《有理数的加法》 word版 公开课一等奖教案2 (新版)新人教版 (2)
- 格式:doc
- 大小:39.00 KB
- 文档页数:4
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!有理数的加法教学设计意图综述本节主要内容是有理数的加减法运算,从复习小学学过的加法运算出发,从而提出引入负数的加法问题,再通过实例明确有理数的加法意义,进而引入有理数加法的法则。
培养学生主动探索的良好学习习惯.活动目标及重难点知识与技能,理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.二、过程与方法,引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.三、情感态度与价值观,培养学生主动探索的良好学习习惯.重点:掌握有理数加法法则,会进行有理数的加法运算.难点:异号两数相加的法则.教具准备投影仪.多媒体课件.用电脑制作动画体现有理数的分类过程.一、复习提问,引入新课1.有理数的绝对值是怎样定义的?如何计算一个数的绝对值?2.比较下列每对数的大小.(1)-3和-2;(2)│-5│和│5│;(3)-2与│-1│;二、新课讲授在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内.然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢?要解决这个问题,先要分别求出它们的净胜球数.红队的净胜球数为:4+(-2);蓝队的净胜球数为:1+(-1).这里用到正数与负数的加法.怎样计算4+(-2)呢?下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动,我们规定向左为负、向右为正.(1)如果物体先向右运动5m,再向右运动3m,•那么两次运动后总的结果是什么?我们知道,求两次运动的总结果,可以用加法来解答.这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8 ①这一运算在数轴上可表示,其中假设原点为运动的起点.(如下图)(2)如果物体先向左运动5m,再向左运动3m,•那么两次运动后总的结果是什么?显然,两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8 ②这个运算在数轴上可表示为(如下图):(3)如果物体先向右运动5m,再向左运动3m,•那么两次运动后物体与起点的位置关系如何?在数轴上我们可知物体两次运动后位于原点的右边,即从起点向右运动了2m.•(如下图)写成算式就是:5+(-3)=2 ③探究:还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果:(4)先向右运动3m,再向左运动5m,物体从起点向______运动了______m.要求学生画出数轴,仿照(3)画出示意图.写出算式是:3+(-5)=-2 ④(5)先向右运动5m,再向左运动5m,物体从起点向_____运动了_____m.先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)•运动了0m,因为+0=-0,所以写成算式是:5+(-5)=0 ⑤(6)先向左运动5m,再向左运动5m,物体从起点向________运动了_______m.同样,先向左边运动5m,再向右运动5m,可写成算式是:(-5)+5=0 ⑥如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(•或左)运动了多少呢?请你用算式表示它.可写成算式是:5+0=5或(-5)+0=-5 ⑦从以上写出的①~⑦个式子中,你能总结出有理数加法的运算法则吗?引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值?算式是小学已学过的两个正数相加.观察算式②,两个加数的符号相同,都是“-”号,和的符号也是“-”号与加数符号相同;和的绝对值8•等于两个加数绝对值的和,即│-5│+│-3│=│-8│.由①②可归结为:同号两数相加,取相同的符号,并把绝对值相加.例如(-4)+(-5)=-(4+5)=-9.观察算式③、④是两个互为相反数相加,和为0.由算式③~⑥可归结为:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0.由算式⑦知,一个数同0相加,仍得这个数.综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则”.一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值.例1:计算.(1)(-3)+(-5);(2)(-4.7)+2.9;(3)+(-0.125).分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算.(1)是同号两数相加,按法则1,取原加数的符号“-”,并把绝对值相加.(2)是绝对值不相等的异号两数相加.(3)是绝对值相等的两数相加,根据法则2进行计算.解:(1)(-3)+(-5)=-(3+5)=-8;(2)(-4.7)+2.9=-本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
初中数学人教版七年级上册第一单元第3-1课《有理数的加法》获奖教案公开课优质课教案观摩课讲课精品教案
【省级获奖教案】
1教学目标
1.理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力.
3.通过师生活动、学生自我探究,培养学生合作意识,让学生体验成功,树立学习自信。
感受到数学学习的价值与乐趣。
2学情分析
有理数加法是小学学过的加法运算的拓展,学生已经具有了正数、负数、数轴和绝对值等知识。
加法法则实际上给出了确定两个有理数的和的“符号”与“绝对值”的规则。
同号两数的加法易于理解,而异号两数相加时情况比较复杂,学生学习难度较大,需要教师加强引导。
我校大部分学生都属于进城务工随迁子女,学生表现出数学基础、学习习惯及学习能力较差的特点。
同时由于他们才从小学升入初中,对于新的学习环境还不能很好地适应;对于新的学习理念还不能从根本上转变。
教师的教学和学生的学习都存在着很大的困难。
但是从年龄阶段来看,七年级学生朝气蓬勃、好动,对于新的事物和新的知识充满好奇,他们的表现欲相当强,如果采用形象生动,形式多样的教学方法和学生广泛的,积极主动参与的学习方式,还是会激发学生学习的热情和兴趣的。
3重点难点
教学重点:
1.了解有理数加法的意义;
2.会根据有理数的加法法则进行有理数的加法运算。
教学难点:
合作探索有理数加法法则的过程及和的符号的确定。
4教学过程
4.1第一学时。
人教版数学七年级上册1.3.1《有理数的加法》(第2课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册1.3.1的内容,本节课主要让学生掌握有理数的加法法则,并能灵活运用这些法则解决实际问题。
教材通过引入日常生活中的加法运算,引导学生学习有理数的加法,从而培养学生对数学的兴趣和认识。
二. 学情分析七年级的学生已经具备了一定的数学基础,对加法运算有一定的了解。
但是,对于有理数的加法法则,学生可能还比较陌生。
因此,在教学过程中,教师需要注重引导学生从实际问题中抽象出有理数的加法运算,让学生通过自主学习、合作交流的方式,理解并掌握有理数的加法法则。
三. 教学目标1.知识与技能:让学生掌握有理数的加法法则,能熟练地进行有理数的加法运算。
2.过程与方法:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的数学思维。
四. 教学重难点1.重点:有理数的加法法则。
2.难点:理解有理数加法法则的应用。
五. 教学方法1.情境教学法:通过引入日常生活中的加法运算,激发学生的学习兴趣。
2.自主学习法:引导学生独立思考,发现有理数的加法法则。
3.合作交流法:学生进行小组讨论,共同解决问题。
六. 教学准备1.教学课件:制作课件,展示有理数的加法运算实例。
2.学习素材:准备一些实际问题,供学生练习使用。
3.板书设计:设计板书,突出有理数的加法法则。
七. 教学过程1.导入(5分钟)教师通过引入日常生活中的加法运算,如购物、烹饪等,激发学生的学习兴趣。
引导学生思考:如何将这些实际问题转化为数学运算?2.呈现(10分钟)教师展示一些有理数的加法运算实例,如2 + 3、3 - 2等,让学生观察并尝试解释这些运算的结果。
引导学生发现有理数的加法法则。
3.操练(10分钟)教师学生进行小组讨论,共同解决一些实际问题,如购物问题、行程问题等。
要求学生运用所学的有理数加法法则,计算并解释结果。
《有理数的加法》教案2(优质课一等奖教
学设计)
《有理数的加法》教案2(优质课一等奖教学设计)
教学目标
- 通过本课的研究,学生能够掌握有理数加法的基本概念和运算规则。
- 学生能够应用有理数加法解决实际问题。
- 学生能够运用有理数的加法性质进行简化和转化。
教学准备
- 教师准备:PPT课件、教学素材、学生练册。
- 学生准备:课前预有关有理数加法的相关知识。
教学过程
导入(5分钟)
- 老师通过一个生活实例引导学生思考有理数的加法,激发学生的研究兴趣。
概念讲解(15分钟)
- 老师通过PPT课件,向学生介绍有理数的加法概念,包括正数的相加、负数的相加以及有理数加法的运算规则。
例题演练(20分钟)
- 老师通过多个例题引导学生进行有理数的加法计算,帮助学生掌握运算的步骤和技巧。
实际应用(15分钟)
- 老师通过一些实际问题的应用,让学生运用有理数的加法解决问题,培养学生的实际运用能力。
总结归纳(5分钟)
- 老师对本课的内容进行总结归纳,强调有理数加法的重要性和基本原则。
课后练(10分钟)
- 学生在练册上完成相关的题,巩固和复本节课所学的内容。
教学评价
- 通过课堂讨论、作业完成情况等方式,对学生掌握有理数加法的情况进行评价。
以上是《有理数的加法》教案2(优质课一等奖教学设计)的相关内容。
本课通过生动的导入、清晰的讲解、典型的例题演练和实际应用,帮助学生深入理解有理数的加法,并能够熟练运用到实际问题中。
同时,通过适当的练习和评价,巩固学生的学习效果,达到预期的教学目标。
七年级数学上册《有理数的加法》一等奖说课稿1、七年级数学上册《有理数的加法》一等奖说课稿各位评委、老师:大家好!今天我授课的课题是“有理数的加法(二)"。
下面我就从以下三个方面——教材分析与教材处理、教学方法和教学手段、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材分析与处理有理数的加法运算律在整个知识系统中的地位和作用是很重要的。
初中阶段主要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。
根据教学大纲的要求,来确定本节课的教学目标。
教学总目标为通过本节课的学习,学生能运用加法运算律简化加法运算,并能够理解加法运算律在加法运算中的作用。
具体从以下三方面而言:一、知识技能:让学生熟练掌握三个或三个以上有理数相加的运算,并能灵活运用加法的交换律和结合律使运算简便;培养学生的类比能力。
二、过程方法:培养学生的观察能力和思维能力,经历对有理数的运算,领悟解决问题应选择适当的方法。
三、情感态度:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。
教学重点:有理数的加法运算律的理解与掌握。
教学难点:灵活运用加法运算律使运算简便。
二、教学方法和数学手段在教学过程中,我注重体现教师的导向作用和学生的主体地位。
本节是先让同学们运用已学过的知识进行有理数的加法运算,并引导学生进行自主探究,发现有理数的'运算律,并进行总结。
教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。
三、教学过程的设计1、回顾:回顾上节课的内容—有理数的加法法则。
让同学回忆之前的内容,渐渐进入学习状态。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!第二章有理数及其运算回顾与思考(一)本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分主要内容是有理数的有关概念;第二部分主要内容是学习有理数的加减法运算;第三部分主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.本节课主要是针对第一部分和第二部分的内容进行知识梳理和复习.本节课的教学目标是:1、整理本章知识网络;2、复习正数与负数,有理数、相反数、绝对值、数轴等概念;3、复习有理数的加、减运算法则;4、复习有理数的加减混合运算的运算律;5、运用有理数及其运算解决实际问题.三、教学过程设计本节课设计了六个教学环节:第一环节:建构知识网络;第二环节:梳理重点知识;第三环节:剖析典型例题;第四环节:综合应用;第五环节:课堂小结;第六环节:拓展延伸。
第一环节:建构知识网络活动内容: 学生对照课本的章节目录,和教师一起画出全章的知识框架图.第二环节:梳理重点知识1、有理数的两种分类;2、数轴:(1)规定了原点、正方向、单位长度的直线叫做数轴. (2)任何一个有理数都可以用数轴上的一个点来表示.3、相反数:(1)只有符号不同的两个数互为相反数.(2)0的相反数是0.(3)a 的相反数是 -a.(4)如果a 与b 互为相反数,那么a +b =0.4、绝对值:(1)从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.(2)数 a 的绝对值记为 | a |. (3)正数的绝对值是它本身;0的绝对值是0;负数的绝对值是它的相反数.5、有理数的大小比较:(1)在数轴上,右边的数总是大于左边的数.(2)正数都大于零,负数都小于零,正数大于一切负数;(3) 两个正数,绝对值大的大;(4) 两个负数,绝对值大的反而小.6、有理数的加法:同号两数相加,取相同的符号,并把绝对值相加. 异号两数相加,取绝对值大的数的符号,并用较大的绝对值减去较小的绝对值. 一个数同0相加,仍得这个数。
《有理数的加法二》教案教学内容课本第30-33页.教学目标1、经历探索有理数运算律的过程,理解有理数的运算律.2、能用运算律简化运算.教学重点理解有理数加法交换律、结合律及对其合理灵活的运用.教学难点灵活的运用有理数加法运算律.教学过程一、复习回顾1、做一做:计算下列各式:(1)(-8)+(-9), (-9)+(-8)(2)4+(-7), (-7)+4(3)[2+(-3)]+(-8),2+[(-3)+(-8)](4)[10+(-10)]+(-5),10+[(-10)+(-5)]2、想一想:在有理数运算中,加法的交换律、结合律还成立吗?再换一些数试试.请用字母表示加法的交换律、结合律.加法的交换律:__________________加法的结合律:__________________二、应用新知计算:31+(-28)+28+69解一:31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100得出:若有互为相反数存在,先加得零(凑零).解二:31+(-28)+28+69=(31+69)+[(-28)+28]=100+0=100得出:能凑整的结合在一起(凑整).解三:31+(-28)+28+69=(31+69+28)+(-28)=128+(-28)=100得出:同号数相加.有一批食品罐头,标准质量为每听454克,现抽取10听样品进行检测,结果如下表(单位:克):这10解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4550(克)解法二:把超标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:(单位:克):这(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+5+5=10(克)因此,这10听罐头的总质量为454×10+10=4540+10=4550(克)3、随堂练习:某潜水员先潜入水下61m,然后又上升32m,这时潜水员处在什么位置?4、试一试:将-8、-6、-4、-2、0、2、4、6、8这9个数分别填入右图的9个空格中,使得每行的3个数,每列的3个数,斜对角的3个数相加均为0.三、课堂小结:这节课我们学习了有理数加法的交换律和结合律,在利用它简化多个有理数相加的计算时,要先看看有无相反数,有则先相加得零,再利用凑整或同号相加,计算出结果.。
2.1.1有理数的加法第1课时【教学目标】1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法法则.【教学重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程】一、温故知新,导入新课(一)复习:1.比较下列各数的大小:747-4-74-7-4.2.如果向东走5米记作+5米,那么向西走3米记作.3.已知a=-5,b=+3,|a|+|b|=.4.已知a=-5,b=+3,|a|-|b|=.(二)导入新课:在小学,我们学过正数及0的加法运算,引入负数后,在有理数范围内怎样加法运算呢?在实际问题中,有时会遇到与负数有关的加法运算,例如:李明同学经常对家里的生活垃圾分类,并卖出积攒的可回收物.这样既保护了环境,又增加了零花钱.如表是他某个月零花钱的部分收支情况.收支情况表日期收入(+)或支出(-)/元结余/元备注2日3.518.5卖可回收物8日-6.512.0买中性笔、记号笔12日-15.2-3.2买科普书,同学代付你知道结余如何求吗?怎样列式子计算8日及12日的结余呢?这样的算式如何计算呢?这就是本节课我们要研究的内容.二、探究归纳探究点1:有理数的加法法则一只可爱的小企鹅,在一条东西走向的笔直公路上行走,现规定向东为正,向西为负.问题1:如果小企鹅先向东行走2米,再继续向东行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共向东行走了米,写成算式为:(+2)+(+1)=+()(米)问题2:如果小企鹅先向西行走2米,再继续向西行走1米,则小企鹅两次一共向哪个方向行走了多少米?解:两次行走后,小企鹅向西走了米.用算式表示:(-2)+(-1)=-()(米).要点归纳:有理数加法法则一:同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.问题3:(1)如果小企鹅先向西行走3米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向西走了米.用算式表示为:(-3)+(+2)=-()(米)(2)如果小企鹅先向西行走2米,再继续向东行走3米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅两次一共向东走了()米.用算式表示为:-2+(+3)=+()(米).(3)如果小企鹅先向西行走2米,再继续向东行走2米,则小企鹅两次一共向哪个方向行走了多少米?解:小企鹅一共行走了米.写成算式为:(-2)+(+2)=(米).要点归纳:有理数加法法则二:绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.想一想:如果小企鹅先向西行走3米,然后在原地休息,则小企鹅向哪个方向行走了多少米?解:小企鹅向西行走了米.写成算式为:(-3)+0=(米).要点归纳:有理数加法法则三:一个数与0相加,仍得这个数.显然,两个有理数相加,和是一个有理数.【典例剖析】例1:教材P27【例1】【解题反思】一、法则挖掘有理数加法运算的步骤:师生活动:学生逐题作答后师生共同总结.进行有理数加法,先要判断两个加数是同号还是异号,加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.归纳总结【方法技巧】1.先判断加数的类型(同号、异号);2.再确定和的符号:同号取相同的符号;异号取绝对值较大的加数的符号;3.最后进行绝对值的加减运算.二、和与加数的关系借助数轴,思考以下问题:1.以任何一个点为起点(任意数),往正方向移动任意距离(加上一个正数),终点的位置(所表示的数是两个数的和)在起点的哪边?2.以任何一个点为起点(任意数),往负方向移动任意距离(加上一个负数),终点的位置(所表示的数是两个数的和)在起点的哪边?3.根据利用数轴比较有理数大小的方法,你能得到什么结论?你能用有理数的加法法则进行验证你的结论吗?【归纳总结】任何一个数加上一个正数,和比这个数大,任何一个数加上一个负数,和比这个数小.【设计意图】1.通过对法则的深度挖掘,帮助学生熟悉法则,使学生明晰做有理数加法运算时的常用方法和步骤,并养成“算必有据”的习惯.同时将有理数的加法运算转化为小学学习过的数的加减运算,渗透了化归思想.2.借助数轴,研究和与加数的关系,使学生明确,引入负数之后,有理数加法运算的结果与小学阶段得到的认知(和大于等于任意一个加数)是不同的.例2:足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(-2)=+(4-2)=2;黄队共进2球,失4球,净胜球数为(+2)+(-4)=-(4-2)=;蓝队共进球,失球,净胜球数为=.要点归纳:在解与有理数加法有关的实际应用问题时,先利用正负数表示实际问题中的量,再列式计算.三、检测反馈1.如果规定存款为正,取款为负,请根据李明同学的存取款情况填空:①一月份先存入10元,后又存入30元,两次合计存入 元,就是(+10)+(+30)= .②三月份先存入25元,后取出10元,两次合计存入 元,就是(+25)+(-10)= .2.计算:(1)(-2.2)+(-3.8).(2)413+(-516). (3)(-516)+0. (4)(+215)+(-2.2). 3.解决问题:某潜水员先潜入水下61米,然后又上升32米,这时潜水员处在什么位置?【拓展提高】4.若|x |=3,|y |=2,且x >y ,则x +y 的值为 ( )A.1B.-5C.-5或-1D.5或1 5.(1)a +|a |=0,a 是什么数?(2)若|a +1|=2,那么a 的取值为多少?四、本课小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法法则.今后我们经常要用类似的思想方法研究其他问题.应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事.五、布置作业P28练习,P34T1六、板书设计七、教学反思本节课采用以学生为主体教师为主导的方式进行合作探究的教学方法.通过创设问题情境,提供开展自主、合作、交流的学习的背景;整个探究新知的教学过程基本上由5个问题统领,在教师引导下,学生能对有理数的加法法则进行探究.学生积极思考问题,大部分主动参与讨论,敢于发表自己的见解.学生能多样化理解有理数的加法法则,并运用类比、数形结合、游戏等手段形象具体地理解有理数的加法法则.以问题为主线,能减少教师占用课堂时间,把主要时间交给学生去探索新知识,避免教师“讲得太多”.第2课时【教学目标】1.能概括出有理数的加法交换律和结合律.2.灵活熟练地运用加法交换律、结合律简化运算.3.在学生已有的知识经验基础上,通过主动探索有理数加法的运算律,培养学生观察、比较、归纳及运算能力.4.经历对有理数的运算过程,领悟解决问题应选择适当的方法.【教学重点难点】重点:掌握有理数的加法交换律和结合律.难点:灵活运用加法交换律、结合律简化运算.【教学过程】一、创设情境1.叙述有理数加法法则.2.计算:(1)6.18+(-9.18).(2)(+5)+(-12).(3)(-12)+(+5).(4)3.75+2.5+(-2.5).(5)12+(-23)+(-12)+(-13). 3.有了有理数的加法法则后,还要研究加法运算律,我们以前学过加法交换律、结合律,对于有理数的加法它们还成立吗?这就是我们这节课要研究的内容.二、探究归纳探究点1:加法运算律问题1:观察下面的算式,你们能再举一些数字也符合这样的结论吗?试试看!(1)(-8)+(-9)(-9)+(-8)(2)4+(-7)(-7)+4(3)6+(-2)(-2)+6(4)[2+(-3)]+(-8)2+[(-3)+(-8)](5)10+[(-10)+(-5)][10+(-10)]+(-5)问题2:通过上面的计算和对比你能发现什么?你能用字母表示出这个规律吗?要点归纳:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).【思考】多个有理数相加,可以任意交换加数的位置吗?交换了加数的位置后,能先把其中的几个数相加吗?【归纳总结】根据加法交换律和结合律,多个有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.【典例剖析】例1:教材P29【例2】思考:怎样使计算简化?这样做的根据是什么?解:(1)8+(-6)+(-8)=[8+(-8)]+(-6)=0+(-6)=-6.(2)16+(-25)+24+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20.要点归纳:把正数与负数分别相加,从而计算简化,这样做既运用加法交换律又运用加法的结合律.例2:计算:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5).(2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512). (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56). 思考:回顾以上例题的解答,将怎样的加数结合在一起,可使运算简便?要点归纳:(1)互为相反数的两个数可先相加.(2)几个数相加得整数时,可先相加.(3)同分母的分数可以先相加,将带分数拆开,计算比较简便.一定要注意不要遗漏括号;相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,计算比较简便.(4)符号相同的数可以先相加.探究点2:有理数加法运算律的应用例3:教材P29【例3】【解题引导】1.求10袋小麦的总重,可以使用什么方法?2.根据相反意义的量,在给定质量标准的情况下,我们如何来表示这10袋小麦的重量?3.计算10袋小麦总计超过或不足多少千克时,使用哪种表示重量的方法更简便,为什么?【解题反思】对比两种解法,哪种方法更简便?解法2中,使用了哪些运算律?解法1中能运用运算律简便计算吗?为什么?三、检测反馈1.P30练习T12.P36T93.计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).四、本课小结三个以上的有理数相加,可运用加法交换律和结合律任意改变加数的位置,简化运算.常见技巧有:(1)凑零凑整:互为相反数的两个数结合先加;和为整数的加数结合先加.(2)同号集中:按加数的正负分成两类分别结合相加,再求和.(3)同分母结合:把分母相同或容易通分的结合起来.(4)带分数拆开:计算含带分数的加法时,可将带分数的整数部分和分数部分拆开,分别结合相加.注意带分数拆开后的两部分要保持原来分数的符号.五、布置作业P30练习T2,3;P34T2;P35T8六、板书设计七、教学反思1.过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由.其实,计算本身就是推理.计算法则、运算性质都是进行计算的根据.学生要知道每进行一步运算都要有理有据.这样通过运算就能逐步培养学生的逻辑思维能力.运算教学时,要求学生明确每一步变形或计算的依据,鼓励学生提供多种计算方法.2.在课堂教学中,应当把更多的时间交给学生,本节课中有理数运算律的探究、例题的讲解、习题的完成、知识的总结尽可能全部交给学生完成,教师所起的作用是点拨、评价和指导,这样做,可以更好地体现以学生为中心的教学思想,能更好地提高学生的综合能力.。
有理数的加法
第2课时有理数加法的运算律
一、教与学目标:
1.使学生能够比较灵活地运用加法的运算律,简化加法运算;
2.体会简便运算的常用策略,渗透字母表示数的意识.
二、教与学重点难点:
使学生能比较灵活的运用加法运算律,简化加法运算.
三、教与学方法:
自主探究、合作交流.
四、教与学过程:
五、课堂小结:
通过本节课的学习,你有哪些收获还有哪些疑惑
加法交换律:两个数相加,交换加数的位置,和()
即 a+b=()
加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和().
即(a+b)+c=a+()
六、作业布置:。
本课在整个单元中,属于比较重要的环节。
除了起到承接上个课时、转接下课时的作用之外,还有一些重点的计算知识和转化相应的课时。
本单元在学科核心素养中,具体体现出非常重要的一环,就是在高效课堂的设计和转化过程中,注意学生主体意识的培养和学生学习兴趣的提高。
学习兴趣之于学生,是非常重要而且更加有意义的教学活动。
对于不同层次的学生来讲,环节上的应用更加大了不同学生之间互相弥合的意义。
有理数的加法法则课型:新授课一、教学目标确定的依据1、课程标准(1)理解有理数加法的意义,掌握有理数的加法法则和运算律。
(2)能熟练运用有理数法则进行有理数的运算。
2、教材分析本节课是初中数学华师大版七年级上册第2章有理数的第6节的第一课时,是学生进一步学习有理数运算的基础。
3、中招考点近5年均有考查有理数的试题,渗透到很多题中。
4、学情分析学生对异号有理数加法不能正确理解,不能准确地应用加法法则进行减法运算。
二、学习目标1、能说出有理数加法法则。
2、能熟练的利用有理数加法法则计算。
三、评价任务1、向同桌说出有理数加法法则,能用有理数加法法则进行运算。
四、教学过程[教学反思]教师充分发挥其主导作用,激发了学生智慧的火花,用自己的激情和精心创设的情景为学生合作探究蓄势;又以清晰的头脑理清讨论的主线,呵护学生富有个性的创新,使学生享受了成功的快乐,体验了学习的乐趣. 这是本节课的成功所在.这节课不足之处:学生在将几何体进行分类时,语言表达不够准确.“冰冻三尺,非一日之寒”,学生的数学语言表达能力需要在今后的教学实践中努力培养.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。
教学时,我让每个学生带长方体或正方体的纸盒,每个学生都剪一剪,并展示所剪图形的形状。
由于剪的方法不同,展开图的形状也可能是不同的。
在遇到问题时,多数学生不愿意自己探索,都要寻求帮助。
在今后的教学中,我会不断的钻研探索,使我的课堂真正成为学生学习的乐园。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
有理数的加法(第二课时)
一温故互查
(二人小组完成)
1. 想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面
_________________________________________________________________________ _________________________________________________________________________
2.计算:30+(-20)=_____
(-20)+30=_____
[8+(-5)]+(-4)=_____
思考:观察上面的式子与计算结果,你有什么发现?
二设问导读
完成下列各题.
阅读教材P
19
20
由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适用。
即:两个数相加,交换加数的位置.和_____________________式子表示为______________ ,三个数相加,先把前两个数相加,或者先把后两个数相加,和式子表示为________________. 想想看,式子中的字母可以是哪些数?
__________________________________________________________________________
2.阅读材料例2,你认为本题运用加法交换律和结合律的目的是什么?
3.阅读教材例3,并为同学讲解思路。
两种解法中你最喜欢哪一种?为什么?
三 自我检测
1.计算
(1)(+7)+(-6)+(-7)+(-6); (2) (-7)+11+3+(-2);
(3)41+(-32)+65+(-41)+(-3
1)
2.某食品加工厂在某天中收支情况如下(收入记为正数)-27.60元,-15元,+8
3.80元,-16.2元,-31.9元;试问收支相抵后,合计收入(或透支)多少元?
四 巩固训练
1.用字母表示:
加法交换律:_______________________________________________________________ 加法结合律:________________________________________________________________
2.如果两个异号的有理数的和是负数,那么这两个数中至少有一个数是_________ 数,且它的绝对值___________.
3.五袋大米以每袋50千克为准。
超过的记为正,不足的记为负.称重记录如下:+
4.5,-4,-2.3,-3.5,+2.
5.这五袋大米共超过________千克,总重量是_____千克.
4.足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0.则红队,蓝队,黄队的净胜球数分别为. ( )
A 2,-2,0
B 4,2,1
C 3,-2,0
D 4,-2,0
5.两个数相加的和小于每一个加数,那么一定是 ( )
A. 两个加数同为正数
B.两个加数同为负数
C.两个加数的符号不同
D.两个加数中有一个是零
6.计算
(1)(-2.6)+(3.4)+(2.3)+1.5+(-2.3)
(2) |-13|+|-53|+|-21|+0
(3)(-341)+(+332)+(+241)+(-13
2)
7.用筐装橘子,以每筐30千克为准,超过的千克数记为正数,不足的千克数记为负数. 称重的记录如下:+5,-4,+1,0,-3,-5,+4,-6,+2,+1.试问称得的总重与总标准重 相比超过或不足多少千克?10筐橘子实际共多少千克?
五 拓展探究
(1)若a>0,b>0,那么a+b_______0
(2) 若a<0,b<0,那么a+b_______0
(3) 若a>0,b<0,且|a|>|b|,那么a+b_____0
(4) 若a<0,b>0,且|a|>|b|,那么a+b_____0
六、教学反思
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进。
因此, 写作教案具有重要地位。
然而, 当前的写作教案存在“ 重结果轻过程”的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。