/小时. (1)求长江水流速度及货轮空载时在静水中的速度; (2)若货轮在距甲港90千米时接到警报,将有台风影响航道安全,预报再过4小时此段航道将有暴风雨,为了安全,货船必须在4小时之内进入甲港避风.现决定从甲港派出一艘大马力的动力拖轮,遇到货轮后,将其快速拖到甲港.动力拖轮拖着货轮在静水中的速度,是它们分别在静水中速度的平均值.动力拖轮在静水中速度是40千米/小时.问:能否在规定时间内将货轮拖到甲港?请说明理由.17.在海岸上A 处,发现北偏东45°方向、距离为 3-1海里的B 处有一走私船.在A 处北偏西75°方向、距离为 2海里的C 处的我方缉私艇奉命以每小时103 海里的速度向走私船追去,这时走私船正以每小时10海里的速度从B 处向北偏东30°方向逃窜.问:缉私艇沿什么方向行驶,才能在最短时间内追上)走私船?并求出所需时间.(结果保留根号)18.李明在进行投篮训练,他从距地面高1.55米处的O 点向篮圈中心A 点投出一球,球的飞行路线为抛物线,当球达到距地面最高点3.55米时,球移动的水平距离为2米.以O 点为坐标原点,建立直角坐标系(如图所示),测得OA 与水平方向OB 的夹角为30°,A 、B 两点相距1.5米. (1)求篮球飞行路线所在抛物线的解析式;(2)判断李明这一投能否把球从O 点直接投入篮圈A 点(排除篮板球),如果能,请说明理由;如果不能,那么李明应向前或向后移动多少米,才能投入篮圈A 点?(结果保留根号)ABCD45°75° 北30°Ox y AB二、一元二次方程1.已知△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边长为5.(1)当k为何值时,△ABC是以BC为斜边的直角三角形;(2)当k为何值时,△ABC是等腰三角形,并求△ABC的周长.2.已知△ABC的三边长为a、b、c,关于x的方程x2-2(a+b)x+c2+2ab=0有两个相等的实数根,又sin A、sin B是关于x的方程(m+5)x2-(2m-5)x+m-8=0的两个实数根.(1)求m的值;(2)若△ABC的外接圆面积为25π,求△ABC的内接正方形的边长.3.已知关于x的方程x2-(m+n+1)x+m=0(n≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示m和n;(2)求证:α≤1≤β;(3)若点P(α,β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(12,1),C(1,1),问是否存在点P,使m+n=54若存在,求出点P的坐标;若不存在,请说明理由.4.请阅读下列材料:问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y 2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式);(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为:___________________;(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.5.已知关于x的一元二次方程x2-2x-a2-a=0(a>0).(1)证明这个方程的一个根比2大,另一个根比2小;(2)如果当a=1,2,3,…,2011时,对应的一元二次方程的两个根分别为α1、β1,α2、β2,α3、β3,…,α2011、β2011,求1α1+1β1+1α2+1β2+1α3+1β3+…+1α2011+1β2011的值.6.已知关于x的一元二次方程x2-(a+b+c)x+ab+bc+ca=0,且a>b>c>0.(1)若方程有实数根,求证:a,b,c不能构成一个三角形的三边长;(2)若方程有实数根x0,求证:b+c<x0<a;(3)若方程的实数根为6和9,求正整数a,b,c的值.7.已知方程x2+2ax+a-4=0有两个不同的实数根,方程x2+2ax+k=0也有两个不同的实数根,且其两根介于方程x2+2ax+a-4=0的两根之间,求k的取值范围.8.已知关于x的方程x2-4|x|+3=k.(1)当k为何值时,方程有4个互不相等的实数根?(2)当k为何值时,方程有3个互不相等的实数根?(3)当k为何值时,方程有2个互不相等的实数根?(4)是否存在实数k,使得方程只有1个实数根?若存在,求k的值和方程的根;若不存在,请说明理由.9.已知x1,x2是关于x的一元二次方程4x2+4(m-1)x+m2=0的两个非零实数根,则x1与x2能否同号?若能同号,请求出相应的m的取值范围;若不能同号,请说明理由.10.已知α、β为关于x的方程x2-2mx+3m=0的两个实数根,且(α-β)2=16,如果关于x的另一个方程x2-2mx+6m-9=0的两个实数根都在α和β之间,求m的值.11.已知a为实数,且关于x的二次方程ax2+(a2+1)x-a=0的两个实数根都小于1,求这两个实数根的最大值.12.求实数a的取值范围,使关于x的方程x2+2(a-1)x+2a+6=0(1)有两个实根x1、x2,且满足0<x1<1<x2<4;(2)至少有一个正根.13.已知x1、x2是方程x2-mx-1=0的两个实数根,满足x1<x2,且x2≥2.(1)求m的取值范围;(2)若x2+mx1-m+x1+mx2-m=2,求m的值.14.已知关于x的方程x2-(m-2)x-m24=0(m≠0)(1)求证:这个方程总有两个异号实根;(2)若这个方程的两个实根x1、x2满足|x2|=|x1|+2,求m的值及相应的x1、x2.15.已知△ABC的一边长为5,另两边长恰是方程2x2-12x+m=0的两个根,求m的取值范围.16.已知:α,β(α>β)是一元二次方程x2-x-1=0的两个实数根,设s1=α+β,s2=α2+β2,…,s n=αn+βn.根据根的定义,有α2-α-1=0,β2-β-1=0,将两式相加,得(α2+β2)-(α+β)-2=0,于是,得s2-s1-2=0.根据以上信息,解答下列问题:(1)利用配方法求α,β的值,并直接写出s1,s2的值;(2)猜想:当n≥3时,s n,s n-1,s n-2之间满足的数量关系,并证明你的猜想的正确性;(3)根据(2)中的猜想,求(1+52)8+(1-52)8的值.17.已知方程(x-1)(x2-2x+m)=0的三个实数根恰好构成△ABC的三条边长.(1)求实数m的取值范围;(2)当△ABC为直角三角形时,求m的值和△ABC的面积.三、反比例函数53(2)设动点P的坐标为P(a,b)(-2<AE、EF、BF3.如图,在△OAB中,OA=OB,点A坐标为(-33,3),点B在x轴负半轴上.(1)将△OAB沿x轴向右平移a个单位后,点A恰好落在反比例函数y=63x的图象上,求a的值;(2)将△OAB绕点O按逆时针方向旋转α角(0°<α<90°).①当α=30°时,点B恰好落在反比例函数y=kx的图象上,求k的值;②点A、B4.如图,△AOB 为等腰直角三角形,斜边OB 在x 轴上,一次函数y =3x -4的图象经过点A ,交y 轴于点C ,反比例函数y =kx(x >0)的图象也经过点A .(1)求反比例函数的解析式;(2)过O 点作(3)若点P 是x 存在,求点Q5.如图,已知一次函数y =kx +b 的图象交反比例函数y =4-2mx(x >0)图象于点A 、B ,交x 轴于点C . (1)求的m 的取值范围; (2)若点A 的坐标是(2,-4),且BCAB=13,求m 的值和一次函数的解析式; (3)在(2)的条件下,设点P 是一次函数图象上的第一、四象限......内的动点,点Q 是反比例函数图象上的动点,过点P 作PP 1⊥x 轴于P 1,PP 2⊥y 轴于P 2;过点Q 作QQ 1⊥x 轴于Q 1,QQ 2⊥y 轴于Q 2.设点P 的横坐标为x ,请直接写出....使四边形PP 1OP 2的面积小于四边形QQ 1OQ 2的面积的x 的取值范围.6.在平面直角坐标系xOy 中,直线l 1过A (1B (0,2)且与x 轴平行,直线l 1与l 2相交于点P .点E 为直线l 2上一点,反比例函数y =kx(k >0)的图象过点E 且与直线l 1相交于点F .(1)若点E 与点P 重合,求k 的值;(2)连接OE 、OF 、EF .若k >2,且△OEF 的面积为△PEF 的面积的2倍,求点E 的坐标;(3)是否存在点E 及y 轴上的点M ,使得以点M 、E 、F 为顶点的三角形与△PEF 全等?若存在,求点E 的坐标,若不存在,请说明理由.7.如图,已知直线l 经过点A (1,0),且与曲线y =mx(x >0)交于点B (2,1).过点P (p ,p -1)(p>1)作x 轴的平行线分别交曲线y =m x (x >0)和y =-mx(x <0)于M 、N 两点.(1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S p 的值;若不存在,请说明理由.8.如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =6x(x >0)图象上的任意一点,以P为圆心,PO 为半径的圆与x 、y 轴分别交于点A 、B . (1)判断P 是否在线段AB 上,并说明理由; (2)求△AOB 的面积;(3)Q 是反比例函数y =6x(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB(备用图1)(备用图2)9.如图,将—矩形OABC 放在直角坐标系中,O 为坐标原点,点A 在y 轴正半轴上,点E 是边AB 上的—个动点(不与点A 、B 重合),过点E 的反比例函数y =kx(x >0)的图象与边BC 交于点F .(1)若△OAE 、△OCF 的面积分别为S (2)若OA =2,OC =4,问当点E10.如图,已知抛物线y =(3-m)x2+2(m -3)x +4m -m2的顶点A 在双曲线y =3x上,直线y =mx +b 经过点A ,与y 轴交于点B ,与x 轴交于点C . (1)求直线AB 的解析式;(2)将直线AB 绕点O 顺时针旋转90°,与x 轴交于点D ,与y 轴交与点E ,求sin ∠BDE 的值;(3)过点B 作x 轴的平行线与双曲线交于点F ,点M 在直线BF 上,且到抛物线的对称轴的距离为6.若点N 在直线BF 上,直接写出使得∠AMB +∠ANB =45°的点N 的坐标.11B 两点,过点A 作AC ∥x轴,过点B 作BC ∥y 轴,AC 与BC 交于点C ,AC 与y 轴交于点M ,BC 与x 轴交于点N ,若∠BAC =60°,AB =4.(1)求m 、k 的值;(2)将一把三角尺的直角顶点放在原点O 处,绕着点O 旋转三角尺,三角尺的两直角边分别交射线CA 、射线BC 于点P 、Q ,设点P 的横坐标为x ,PQ 的长为L ,当点P 在边AC 上运动时,求L 与x 的函数关系式;(3)当△PQC 的面积为3时,求点P 的坐标.坐标为x 2,且x 1-x 2=2. (1)求k 的值;(2)求△AOB 的面积;(3)若一条开口向下的抛物线经过A 、B 两点,并在过点A 且与OB 平行的直线上截得的线段长为 13,求抛物线的解析式.14.如图,已知A 、B 两点的坐标分别为A (0,23),B (2,0)直线AB 与反比例函数y =mx的图象交与点C 和点D (-1,a ).(1)求直线AB 和反比例函数的解析式; (2)求∠ACO 的度数;(3)将△OBC 绕点O 逆时针方向旋转α角(α为锐角),得到△OB ′C ′,当α为多少度时OC ′⊥AB ,并求此时线段AB ′的长.15.在矩形AOBC 中,OA =4y 轴,建立如图所示的平面直角坐标系.F 是边BC y =kx(k >0)的图象与AC边交于点E .(1)若点E 的坐标为(2,4)(2)设点P 是(1P 的坐标;(3)是否存在这样的点F ,使得将△OF 的长;若不存在,请说明理由.16.如图,矩形ABCD 的顶点A 在坐标原点,顶点B 坐标为(-2,1),顶点C 在y 轴上. (1)求顶点D 的坐标; (2)将矩形ABCD 绕点O 顺时针旋转,使点D 落在x 轴的点G 处,得到矩形AEFG ,EF 与AD 交于点M ,过点M 的反比例函数图象交FG 于点N ,求△AMN 的面积;(3)求证:△AMN 是直角三角形.17.如图,已知反比例函数y =mx(m 是常数,m ≠0),一次函数y =ax +b (a 、b 为常数,a ≠0),其中一次函数与x 轴,y 轴的交点分别是A (-4,0),B (0,2). (1)求一次函数的关系式;(2)反比例函数图象上有一点P 满足:①P A ⊥x 轴;②PO =17(O 为坐标原点),求反比例函数的关系式;(3)求点P 关于原点的对称点Q 的坐标,判断点Q 是否在该反比例函数的图象上.18.如图,已知反比例函数y =mx(m >0)的图象与一次函数y =-x +b 的图象分别交于A (1,3)、B 两点.(1)求m 、b 的值; (2)若点M 是反比例函数图象上的一动点,直线MC ⊥x 轴于C ,交直线AB 于点N ,MD ⊥y 轴于D ,NE ⊥y 轴于E .设四边形MDOC 、NEOC19.如图,已知函数y =6x(x >0)的图象与一次函数y =kx +b 的图象交于点A (1,m ),B (n ,2)两点.(1)求一次函数的解析式;(2)将一次函数y =kx +b 的图象沿x 轴负方向平移a (a >0)个单位长度得到新图象,求这个新图象与函数y =6x(x >0)的图象只有一个交点M 时a 的值及交点M 的坐标.20.如图,一次函数的图象与反比例函数y 1=-3x(x <0)的图象相交于A 点,与y 轴、x 轴分别相交于B 、C 两点,且C (2,0).当x <-1时,一次函数值大于反比例函数值,当x >-1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y 2=a x (x >0)的图象与y 1=-3 x (x <0)的图象关于y 轴对称,在y 2=ax(x >0)的图象上取一点P (P 点的横坐标大于2),过P 作PQ ⊥x 轴,垂足为Q ,若四边形BCQP 的面积等于2,求P 点的坐标.21.如图,已知二次函数y =ax2+2x +c (a >0)图象的顶点M 在反比例函数y =3x的图象上,且与x 轴相交于A 、B 两点.(1)若二次函数图象的对称轴为x =-12,试求a 、c 的值;(2)在(1)的条件下,求线段AB 的长;(3)若二次函数图象的对称轴与x 轴的交点为N ,当NO +MN 取最小值时,试求二次函数的解析式.22.如图,一次函数y =kx +4的图象与反比例函数y =mx(x >0,m >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点. (1)求证:AC =BD ;(2)若△COD 的面积是△AOB 的面积的2倍,求k 与m 之间的函数关系式;(3)在(2)的条件下,是否存在实数k 和m ,使得以AB 为直径的圆经过点P (2,0)?若存在,求出k23.已知一次函数y =-1 2x +b 的图象与反比例函数y =6x(x >0)的图象交于A 、B 两点,与x 轴、y 轴分别交于C 、D 两点.(1)如图1,若AB =2AC ,求b 的值;(2)在(1)的条件下,将一块直角三角板的直角顶点P 放在反比例函数y =6x(x >0)图象的AB 段上滑动,两直角边始终与坐标轴平行,且与线段AB 分别交于Q 、R 两点.设点P 的横坐标为x ,QR 的长为L ,求L 关于x 的函数关系式,并求L 的最大值;(3)如图2,过点A 作直线AE ∥x 轴,交y 轴于点E ;过点B 作直线BF ∥y 轴交x 轴于点F ,交直线AE 于点G .当四边形AE24.如图,已知反比例函数y =kx的图象经过A (-1,a )、B (2,a +33)两点,点C 的坐标为(-1,0).(1)求反比例函数的解析式;(2)在反比例函数y =kx的图象上求点D ,使得以A 、B 、C 、D 为顶点的四边形是梯形.25.如图,在平面直角坐标系中,双曲线y =kx过点A (-4,1),点P 是双曲线上一动点(不与A 重合),过点A 和P 分别向两坐标轴作垂线,垂足分别为B 、C 和D 、E . (1)求k 、S △ADC 及S △PDC 的值;(2)判断AP 和DC 的位置关系,并说明理由;(3)若点P 在双曲线上运动时,探索以A 、P 、C 、D 能,请直接写出所有满足条件的点P26.已知关于x 的一元二次方程(a -1)x2+( 2-3a)x +3(1)求证:当a 取不等于1(2)若m ,n (m <n )是此方程的两根,且1 m + 1 n = 43坐标原点O 关于直线l 的对称点O ′ 在反比例函数y =kx的图象上,求反比例函数的解析式;(3)在(2)的条件下,将直线l 绕点A 逆时针旋转θ角(0°<θ<90°),得到直线l ′,l ′ 交y 轴于点P ,过点P 作x 轴的平行线,与(2)中的反比例函数图象交于点Q ,当四边形APQO ′ 的面积为9-332时,求θ角的大小.27.在平面直角坐标系中,一次函数y =-12x +5的图象交x 轴于点A ,交y 轴于点B ,交直线y =x -1于点C ,过点A 作y 轴的平行线交直线y =x -1于点D ,点E 为线段AD 上一点,且tan ∠DCE =12.动点P从原点O 出发沿OA 边向点A 匀速运动,同时,动点Q 从B 点出发沿BO 边向原点O 匀速运动,点P 与(1)求点E的坐标;(2)在整个运动过程中,是否存在这样的实数m,使得△PQD为直角三角形.若存在,求m的值;若不存在,请说明理由;(3)反比例函数y=kx的图象经过点C,R为y=kx图象上一点,在整个运动过程中,若以P、Q、E、R为顶点的四边形是平行四边形,求R点的坐标.四、二次函数1.设函数y =kx2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个函数的图象;(2)根据所画图象,猜想出:对任意实数k ,函数的图象都具有的特征,并给予证明; (3)对任意负实数k ,当x <m 时,y 随着x 的增大而增大,试求出m 的一个值.2.在平面直角坐标系xOy 中,二次函数y =mx2+(m -3)x -3(m >0)的图象与x 轴交于A 、B 两点(点A在点B 左侧),与y 轴交于点C . (1)求点A 的坐标; (2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点.在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx2+(m -3)x -3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.3.已知平面直角坐标系xO y ,一次函数y =3 4x +3的图象与y 轴交于点A ,点M 在正比例函数y =32x 的图象上,且MO =MA ,二次函数y =x2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)若点B 在y 轴上,点C 在上述二次函数的图象上,点D 在一次函数y =34x +3的图象上,且四边形ABCD 是菱形,求点C 的坐标.4.已知二次函数y =ax 2+bx +c 和一次函数y =-bx ,其中实数a 、b 、c 满足a >b >c ,a +b +c =0. (1)求证:这两个函数的图象交于不同的两点;(2)设这两个函数的图象交于A 、B 两点,作AA 1⊥x 轴于A 1,BB 1⊥x 轴于B 1,求线段A 1B 1长的取值范围.5.已知二次函数y =ax2-4bx +4c (a >0)有两个实数根x 1,x 2,且2≤x 1<x 2≤3. (1)求证:存在以a ,b ,c 为边长的三角形;(2)求证:cb +c<aa +c+bb +a.6.已知二次函数y =x2+bx +c (c <0)的图象与x 轴交于点A 、B ,与y 轴交于点C ,△ABC 的外接圆的圆心为点P .(1)证明:⊙P 与y 轴的另一个交点为定点;(2)如果AB 恰好为⊙P 的直径且S △ABC=2,求b 和c 的值.。