蛋白质工程1
- 格式:ppt
- 大小:5.00 MB
- 文档页数:102
蛋白质工程基本思路蛋白质工程是一种利用基因重组技术对蛋白质进行改造的方法,可以用于增强蛋白质的稳定性、活性、亲和力等特性,也可以用于创造新的蛋白质功能。
下面将从基本思路、方法和应用等方面对蛋白质工程进行详细介绍。
一、基本思路1. 获得目标蛋白质基因首先需要获取目标蛋白质的基因序列,可以通过PCR扩增、文库筛选、合成等方法获取。
同时需要考虑到目标蛋白质在表达宿主中是否会出现折叠不正确、聚集等问题。
2. 设计突变或插入针对目标蛋白质的结构和功能,设计突变或插入序列,以实现所需的改变。
常见的突变包括点突变、缺失突变、插入突变等。
3. 构建表达载体将目标基因克隆到适当的表达载体中,如pET系列载体、pUC系列载体等。
同时需要考虑到表达宿主是否能够正确折叠和修饰目标蛋白。
4. 表达与纯化将表达载体转化到宿主中,进行表达。
通常需要优化表达条件,如温度、诱导剂浓度等。
之后进行蛋白质的纯化,常用的方法包括亲和层析、离子交换层析、凝胶过滤层析等。
5. 检测蛋白质的性质和功能对获得的蛋白质进行性质和功能的检测,如分子量分析、动态光散射、荧光光谱分析等。
二、方法1. 有机合成法有机合成法是一种通过改变氨基酸序列来改变蛋白质结构和功能的方法。
该方法需要先合成所需氨基酸序列的DNA片段,然后通过PCR扩增和连接来构建目标基因。
这种方法可以实现多种不同类型的突变,但是需要考虑到突变对蛋白质稳定性和活性的影响。
2. DNA重组法DNA重组法是一种通过重组DNA序列来实现目标蛋白质结构和功能改变的方法。
该方法需要先将目标基因分离出来,然后通过PCR扩增或限制性内切酶切割等方法将所需序列插入到目标基因中。
这种方法可以实现较大范围的序列改变,但是需要考虑到插入对蛋白质稳定性和活性的影响。
3. 选择性演化法选择性演化法是一种通过引入随机突变和筛选来实现目标蛋白质结构和功能改变的方法。
该方法需要先将目标基因插入到合适的表达载体中,然后通过随机突变或DNA重组来产生多个突变体。
蛋白质工程定义介绍蛋白质工程是一门综合学科,涉及到生物学、生物化学、生物信息学等多个领域。
蛋白质工程的目标是通过合成或改造蛋白质的结构和性质,开发出具有特定功能的新型蛋白质。
蛋白质工程在药物研发、生物能源、农业和环境保护等领域具有广泛的应用前景。
蛋白质工程的起源和发展蛋白质工程起源于20世纪70年代,当时科学家们开始尝试通过改变蛋白质的氨基酸序列来改变其性质。
随着技术的进步,研究人员可以通过基因工程的手段来合成具有特定性质的蛋白质。
1982年,第一个通过基因工程合成的人类蛋白质——胰岛素成功问世,这标志着蛋白质工程的重要突破。
蛋白质工程的方法和技术蛋白质工程利用多种方法和技术来实现对蛋白质的改造,其中常用的包括:1. 随机突变通过人工合成或随机突变的方式,改变蛋白质的氨基酸序列,进而改变蛋白质的结构和功能。
这种方法常用于寻找具有新功能的蛋白质。
2. 有针对性的突变通过对蛋白质的氨基酸序列进行有选择性的突变,例如点突变、插入突变和缺失突变,可以改变蛋白质的稳定性、抗原性以及其他性质。
3. 蛋白质摘要和重组将两个或多个蛋白质的功能单元进行重新组合,可以获得具有新特性的重组蛋白质。
4. 手性选择通过合成手性选择性的氨基酸或引入特定的修饰基团,改变蛋白质的手性结构,并调节其生物活性。
5. 蛋白质折叠和组装通过调控蛋白质的折叠和组装过程,可以控制蛋白质的结构和功能。
这种方法常用于改善蛋白质的稳定性和可溶性。
蛋白质工程在药物研发中的应用蛋白质工程在药物研发中发挥着重要作用。
通过对药物靶点蛋白质的改造,可以提高药物的选择性和疗效,减少副作用。
同时,蛋白质工程还可以用于合成新型药物载体和药物传递系统,提高药物的稳定性和药效。
蛋白质工程在生物能源领域的应用蛋白质工程在生物能源领域也有广泛的应用。
通过改造酶和微生物的代谢途径,可以提高生物能源的产量和转化效率。
蛋白质工程还可以用于合成新型酶类催化剂,提高能源生产过程中的反应速率和选择性。
蛋白质工程一、名词解释:1.蛋白质工程:是研究蛋白质结构和定点改造蛋白质结构的一门学科。
它利用基因工程手段,通过有控制的基因修饰和基因合成,对现有蛋白质进行定向改造,以期获得性能更加优良、更符合人类社会需要的蛋白质分子。
2.抗体:指机体的免疫系统在抗原刺激下产生的可与相应抗原发生特异性结合的免疫球蛋白。
3.人-鼠嵌合抗体:用鼠可变区和人恒定区融合形成的抗体。
4.人源化抗体:将鼠杂交瘤抗体的超变区嫁接到人抗体上形成的抗体。
5.一级结构:是多肽链中氨基酸残基从N-末端到C-末端的排列顺序及二硫键的位置。
6.二级结构:是指多肽链主链借助氢键排列成特有的规则的重复构象。
7.超二级结构(结构模体):一级顺序上相邻的二级结构在三维折叠中,彼此靠近、按特定的几何排布形成排列规则的、在空间结构上能够辨认的、可以同一结构模式出现在不同蛋白质中的二级结构组合体,称为结构模体。
8.发夹式β模体(或ββ组合单位):两段相邻的反平行β链被一环链连接在一起构成的组合单位,其形貌与发夹相似,称为发夹式β模体。
9.希腊钥匙模体:四段紧邻的反平行β链以特定的方式来回往复组合,其形貌类似于古希腊钥匙上特有的回形装饰纹,故称为希腊钥匙型模体。
10.β-α-β模体:是序列上连续、相邻的两股平行β链和一段α螺旋连接而形成的组合。
11.结构域:二级结构和结构模体以特定的方式组织连接,在蛋白质分子中形成两个或多个在空间上可以明显区分的三级折叠实体,称为结构域。
12.三级结构:在二级结构、结构模体的基础上,进一步盘曲、折叠形成的,包括主链、侧链在内的所有原子和基团的空间排布。
13.四级结构:是指在多条肽链组成的一个蛋白质分子中,各亚单位在寡聚蛋白质中的空间排布及亚单位间的相互作用。
14.优势构象:任何氨基酸侧链中的组成基团都可以绕着其间的C-C单键旋转,从而产生各种不同的构象。
AA分子的各种构象异构体并不是平均分布的, 总是以其最稳定的构象为主要的存在形式即为优势构象。
第4节 蛋白质工程的原理和应用 1.蛋白质工程 (1)基础:蛋白质分子的结构规律及其与生物功能的关系。
(2)手段:通过改造或合成基因,来改造现有蛋白质,或制造一种新的蛋白质。
(3)目的:获得满足人类生产和生活需求的蛋白质。
(4)困难:蛋白质发挥功能必须依赖正确的高级结构,而蛋白质的高级结构十分复杂。
2.蛋白质工程崛起的缘由(1)崛起缘由①基因工程的实质:将一种生物的基因转移到另一种生物体内,后者可以产生它本不能产生的蛋白质,进而表现出新的性状。
②基因工程的不足:基因工程在原则上只能生产自然界中已存在的蛋白质。
③天然蛋白质的不足:天然蛋白质的结构和功能符合特定物种生存的需要,却不一定完全符合人类生产和生活的需要。
(2)实例:提高玉米赖氨酸含量天冬氨酸激酶(第352位的苏氨酸)――→改造天冬氨酸激酶(异亮氨酸)二氢吡啶二羧酸合成酶(第104位的天冬酰胺)――→改造二氢吡啶二羧酸合成酶(异亮氨酸) 改造后玉米叶片和种子中游离赖氨酸含量分别提高5倍和2倍。
3.蛋白质工程的基本原理蛋白质工程的基本思路:预期的蛋白质功能→设计预期的蛋白质结构→推测应有的氨基酸序列→找到并改变相对应的脱氧核苷酸序列(基因)或合成新的基因→获得所需要的蛋白质。
4.蛋白质工程的应用(1)医药工业方面①科学家通过对胰岛素基因的改造,研发出速效胰岛素类似物产品。
②干扰素(半胱氨酸)――改造干扰素(丝氨酸) 体外很难保存 体外-70 ℃下可以保存半年③人-鼠嵌合抗体:降低免疫反应强度。
(2)其他工业方面利用蛋白质工程获得枯草杆菌蛋白酶的突变体,筛选出符合工业化生产需求的突变体,提高该酶的使用价值。
(3)农业方面①科学家尝试改造某些参与调控光合作用的酶,以提高植物光合作用的效率,增加粮食的产量。
②科学家利用蛋白质工程的思路设计优良微生物农药,通过改造微生物蛋白质的结构,增强微生物防治病虫害的效果。
【强化记忆】1. 蛋白质工程需直接改造基因,而不直接改造蛋白质的原因有:(1)任何一种天然蛋白质都是由基因编码的,改造了基因即对蛋白质进行了改造,而且可以遗传下去。
蛋白质工程详细介绍蛋白质工程的方法和应用蛋白质工程详细介绍蛋白质工程是一种利用分子生物学和蛋白质化学的方法,对蛋白质进行定向的修饰和改造,以获得理想的蛋白质产物。
它的发展为生物药物研发和产业化提供了重要的技术支持,也为基因工程、农业生物技术等领域的发展带来了巨大的机遇。
本文将详细介绍蛋白质工程的方法和应用。
一、蛋白质工程的方法蛋白质工程的方法包括:1. 重组蛋白质表达系统:通过将目标蛋白质基因导入到适当的宿主细胞中,利用细胞的代谢途径合成目标蛋白质。
2. DNA重组技术:改变目标蛋白质的基因序列,以改变其结构和功能。
3. 非天然氨基酸插入:在蛋白质序列中插入非天然的氨基酸,改变蛋白质的性质。
4. 点突变:通过改变蛋白质特定氨基酸的编码,改变蛋白质的结构和功能。
5. 蛋白质折叠机理研究:通过研究蛋白质的二级、三级结构以及其折叠机理,为蛋白质工程提供理论基础。
二、蛋白质工程的应用蛋白质工程在许多领域有着广泛的应用,下面将介绍其中几个主要方面。
1. 生物药物蛋白质工程为生物药物的研发和产业化提供了关键技术。
通过工程改造,可以改善生物药物的稳定性、生物活性和药效持续时间等性质,提高其疗效和安全性。
蛋白质工程还可以生产重组蛋白、抗体和疫苗等生物药物,为疾病治疗提供新的手段。
2. 农业生物技术蛋白质工程在农业生物技术领域的应用主要包括转基因植物和转基因动物的产生。
通过引入外源基因,可以使植物和动物表达陌生蛋白,以改善农业产量、品质和抗逆性等特性。
蛋白质工程还可以改善植物和动物的饲料价值,提高畜禽养殖的效益。
3. 工业酶蛋白质工程在酶工业生产中有着重要的应用。
通过工程修饰,可以提高酶的催化效率、热稳定性和耐受性,从而降低生产成本,提高工业酶的使用效果。
蛋白质工程还可以创造新的工业酶,满足不同生产过程中对酶的需求。
4. 蛋白质结构与功能研究蛋白质工程在研究蛋白质结构和功能方面起到至关重要的作用。
通过蛋白质工程技术,可以合成具有特定功能的人工蛋白,深入研究蛋白质的结构与功能之间的关系。
蛋白质工程的研究与应用在当今的生物技术领域,蛋白质工程技术可以说是非常重要的一项技术。
蛋白质工程的研究受到了越来越广泛的关注,其应用范围也越来越广泛。
本文将简单介绍蛋白质工程的一些基本概念、研究方法和应用方向。
一、什么是蛋白质工程?蛋白质工程可以理解为“人造进化”。
它是利用现代生物技术手段来改变蛋白质分子的结构和性质,以获得更好的功能性能,使蛋白质成为更加适合特定应用场景的生物大分子。
蛋白质工程主要包括基因工程、蛋白质纯化、蛋白质折叠及结构鉴定、蛋白质功能评价等技术。
二、蛋白质工程的研究方法1.基因工程方法基因工程方法是蛋白质工程中最基础也是最关键的一步。
通过构建基因工程载体,将外源DNA序列插入到宿主细胞中,从而在宿主细胞中进行蛋白质表达。
2.蛋白质纯化蛋白质纯化是蛋白质工程中非常重要的一步。
蛋白质经过表达、筛选、鉴定,需要进行纯化和结构鉴定。
蛋白质的选择性亲和、离心过滤、电泳、层析、结晶等多种技术手段被广泛用于蛋白质纯化。
3.蛋白质结构分析蛋白质结构分析主要利用生物物理技术和X射线晶体学分析方法。
通过对蛋白质的分子结构进行深入分析,可以了解蛋白质的功能性能和作用机理,为后续的蛋白质工程改良提供基础数据。
三、蛋白质工程的应用1.医药领域蛋白质工程的主要应用领域之一就是医药领域。
基于蛋白质工程技术,可以延长药物的半衰期,提高药物的稳定性和活性,降低药物毒性等。
目前,蛋白质工程技术已经在许多药物疗法中广泛应用。
2.食品工业蛋白质工程技术在食品工业中也有广泛应用。
通过修改蛋白质分子的结构,可以改变其性质,增加或降低其胶凝能力,从而用于制作食品添加剂,比如牛奶中的乳清蛋白就是经过蛋白质工程技术改进的。
3.环境保护蛋白质工程技术在环境保护中也发挥着重要作用。
利用蛋白质工程技术可以设计出具有特定功能性的蛋白质分子,用于检测有毒有害物质,从而保护环境。
4.其他应用领域蛋白质工程技术在其他领域也有广泛的应用。
蛋白质工程的概念高中生物
蛋白质工程是指利用生物技术手段对蛋白质进行改造或设计,以满足特定需求的过程。
在高中生物课程中,通常会涉及到基本的概念和应用。
具体来说,蛋白质工程可以包括以下内容:
1.蛋白质的结构与功能:学习蛋白质的基本结构,了解蛋
白质在细胞中的重要作用,如酶的催化作用、结构蛋白的支持作用等。
2.基因工程:了解基因工程技术,包括DNA重组技术和
基因克隆等,这些技术可以被用来改造蛋白质的编码基因,从而改变蛋白质的性质。
3.重组蛋白的生产:学习如何利用重组DNA技术来大规
模生产重组蛋白,例如利用大肠杆菌或其他微生物表达系统来生产人类重组胰岛素等药物。
4.蛋白质结构预测与设计:了解一些基本的蛋白质结构预
测方法,以及蛋白质设计的基本原理,例如通过蛋白质工程设计出新的酶类催化剂或药物分子。
总的来说,蛋白质工程是一门涉及生物技术和生物化学的学科,涉及到对蛋白质的理解、改造和应用。
在高中生物课程中,可以简要介绍这些基本概念,并引导学生对蛋白质工程的潜在应用进行思考。
一、蛋白质工程:岗位职责:1. 从事基因工程重组蛋白在原核或真核表达载体的表达和提取分离、细胞破碎、纯化、检测和鉴定以及SDS-PAGE、酶活鉴定等技术工作。
2. 负责公司重组蛋白产品纯化的全面工作,完善蛋白质的纯化工艺,提高纯度和得率;完成蛋白质纯化与检测相关的实验设计。
3. 负责产程下游纯化方案的制订及组织实施。
纯化工艺放大及优化。
起草纯化工艺SOP;提出产程下游设备的配置建议,负责管理及维护。
负责报批过程中相关资料的撰写;岗位要求:1. 生物工程或相关领域本科或硕士毕业生。
2. 熟悉蛋白质表达及分离纯化、分析技术与设备,如:各种层析技术、凝胶电泳、HPLC(SEC and IEX)、ELISA等,熟悉;3. 熟悉层析介质性质以及纯化层析系统(如AKTA explorer, pilot,Bio-Rad)的使用,熟悉蛋白结构,纯化原理及各种填料性质,熟悉各种层析方法(分子筛、疏水、离子交换等)和超滤;有蛋白质纯化工艺研发经验优先;.较强的英文文献阅读能力和良好的英文撰写能力,及时学习和了解国内外先进的纯化理论知识和工艺。
二、微生物与发酵工程:岗位职责:1. 工程菌的菌种转接、筛选、复壮;2. 培养基配制与发酵罐系统操作、发酵工艺的优化;3. 协助建立小规模/中试发酵生产条件,协助完成发酵生产任务。
4. 负责产品细菌限度、内毒素检测、洁净室微生物污染监控、用水微生物限度试验、无菌试验、污染菌鉴定等;岗位要求:1. 微生物学、发酵工程、生物制药等相关专业本科及以上学历;2. 有良好的微生物无菌操作技能、熟悉微生物发酵过程和操作程序;熟悉微生物发酵理论,发酵工艺流程,有发酵罐操作经验;3. 吃苦耐劳、踏实肯干、服从公司安排,执行力强;能在规定时间内完成工作任务;三、细胞生物:岗位职责1、细胞复苏2、细胞培养3、细胞驯化4、细胞冻存5、细胞悬浮培养6、细胞活性检测7、生物活性检测8、协助日常实验,进行细胞培养、带传、冻存、复苏等实验。
蛋白质工程技术知识点总结蛋白质是生物体内功能最多样化的大分子,具有多种生物学功能,在生物医学领域有着广泛的应用。
蛋白质工程技术是指利用基因重组、蛋白质工程和蛋白质设计等技术手段,对蛋白质进行人工改造和设计,以获得具有特定功能和性质的蛋白质。
本文将围绕蛋白质工程的基本原理、技术手段和应用领域进行介绍和总结。
一、蛋白质工程的基本原理1. 基因重组技术基因重组技术是蛋白质工程的基础技术,通过将感兴趣的基因分子导入到宿主细胞中,使宿主细胞能够表达这些基因,从而产生感兴趣的蛋白质。
常用的基因重组技术包括质粒转染、病毒载体转染、基因枪转染等。
2. 蛋白质纯化技术蛋白质的产生过程中会伴随很多其他杂质,因此需要对蛋白质进行纯化。
目前常用的蛋白质纯化技术主要包括离子交换、凝胶过滤、亲和纯化、透析、超速离心等。
3. 蛋白质结构分析技术蛋白质工程需要对蛋白质的结构进行分析,以确定蛋白质的二、三维结构,常用的技术包括X射线晶体学、核磁共振、质谱、表面等离子共振等。
4. 蛋白质工程设计和改造技术蛋白质工程的设计和改造技术是指对蛋白质的氨基酸序列进行修改、融合、重组等,以获得更理想的蛋白质性质和功能。
常用的技术手段包括点突变、插入、删除、重组、融合以及改变翻译后修饰等。
二、蛋白质工程的技术手段1. 蛋白质工程中的点突变技术点突变技术是通过对蛋白质基因进行特定的DNA序列改变,使蛋白质的氨基酸序列发生改变,从而改变蛋白质的性质和功能。
常用的点突变技术包括重叠PCR、引物设计、缺失突变和插入突变等。
2. 蛋白质工程中的插入和删除技术插入和删除技术是指在蛋白质的氨基酸序列中直接插入或删除特定的氨基酸残基,从而改变蛋白质的结构和功能。
常用的技术手段包括基因克隆、引物设计、限制性内切酶切割等。
3. 蛋白质工程中的重组和融合技术重组和融合技术是指将两种或多种不同的蛋白质基因进行重组组合,从而产生具有新功能和性质的蛋白质。
常用的重组和融合技术包括PCR扩增、质粒构建、引物设计等。
蛋白质工程的原理
蛋白质工程是一种利用基因重组技术对蛋白质进行改造和设计的方法。
其原理包括以下几个方面:
1. 基因克隆:选择目标蛋白质的基因,在合适的载体上进行克隆。
常用的载体有质粒和病毒等,它们可以在宿主细胞中复制和表达目标基因。
2. 引入突变:通过全合成基因或PCR等方法,在目标基因中引入特定的突变。
这些突变可以是单个氨基酸的改变,也可以是插入、缺失或重排整个蛋白质结构的改变。
突变可以改变蛋白质的结构、功能以及稳定性。
3. 序列设计:根据对蛋白质结构和功能的了解,有针对性地进行序列设计。
通过引入新的功能序列、去除无关的序列或改变序列的排列顺序,来获得具有特定性质的蛋白质。
4. 结构模拟和优化:利用计算机辅助设计等方法,对蛋白质的三维结构进行模拟和优化。
通过调整氨基酸的侧链构象,优化蛋白质的折叠能量,使其具有更好的稳定性和功能。
5. 表达与纯化:将设计好的基因导入到合适的宿主细胞中,使其表达蛋白质。
通过细胞培养和蛋白质纯化技术,从大量表达的细胞中获取目标蛋白质。
6. 功能分析:对工程的蛋白质进行分析,确定其功能是否发生改变。
通过比较工程蛋白与野生型蛋白的特性差异,验证蛋白
质工程的效果。
蛋白质工程的目标是通过改变蛋白质的结构和功能,使其具有更广泛的应用领域,如药物研发、酶工程和生物材料等。
该技术的发展不仅为科学研究提供了强大工具,也为解决一系列生物医学和生物工程问题提供了新的可能性。
生物工程的蛋白质工程生物工程的蛋白质工程是指利用基因工程等方法对蛋白质进行设计、合成和改良的一门学科。
蛋白质工程的目的是通过改变蛋白质的结构、功能或性质,实现对生物体生长、代谢等过程的调控,从而获得具有特定功能或性能的精确控制的蛋白质。
一、蛋白质工程的意义蛋白质作为生物体中最重要的宏观有机分子之一,扮演着多种重要生理功能的角色。
通过对蛋白质的工程处理,可以实现许多有益的应用,如:1. 药物开发与治疗:蛋白质工程可以用于开发新药物,并改善现有药物的治疗效果。
通过工程处理蛋白质,可以增加其稳定性、活性和药代动力学性质,提高药物的治疗效果和稳定性。
2. 生命科学研究:蛋白质工程可以用于研究生物体的生理过程和分子机制。
通过改变蛋白质的结构和功能,可以揭示生命科学中复杂的分子互作关系和信号传递途径,为理解生物系统的运作机制提供了重要工具。
3. 工业应用:蛋白质工程可以用于开发生物制造工艺中的酶催化系统,提高生产效率和产物质量。
利用工程处理后的蛋白质,可以设计新的酶催化反应,实现环境友好型的高效生产过程。
4. 农业领域:蛋白质工程可以用于改良植物和动物的性状,提高农作物的产量和抗病虫害能力,改善畜禽育种品种的性能。
二、蛋白质工程的方法蛋白质工程的方法主要包括以下几种:1. 合成基因:通过合成基因技术,可以设计和合成具有特定序列的蛋白质基因。
合成的基因可以经过进一步的改造和表达,得到具有特定功能的蛋白质。
2. 蛋白质改造:通过对蛋白质的序列、结构和功能进行改变,可以得到具有不同性质的蛋白质。
这可以通过遗传工程手段,如点突变、插入或删除等,来实现。
3. 蛋白质表达:通过利用多种表达系统,如大肠杆菌、酵母、动物细胞等,可以高效地表达和生产目标蛋白质。
4. 蛋白质折叠和修饰:蛋白质在细胞表达过程中会发生折叠和修饰。
通过控制折叠条件和改变修饰酶的表达,可以获得具有良好稳定性和活性的蛋白质。
5. 结构预测和设计:通过计算机模拟和预测方法,可以推测蛋白质的结构和功能。
蛋白质工程考试题型:英翻中10题共10分填空20题共20分判断15题共15分单选30题或20题共30分简答5题共25分部分简答题和英翻中的范围:1、第一章第一节——第三节考1题简答题、还会考英翻中2、第三章第三届考1题简答题3、第六章英翻中4、第七章第四节第五节每一节考一题简答题5、第九章考英翻中第三节考一道简答题6、第十章考英翻中第一章蛋白质分类:纤维状蛋白质(胶原、角蛋白) 球状蛋白质(酶类)膜蛋白(膜内、膜锚定蛋白)蛋白质功能:调节信息传递支架作用防御与进攻其他特定功能催化结构成分贮存运动转运氨基酸多肽链名称:丙氨酸Ala A 甲硫氨酸MetM 半胱氨酸CysC天门冬酰胺AsnN天门冬氨酸 Asp D 脯氨酸Pro P 谷氨酸Glu E 谷氨酰胺Gln Q 苯丙氨酸PheF精氨酸Arg R 甘氨酸Gly G 丝氨酸Ser S 组氨酸His H 苏氨酸Thr T 异亮氨酸Ile I 缬氨酸Val V 赖氨酸Lys K 色氨酸Trp W非蛋白质氨基酸在哪出现目前认为有些非蛋白质氨基酸是某些代谢过程的中间产物或重要代谢物的前体。
如:瓜氨酸和鸟氨酸——精氨酸前体刀豆氨酸和5—羟基色氨酸——杀虫杀菌。
多巴胺——神经递质构象与构型的区别:构型:一个分子中各原子的特定空间排布。
当一种构型改变为另一种构型时必须有共价键的断裂和重新形成,最基本的分子构型是L-型和D-型。
构象(conformation)是组成分子的原子或基团绕单键旋转而形成的不同空间排布。
一种构象转变为另一种构象,不会有共价键的断裂与形成。
氨基酸的分类a.按照R基的化学结构进行分类:脂肪族(①中性氨基酸、②含羟基或硫氨基酸、③酸性氨基酸及其酰胺、④碱性氨基酸)、芳香族和杂环族氨基酸3类;b.按照R基的极性性质进行分类:疏水氨基酸(非极性R基氨基酸);不带电的极性R基氨基酸;带正电的R基氨基酸;带负电的R基氨基酸。
c.非天然蛋白质氨基酸肽:肽是氨基酸的线性聚合物,也称为肽链(peptide chain)肽键:氨基酸同时含有氨基和羧基,他们能以首尾相连的方式进行缩合反应,一个氨基酸的α-NH2与另一个氨基酸的α-COOH缩合脱去一份子水,可以形成一个共价酰胺键或称肽键。