正态分布
- 格式:ppt
- 大小:889.00 KB
- 文档页数:26
正态分布(normal distribution )一、 定义 如果连续型随机变量取值分布呈现单峰、对称、两侧均匀变动的钟形分布,且能用下列函数描述其位置和形状特征的,则称之为正态分布。
概率密度函数, -∞<x<∞二、 参数1、可变参数(1)位置参数 μ E (x )=μ表达正态曲线在横轴的位置:μ3>μ2>μ11 2 3(2) 形态参数 σ表达正态曲线的偏尖峰形状和偏平阔形状:σ3>σ2>σ1 V(x)= σ2固定参数 (1)偏度系数 理论三阶矩 SK=∑(x-μ)3/nσ3=0 (2) 峰度系数 理论四阶矩 KU=∑(x-μ)4/nσ4=3 * 样本偏度系数g 1与样本峰度系数g 2公式复杂,可参阅其他教材。
三、图形及曲线与横轴向面积(概率)分布规律P{μ-σ<x<μ+σ}=0.6827P{μ-1.96σ<x<μ+1.96σ}=0.9500 P{μ-2.58σ<x<μ+2.58σ}=0.990022()())2X f X μσ-=-四、 应用1、描述资料分布2、依据面积分布规律求医学参考值范围3、质量控制方法中随机误差分布符合正态,可用一定范围作为质量警戒线和控线4、标准正态分布的U 值,可视为重要统计量,是大样本参数估计和假设检验的基础。
而且用于求资料某一定范围内分布的理论频数(n 、x 、s )已计算出例:已知x =50,S=10,N=200,求45<x<65的频数 解:令x 1=45 x 2=65U 1=(45-50)/10=-0.5, U 2=(65-50)/10=1.5 查U 值表Ф{-0.5< U 1<0}=0.5-0.3085=0.1915 Ф{0< U 2<1.5}=0.5-0.0668=0.4332 P{-0.5<U<1.5}=0.1915+0.4332=0.6247 200×0.6247=1255、正态分布式在特定条件下一些离散型分布的极限分布,这意味着只要符合特定条件,这些离散型分布亦可按正态近似法处理。
正态分布知识点总结正态分布(Normal distribution)是统计学中最为重要和常见的概率分布之一、其分布特点为钟形曲线,对称分布,均值为中心点,标准差决定了曲线的分散程度。
正态分布在实际应用中非常广泛,特别适用于描述大量独立随机变量之和的分布情况。
一、正态分布的定义和性质1.定义:若随机变量X服从一个均值为μ,标准差为σ的正态分布(记作X∼N(μ,σ)),则其概率密度函数为f(x)=1/(σ√(2π))*e^(-(x-μ)²/(2σ²))2.性质:a.对称性:正态分布是关于均值对称的,即平均值左右两侧的曲线是对称的。
b.中心极限定理:大量独立随机变量的和趋向于正态分布,即使原始数据并不服从正态分布,样本量足够大时,样本均值的分布也会接近正态分布。
c.峰度与偏度:正态分布的峰度为3,即其曲线边际趋于水平而不陡。
偏度为0,即左右两侧的概率密度完全对称。
d.累积分布函数:正态分布的累积分布函数可以用标准正态分布表查找,标准正态分布表给出了标准正态分布的累积概率,从而可以计算出任意正态分布的累积概率。
二、正态分布的参数1.均值(μ):正态分布的均值决定了分布曲线的中心位置。
在标准正态分布中,均值为0。
2.标准差(σ):正态分布的标准差决定了分布曲线的宽度和分散程度。
标准差越小,曲线越尖锐;标准差越大,曲线越平缓。
三、标准正态分布1. 定义:均值为0,标准差为1的正态分布称为标准正态分布(Standard Normal Distribution),记作Z∼N(0,1)。
2.标准化:通过标准化转换,将任意正态分布转化为标准正态分布。
转换公式为Z=(X-μ)/σ,其中X为原正态分布的随机变量,μ为原正态分布的均值,σ为原正态分布的标准差。
3.标准正态分布表:存储了标准正态分布的累积概率值,可用于求解任意正态分布的累积概率。
4.逆标准化:通过标准正态分布表,可以将给定累积概率对应的Z值逆向计算,得到对应的原始分布值。
正态分布简单解释
1 什么是正态分布?
正态分布,又称高斯分布,是概率统计学中的一种基本分布。
正态分布具有单峰性、对称性、钟形曲线的特点,是自然界中很多现象的统计分布。
2 正态分布的特点
正态分布的曲线正中间有一个顶峰,左右两侧对称,呈钟形。
这个顶峰代表了数据的平均值,也就是算术平均数。
而曲线两侧高度逐渐降低,代表了数据的集中程度。
曲线左右两侧的面积相等,也就是说左侧的面积等于右侧的面积,因此在平均值左右对称的情况下,有50%的数据落在平均值左边,有50%的数据落在平均值右边。
3 正态分布的应用
由于正态分布在自然界中很多现象中都具有普遍性和代表性,因此被广泛地应用于各种领域中。
例如,医疗诊断中使用正态分布来确定正常范围,制造业使用正态分布来控制产品质量,金融领域使用正态分布来进行风险分析等等。
此外,正态分布在统计学中也起着重要的作用,可以通过正态分布来推论总体参数,计算出置信区间和假设检验等。
4 正态分布的重要性
相信很多人都听过“大数定律”,那么正态分布对于这个定律的解释有很大的帮助。
基于中心极限定理,我们可以证明当样本容量达到一定程度时,样本均值的分布趋近于正态分布。
因此,正态分布在统计学中是非常重要的基础分布,也是许多分析方法的基础。
同时,在机器学习、人工智能等领域中,正态分布也是非常常用的一种概率分布,例如在回归分析中经常使用高斯分布来描述随机误差。
5 总结
正态分布在统计学中是非常基础和重要的概率分布,它的应用涵盖了各个领域。
理解和掌握正态分布的基本概念和特点,对于提高我们对大数据的分析能力和对实际问题的解决能力都具有重要意义。
正态分布
一:正态分布的概念和和图形
正态分布的概率密度函数为:
(-∞< X <+
∞) 式中,有4个常数,μ 为总体均数,σ 为总体标准差,π为圆周率,e 为自然
,π,e 为固定常数,仅X 为变量,代表图形上横轴的数值,f(X)为纵轴数
分布曲线。
正态分布曲线是一簇曲线。
二:正态分布图的特点
1 对称的钟型(在均数处最高) 2两侧逐渐下降 3两端在无穷远处与横轴无限接近。
三:正态分布的特征
特征一 正态分布是一单峰分布,高峰位置在均数X= μ 处。
特征二 正态分布以均数为中心,左右完全对称。
特征三 正态分布取决于两个参数,即均数μ 和标准差σ μμ
μ 变小,曲线沿横轴向左移动。
σ
示数据的离散程度,若σσ 。
特征四 有些指标不服从正态分布,但通过适当变换后服从正态分布,如对数正态分布。
特征五 正态分布曲线下的面积分布是有规律的。
无论σ
μ,
①正态密度函数曲线与横轴间的面积恒等于1或100%;
②正态分布是对称分布。
其对称轴为直线X=μX>μX<μ等,各占50%;
四:标准正态分布
将正态分布变量作标准化变换,就得到均数为0,标准差为1的标准正态分布 标准化变换公式: 正态分布的概率密度函数方程就简化为标准正态分布的概率密度函数方程:
,(-∞< u <+∞) 22
()21()2X f X e μσσπ--= f σμ
-=X u 2221)(u e u -=π
ϕ。