氢燃料电池电堆系统控制方案
- 格式:docx
- 大小:437.95 KB
- 文档页数:16
AUTO PARTS | 汽车零部件燃料电池系统氢循环方案综述郭伟静上海燃料电池汽车动力系统有限公司 上海市 201805摘 要: 燃料电池氢循环主要作用是维持电堆内氢气循环量,保持堆内的水平衡。
好的氢循环设计方案对提高燃料电池寿命、可靠性、以及整车的经济和动力性都有着至关重要的作用。
文章从成本、效率、技术成熟度、资源可行性等角度分析了不同氢循环方案的优缺点,同时指出未来氢循环研发的热点和方向。
关键词:燃料电池 氢循环 氢气循环泵 引射器1 引言近年来,传统的化学能源造成的环境污染问题日益严重,寻找替代能源的呼声也日益强烈。
燃料电池作为一项非常有前景的能源技术,具有效率高、排放低等优点。
燃料电池中的质子交换膜燃料电池除了前文提到的优点外,还具有启动快、常温常压工作条件下运行、功率密度高、电解质为固体膜、易密封的特点,因此具有更大的优越性和市场潜力。
燃料电池是一种化学能转化为电能的能量转换装置。
质子交换膜燃料电池是以氢气为燃料,以氧气为氧化剂通过电化学反应产生能量和水。
采用以氢为燃料的燃料电池,可以等温的按照化学式将化学能直接转化为电能,从而可以作为汽车动力替代传统发动机为汽车提供驱动力。
燃料电池系统主要包括空气子系统、氢气子系统、冷却子系统。
空气子系统主要为燃料电池提供充足的氧气,并达到燃料电池所需要的温度、压力和湿度。
冷却子系统主要的作用是将电堆多余的热量带出,保证电堆在适宜的温度下稳定运行。
氢气子系统主要通过减压器或者电子喷射装置,为燃料电池提供充足的氢气,同时要达到燃料电池所需要的压力,通过氢气循环装置保证电堆内氢气的过量系数,使得反应更充分,同时将电堆内的水带出,使得燃料电池系统能稳态的运行。
所以一个好的氢循环的设计方案,对于燃料电池系统的稳定运行有至关重要的作用,并且对提高燃料电池发动机寿命、可靠性乃至电堆内部水管理等都有着至关重要的影响。
目前市场上典型的氢循环方案通常采用氢气循环泵、双引射器、单引射器、氢气循环泵和引射器集成、引射器加旁通几种不同的形式。
氢燃料电池堆的控制策略与智能优化研究氢燃料电池技术作为一种清洁能源技术,受到了广泛关注和认可。
随着全球对于环保和能源安全的重视,氢燃料电池技术的研究和应用也日益活跃。
在氢燃料电池系统中,氢燃料电池堆是核心部件之一,其性能的稳定和优化对整个系统的运行至关重要。
因此,研究氢燃料电池堆的控制策略与智能优化具有重要的理论和实用意义。
氢燃料电池堆的控制策略与智能优化是指通过对氢燃料电池堆内部参数和外部环境进行实时监测和调控,以实现氢燃料电池堆在各种工况下的高效、稳定和安全运行。
在氢燃料电池堆的控制策略方面,目前主要采用的是传统的PID控制方法。
PID控制方法通过不断地调整比例、积分和微分三个参数,使得系统的反馈信号与期望信号尽可能接近,从而实现对系统的控制。
然而,传统的PID控制方法存在调节精度低、鲁棒性差、抗干扰能力弱等缺点,不适应氢燃料电池堆复杂多变的工况需求。
为了克服传统PID控制方法的局限性,研究者们开始借鉴智能优化算法,并将其应用于氢燃料电池堆的控制领域。
智能优化算法是一种基于模拟生物进化、群体智能、人工神经网络等原理而提出的一类新型优化方法,具有全局搜索能力强、收敛速度快、鲁棒性好等优点。
目前,应用较为广泛的智能优化算法有遗传算法、模拟退火算法、蚁群算法、粒子群算法等。
这些算法通过模拟自然界的生物进化过程或群体行为,不断地搜索最优解,在复杂的非线性、不确定性的氢燃料电池堆控制系统中表现出良好的性能。
在氢燃料电池堆的智能优化研究中,遗传算法是一种常见的优化方法。
遗传算法模拟了自然界中的生物遗传和进化过程,通过遗传、变异、选择等操作,优化目标函数,达到系统的最佳性能。
模拟退火算法则是一种通过模拟金属退火过程而得来的优化算法,能够跳出局部最优解,在搜索全局最优解时具有良好的性能。
蚁群算法则是模拟了蚂蚁觅食过程中的信息传递和协作行为,通过多个虚拟蚂蚁的智能搜索,找到最优路径。
粒子群算法则是模拟了鸟群觅食的过程,通过个体之间信息的交流和合作,找到问题的最优解。
氢燃料电池堆的系统集成与优化氢燃料电池是一种清洁高效的能源,具有巨大的发展潜力。
随着人们对环境保护意识的增强,氢燃料电池技术逐渐受到人们的关注和重视。
其中,氢燃料电池堆作为氢燃料电池系统中的核心部件,其系统集成与优化显得尤为重要。
本文将从氢燃料电池堆的基本原理出发,探讨方面的研究进展。
首先,氢燃料电池堆的系统集成是指将氢燃料电池堆与其他系统部件相互关联,形成一个完整的能源系统。
系统集成的好坏直接影响整个氢燃料电池系统的性能和稳定性。
在系统集成中,需要考虑氢气和氧气的供给、废热利用、电子转移和热管理等方面的问题。
通过合理的系统集成,可以提高氢燃料电池系统的效率,并延长其使用寿命。
其次,氢燃料电池堆的优化是指通过改进氢燃料电池堆的结构和材料,提高其性能表现。
氢燃料电池堆的优化需要考虑诸多因素,如催化剂的选择、电解质膜的性能、氢氧气的扩散和传输等。
在氢燃料电池堆的优化过程中,需要借助先进的材料和工艺手段,以及精密的测试和模拟技术,来改善氢燃料电池堆的性能指标。
另外,氢燃料电池堆的系统集成与优化研究还需考虑到实际应用中的各种挑战和问题。
例如,氢燃料电池堆在不同工况下的性能稳定性,以及在复杂环境条件下的耐久性等。
在解决这些挑战和问题的过程中,需要综合考虑氢燃料电池堆的结构特点、材料性能和系统工程的要求,以实现氢燃料电池技术的商业化应用。
总结一下本文的重点,我们可以发现,氢燃料电池堆的系统集成与优化是氢燃料电池技术研究的重要方向之一。
通过对氢燃料电池堆的系统集成与优化进行深入研究,可以不断提高氢燃料电池系统的能源转换效率和环境友好性,推动氢能源技术的发展和应用。
我们相信,随着氢燃料电池技术的不断创新和完善,氢能源将会成为未来能源领域的重要选择之一。
愿氢燃料电池堆的系统集成与优化研究能够取得更加显著的成果,为实现清洁高效的能源目标贡献力量。
氢燃料电池混合动力控制系统硬件设计摘要:氢燃料电池具备绿色低碳、能量密度高等有点,但存在动态输出响应相对较慢的缺点。
通过主控制器、PWM控制器、数字电位器和功率传感器等元器件的配合,可使得氢燃料电池与锂电池搭建构成具备动态响应积极、续航能力较强的混合动力系统。
1.氢燃料电池混合动力系统简介氢燃料电池是一种将氢气和氧气的化学能转化为电能的发电装置,它具有能量密度高、绿色低碳、效率高、无噪声等优点,但其动态输出响应相对较慢,因此将锂电池与氢燃料电池系统并联,实现以氢燃料电池系统为主动力输出,峰值功率输出和瞬态工况时由锂电池同步输出的混合动力系统,从而提升动力系统的整体动态响应、减少负荷瞬变对氢燃料电池造成的冲击、延长氢燃料电池的寿命。
1.混合动力控制系统硬件选取如该混合动力系统有较大的需求量,可根据氢燃料电池、锂电池和负载的特性开发专用的DC/DC,将通讯接口、功率控制等元器件集成到DC/DC里。
但如果该混合动力系统仅小范围应用,开发专用DC/DC的成本过高,可通过本设计实现相同的功能,主要零部件选取如下:1.氢燃料电池:氢燃料电池是本混合动力系统的核心部件,需具备如下功能:1.具备与负载匹配的额定功率;2.具备输出电流、电压和功率的监测输出接口(本设计采用更加精准的外置功率传感器)。
1.DC/DC:如采用稳定输出电压的DC/DC,当需求功率大于氢燃料电池输出功率时,DC/DC的输出电压并不会下降,而锂电池电压一直低于DC/DC输出电压,导致锂电池无法输出功率。
如通过控制DC/DC输出和锂电池输出的通断来实现混合动力输出,但这样做需要增加至少一个功率传感器和多个继电器开关,同时会使得控制逻辑异常复杂。
另外,频繁接入、切除锂电池会导致系统不断受到冲击,出现系统电压和功率不稳定、零部件容易损坏等严重问题。
因此合适的DC/DC需具备如下功能:1.具备匹配氢燃料电池输出电压范围的输入电压范围;2.具备匹配混合动力系统母线电压的输出电压范围;3.具备输出电压调节功能,将输出电压调节至接近锂电池的充电电压;4.具备输出电流限制功能,使得燃料电池输出功率不超过额定功率;5.当需求功率大于输出功率时,输出电压下降,使得锂电池能够输出功率;6.具备功率输出控制功能或接口,从而实现燃料电池输出功率的稳定升降(本设计采用DC/DC输出电流控制回路外接数字电位器和氢燃料电池输出母线上外接功率控制器实现氢燃料电池系统输出功率控制)。
氢燃料电池系统集成与控制氢燃料电池系统是一种广泛应用于交通运输工具和能源存储系统中的清洁能源技术,在当前环境保护和可持续发展的大背景下,其应用前景十分广阔。
然而,要实现氢燃料电池系统的高效运行,需要进行系统集成与控制的研究与优化。
本文将从氢燃料电池系统的结构和工作原理入手,探讨系统集成与控制对于提升系统效率和稳定性的重要性。
首先,氢燃料电池系统的基本结构包括氢气传输系统、氧气传输系统、电解质膜和电化学电池。
其中,氢气传输系统负责将储存于氢气罐中的氢气输送至电化学电池,而氧气传输系统则将空气中的氧气输送至电池。
电解质膜在电化学电池中起到隔离阴阳极、传导离子的作用,是整个系统的关键部件。
在系统集成方面,需要考虑各个子系统之间的协调配合,确保氢氧传输的顺利进行,同时要保证电解质膜的正常工作状态。
其次,氢燃料电池系统的工作原理是将氢气和氧气在电化学电池中发生氧化还原反应,释放出能量驱动电动机工作。
在这个过程中,系统集成与控制起着至关重要的作用。
正确的系统集成可以有效提高系统的能量转换效率,减少能源损耗;而合理的控制策略能够实时监测系统运行状态,优化系统工作参数,保证系统的稳定性和安全性。
因此,系统集成与控制的研究不仅关系到氢燃料电池系统的性能优化,也关乎系统的可靠性和寿命。
针对的研究,目前已经取得了一些关键进展。
首先,在系统集成方面,研究人员通过优化氢气传输管路的设计和材料选择,提高了氢气输送的效率和稳定性。
同时,针对氧气传输系统的优化设计,也有效减少了氧气输送过程中的压力损失和泄漏风险。
其次,在电解质膜的研究方面,新型的高渗透率、低阻抗电解质膜的研发使得氢燃料电池系统的性能得到了提升。
在控制策略方面,研究人员通常会采用模型预测控制(MPC)或者人工神经网络等先进技术,对系统进行实时监测与调节。
MPC通过建立氢燃料电池系统的数学模型,预测系统未来的运行状态,然后制定最优控制策略,实现对系统的动态优化;而人工神经网络则可以模拟复杂的非线性系统运行规律,为系统集成与控制提供更为灵活和智能的解决方案。
氢燃料电池的系统集成和控制策略1. 现代社会对清洁能源的需求越来越迫切,而氢燃料电池作为一种环保、高效的能源形式,备受瞩目。
然而,要实现氢燃料电池的系统集成和控制策略并非易事,需要克服诸多技术难题。
2. 首先,氢燃料电池系统的集成需要考虑多方面因素。
在氢燃料电池车辆中,氢气的存储和输送是一个关键问题。
目前,氢气通常以高压氢气罐的形式存储,需要专门的输送和加注设施。
因此,在系统集成时,必须考虑如何安全、高效地存储和输送氢气。
3. 此外,氢燃料电池系统集成还需要考虑到燃料电池、电动机、电池组等各个子系统之间的协调工作。
这就需要一个合理的控制策略来确保各个部件之间的协同运作,以提高系统的效率和稳定性。
4. 在氢燃料电池系统的控制策略中,传感器和执行器起着至关重要的作用。
传感器可以实时监测氢气、氧气、水等各种参数,并将这些数据反馈给控制系统,以实现对系统的实时监控和调节。
而执行器则负责根据控制系统的指令,进行相应部件的调节和控制。
5. 除了传感器和执行器,控制策略中的算法设计也至关重要。
针对不同工况下的系统需求,需要设计相应的控制算法来实现优化的功率输出、燃料利用效率、排放控制等目标。
这就要求控制策略具有一定的智能化和自适应性。
6. 在实际应用中,氢燃料电池系统的集成和控制策略需要考虑到各种复杂情况。
例如,在极端气候条件下,氢燃料电池系统的工作性能可能会受到影响,因此需要相应的控制策略来应对这种情况。
7. 此外,在日常运行中,系统的可靠性和安全性也是至关重要的。
因此,氢燃料电池系统的集成和控制策略还需要考虑到故障诊断和应急控制的问题,以确保系统在各种情况下都能够稳定可靠地运行。
8. 总的来说,氢燃料电池系统的集成和控制策略是一个综合性的问题,需要涉及到多个领域的知识和技术。
只有在不断的研究和实践中不断改进和完善,才能更好地推动氢燃料电池技术的发展和应用。
氢燃料电池电堆系统控制方案氢燃料电池电堆系统控制方案是指对氢燃料电池电堆中的各个组件进行合理的控制和管理,以确保系统稳定运行、高效利用氢能源,并满足系统性能要求和安全要求的管理和控制方案。
以下是一个基本的氢燃料电池电堆系统控制方案的概述。
系统控制和监测:1.系统控制器:基于嵌入式系统,实时监测和控制氢燃料电池电堆的运行状况,包括温度、压力、电流、电压和湿度等参数。
2.反馈控制:通过对电堆输出参数的反馈,调整燃料气体流量、氧气供应和冷却系统,以实现系统的稳定运行和最小能量损失。
3.故障诊断:通过对各个组件的监测和分析,快速检测和定位故障,并采取相应的措施,保证系统的正常运行。
4.数据记录和分析:记录关键参数的变化,并进行数据分析,以优化系统的运行和管理策略,并提供后续对电堆性能的改进方向和建议。
氢气供应:1.氢气储存:控制氢气储存系统的充放电过程,以及氢气的泄漏和压力变化等情况,确保氢气供应的稳定和安全。
2.氢气净化:对进入电堆的氢气进行净化和过滤,以去除杂质和湿气等有害物质,保护电堆组件的安全运行。
3.氢气质量控制:通过氢气的质量传感器,监测氢气质量,确保氢气满足电堆的工作要求。
氧气供应:1.氧气压力控制:通过控制电堆的氧气输入量和压力,以及空气过剩系数,确保电堆的正常运行和高效利用氧气。
2.氧气质量控制:通过氧气的质量传感器,监测氧气的纯度和湿度,及时发现问题,并采取措施保证氧气的质量。
冷却系统:1.冷却介质控制:通过控制冷却介质的流量和温度,及时散热,确保电堆组件的温度在安全工作范围内。
2.温度控制:利用温度传感器对电堆内各个组件的温度进行监测和控制,防止因温度过高造成电堆退化和故障。
安全保护:1.氢气和氧气泄漏检测:通过气体泄漏传感器,实时监测氢气和氧气的泄漏情况,一旦发现泄漏,立即采取措施进行处理和报警。
2.过电流保护:通过电堆内的保护装置,实时检测过电流情况,一旦发现过电流,即切断电堆的电源,以避免设备损坏和安全事故。
AIR OUT
AIR IN
H2IN
DI-WEG IN
DI-WEG OUT
图1 1号电堆模块系统图
H2PURGE1
24V H2PURGE2
WEXPT
图2 车用1号电堆系统系统图
表1 模块附件表:
表2 车载系统附件表:
2.1 模块
●冷却液与压缩空气热交换器
因冷却液的温度适应电堆要求,该热交换器的作用,一是压缩空气温度过高时降温(起中冷器作用),二是压缩空气温度较低时加热。
考虑到要适应低温环境,最好采用。
●氢气入口压力调整器
电堆的氢气入口压力调整,由PT-H3、EPV-H4、PT-H4
组成,通过程序采集压力和控制比例阀来实现。
为了控制准确和简单管路,将PT-H2、EV-H2、PT-H3、EPV-H4、PT-H4做到一个阀组(manifold)上。
●阳极压力保护
为防止氢气入口压力调整器失效,而使阳极产生高压毁坏电堆。
采用安全阀SRV-H5保护。
●外增湿器
外增湿器采用膜增湿器,用电堆的出口湿空气来增湿电堆得入口干空气。
具体是否采用,要看电堆的需求。
●氢气循环
氢气循环,一是使阳极的氢气的湿度均匀,二是加热入口的氢气。
●氢气吹扫(排放)阀
氢气吹扫阀,是用1个还是在电堆氢气出口的2端各用1个。
要看电堆的阳极结构,因氢气回流后,多少会有一些液态水,若不能及时吹扫掉,会影响水平较低段的节电池性能,也不利于防冻处理。
●电堆空气出口压力
电堆出口压力,采用电磁比例阀EPV-A6和电堆出口压力表PT-A5形成回路来控制。
为防止憋压,比例阀为常开阀。
●电堆高压输出正负极对结构接地(搭铁)绝缘电阻检测
电堆高压输出正负极对结构接地的绝缘电阻小时,会危害电
堆的安全。
在模块中需要加入检测单元。
绝缘电阻的要求,单节电池为1200欧,150节为180千欧。
●电机调速器的电源
因空压机的功率一般大于1kW,采用电堆的高压电源,在启动或停止的过程中需要外电源供电。
启动和停止时由预充电电源PS-HV6供电。
氢气循环泵,因功率一般小于500W,且只在电堆工作时运行,采用外部24VDC单独供电。
●节电池电压巡检单元
节电池电压巡检单元,与电堆的结构做到一起,自带MPU,与模块控制器采用通讯联系(CAN和RS485)。
这样会使检测电缆最短,提高可靠性和美观。
●模块控制器
控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用采购的或公司自主研发。
控制策略和软件编程,公司自主研发。
2.2 车载系统
●高压氢气瓶组
高压氢气瓶组,根据整车要求设置个数,每个氢气瓶都装有瓶口阀组合块。
瓶口阀组合块包括温度传感器、压力传感器、截
止阀。
因数量比较多,一般专做1个氢气瓶组控制器,用于现场采集温度压力信号和截止阀的控制。
氢气瓶组控制器与燃料电池系统控制器通过CAN总线通讯。
因高压氢气瓶组,属于特种行业,需要有资质的单位设计施工。
●氢气气源的选择
电堆模块的氢气气源,设置2个手动截止阀,一个接入氢气气源,一个接入氮气气源。
氮气气源不在现场布置,只是在温度低,需要长期停机或存贮时,将阳极的氢气置换成氮气。
●氢气浓度传感变送器
氢气浓度传感变送器,用于检测空间氢气浓度,用于氢气泄漏报警,设置6个。
布置在氢气可能泄漏的上方。
●氢气气源安全阀
用于泄放气源地高压,出口接到空气排放口。
●氢气气源隔离阀
一是作为氢气气源地总开关,在出现氢气泄漏报警时,关闭该阀,用于截断氢气气源。
●空气排放口混合器
该混合器,以空气回路为主通道,电堆氢气排放口混合接入此处,用流动的空气来稀释排放的氢气,该处安装一个氢气浓度传感器。
报警时,关断氢气气源隔离阀。
●空气进口过滤器
空气进口过滤器,需要双层过滤,外层为物理过滤,主要过滤微粒;内层为化学过滤器,主要过滤危害阴极触媒的化学成分。
并且压损要小于3kpag。
●冷却回路
冷却回路采用散热水箱和补水膨胀水箱的结构。
采用电动三通比例阀构成2个分支回路:冷启动加热和电堆小功率回路(内回路),电堆大功率散热器回路(外回路)。
水温控制执行元件有:EMV-D13、FAN-DRV、WP-DRV、HEX-D14。
组合控制达到各种工况的温度要求。
FLT-D11、FLT-D16为网状物理过滤器,主要过滤颗粒物。
FLT-DI17去离子过滤器,安装在微循环分支上,用于去除冷却液中的离子。
●电机调速器电源
冷却液循环水泵和散热器风扇电机调速器电源全部用外接的24VDC蓄电池电源。
●燃料电池系统控制器
控制器的MCU选用飞思卡尔的MC9S12CE,硬件和壳体,若能采购满足要求的现成控制器,则采购;实验调试完成后,沿用采购的或公司自主研发。
控制策略和软件编程,公司自主研发。
●DC/DC
将DC/DC归入燃料电池系统,是因为电堆的工况跟DC/DC
密切相关。
1.节点参数
节点参数是根据系统工艺正常工作和控制策略要求而提出。
3.1电堆参数
单节电池电特性参数(用于健康度、生命期评估)
额定电流:ADC
终止电压:VDC
表2 电压VS 电流
冷却流道参数
冷却液为去离子水或防冻液(50%V/V乙二醇)。
最大入口压力:kPa(绝压)
最大出口温度:
最大出入口温差:
表3压损VS 流量(去离子水):
表4压损VS 流量(防冻液):
表5温度VS 电流
阳极(氢气)及阴极参数工作温度范围:℃
最大阳极和阴极连通后入口压力:kPa 最大阳极对阴极压力:kPa
表6 最小阳极对阴极压力VS 电流
其它各项
表7 各项VS 电流
3.2氢气通道
气源压力范围:7.6-9.6 barg
3.3空气通道
入口最低压力:-3.0kpag
出口最大压力:3.0 kpag
3.4加湿器
最大总压损:10.0 kpa
3.5热交换器
需根据压缩空气的最大流量、最高温度、最低温度来确定。
水道阻力:
最大气道压损: 5.0 kpag。