第七章微生物代谢
- 格式:ppt
- 大小:10.31 MB
- 文档页数:133
第七章微生物的次级代谢及其调节授课内容:第一节次级代谢与次级代谢产物第二节次级代谢产物的生物合成第三节次级代谢的特点第四节次级代谢的生理功能第七章微生物的次级代谢第一节次级代谢与次级代谢产物一、次级代谢的概念微生物在一定的生长时期(一般是稳定生长期),以初级代谢产物为前体,合成一些对微生物的生命活动没有明确功能的物质过程。
是某些微生物为了避免在代谢过程中某种代谢产物的积累造成的不利作用而产生的一类有利于生存的代谢类型。
这一过程的产物称为次级代谢产物。
也有把初级代谢产物的非生理量的积累,看成是次级代谢产物,例如微生物发酵产生的维生素、柠檬酸、谷氨酸等。
二、次级代谢产物的类型(一)根据产物的作用分类根据次级代谢产物的作用可以分为抗生素、激素、生物碱、毒素及维生素等类型。
1、抗生素:这是微生物、植物和动物所产生的,具有在低浓度下有选择地抑制或杀灭其他微生物或肿瘤细胞的功能的一类次级产物。
目前从自然界发现和分离的抗生素已有5000种;通过化学结构的改造,共制备了约3万余种半合成抗生素。
青霉素、链霉素、四环素类、红霉素、新生霉素、多粘霉素、利福平、放线菌素(更生霉素)、博莱霉素(争光霉素)等达数百种抗生素已进行工业生产。
以青霉素类、头孢菌素类、四环素类、氨基糖苷类及大环内酯类最常用。
2、激素:微生物产生的一些可以刺激动、植物生长或性器官发育的一类次级物质。
例如赤霉菌产生的赤霉素。
3、维生素:作为次生物质,是指在特定条件下,微生物产生的远远超过自身需要量的那些维生素,例如丙酸细菌产生维生素B;分枝杆菌产生吡哆素和烟酰胺;假单胞菌产生生物素;12以及霉菌产生的核黄素和β-胡萝卜素等。
4、生物碱:大部分生物碱是由植物产生的碱性含氮有机物。
麦角菌可以产生麦角菌生物碱。
5、色素:是一类本身具有颜色并能使其他物质着色的高分子有机物质。
不少微生物在代谢过程中产生各种有色的产物。
例如由黏质赛氏杆菌产生灵菌红素,在细胞内积累,使菌落呈红色。
微⽣物⽣理学复习⼤纲第三章微⽣物营养与物质运输1、微⽣物六⼤营养要素碳源、氮源、能源、⽔、⽣长因⼦、⽆机盐2、微⽣物五种营养物质的运输⽅式单纯扩散、促进扩散、主动运输、基团转移、膜泡运输3、五种营养物质的运输⽅式的异同单纯扩散:这种形式不需要能量,是以物质在细胞内外的浓度差为动⼒,即基于分⼦的热运动⽽进⾏的物质运输过程。
当外界的营养物质的浓度⾼于细胞内该物质的浓度时,通过扩散作⽤使物质进⼊细胞内促进扩散:是顺浓度梯度,将外界物质运⼊细胞内,不需要能量。
与被动运输不同的是,这种形式需要⼀种存在于膜上的载体蛋⽩参与运输。
主动运输:是营养物质逆浓度差和膜电位差运送到细胞膜内的过程。
主动运输过程不仅像促进扩散⼀样需要载体蛋⽩,⽽且还需要能量。
基团转移:许多原核⽣物还可以通过基团转移来吸收营养物质。
在这⼀过程中营养物质在通过细胞膜的转移时发⽣化学变化。
这种运输⽅式也需要能量,类似主动运输。
膜泡运输:⼩分⼦物质的跨膜运输主要通过载体实现,⼤分⼦和颗粒物质的运输则主要通过膜泡运输。
第五章⾃养微⽣物的⽣物氧化1、光合磷酸化是指光能转变为化学能的过程。
2、环式光和磷酸化与⾮环式的异同:环式光合磷酸化:是存在于光合细菌中的⼀种原始产能机制,可在厌氧条件下进⾏,产物只有ATP,⽆NADP(H),也不产⽣分⼦氧,是⾮放氧型光合作⽤。
环式光和磷酸化:⾼等植物和蓝细菌与其他光合细菌不同,它们可以裂解⽔,以提供细胞合成的还原能⼒。
它们含有光合系统Ⅰ和光合系统Ⅱ,这两个系统偶联,进⾏⾮环式光合磷酸化。
特点是不仅产⽣ATP,⽽且还产⽣NADP(H)和释放氧⽓,是放氧型光合作⽤第四章、异氧微⽣物的⽣物氧化(⼀)EMP 途径因葡萄糖是以1,6-⼆磷酸果糖(FDP)开始降解的,故⼜称双磷酸⼰糖途径(HDP ),这条途径包括⼗个独⽴⼜彼此连续的反应。
其总反应是:C6H12O6+2(ADP+Pi+NAD+)→2CHCOCOOH+2(A TP+NADH+H+)葡萄糖经EMP途径⽣成两分⼦丙酮酸,同时产⽣两个A TP,整个反应受ADP、Pi和NAD +含量的控制。
第四章真核微生物1.试比较细菌、放线菌、酵母菌和霉菌细胞壁成分的异同,并讨论它们的原生质体制备方法。
*答:细胞壁成分的异同细菌分为G+和G-,G+肽聚糖含量高,G-含量低;G+磷壁酸含量较高,而G-不含磷壁酸;G+类脂质一般无,而G-含量较高;G+不含蛋白质,G-含量较高。
放线菌为G-,其细胞壁具有G-所具有的特点。
酵母菌和霉菌为真菌,酵母菌的细胞壁外层为甘露聚糖,内层为葡聚糖;而霉菌的细胞壁成分为几丁质、蛋白质、葡聚糖。
原生质体制备方法: G+菌原生质体获得:青霉素、溶菌酶;G-菌原生质体获得:EDTA鳌合剂处理,溶菌酶;放线菌原生质体获得:青霉素、溶菌酶;霉菌原生质体获得:纤维素酶。
2.试图示并说明真核微生物“9+2”型鞭毛的构造和生理功能。
*鞭毛(flagella),长100-200 μm,以挥鞭方式推动细胞运动。
鞭毛由伸出细胞外的鞭杆、嵌埋在细胞质膜上的基体以及把这两者相连的过渡区共3部分组成。
鞭杆的横切面呈9+2型,即中心有一对中央微管,其外有9个微管二联体,整个鞭杆由细胞质膜包裹。
每条微管二联体由A,B两条中空的亚纤维组成,其中A亚纤维是一完全微管,而B亚纤维则有10个亚基围成,所缺3个亚基与A亚基纤维共用。
通过动力蛋白臂与相邻的微管二联体的作用,可使鞭毛作弯曲运动。
3.试简介真核细胞所特有的几种细胞器的结构及主要功能答:(线粒体、溶酶体、叶绿体、高尔集体、液泡、内质网、微体、膜边体、氢化酶体、几丁质酶体。
)膜边体又称须边体或质膜外泡,为许多真菌所特有。
它是一种位于菌丝细胞四周的质膜与细胞壁间,由单层膜包裹的细胞器。
膜边体可由高尔基体或内质网特定部位形成,各个膜边体能互相结合,也可与别的细胞器或膜相结合,功能可能与分泌水解酶或合成细胞壁有关。
几丁质酶体又壳体,一种活跃于各种真菌菌体顶端细胞中的微小泡囊,内含几丁质合成酶,其功能是把其中所含的酶源源不断地运输到菌丝尖端细胞壁表面,使该处不断合成几丁质微纤维,从而保证菌丝不断向前延伸。