2019-2020年中考数学真题汇编详解19:等腰三角形
- 格式:doc
- 大小:63.10 KB
- 文档页数:3
2019-2020年中考数学第一部分考点研究复习第四章三角形第19课时等腰三角形真题精选含解析江苏近4年中考真题精选命题点1 (xx年5次,xx年12次,xx年12次,xx年8次)1. (xx盐城7题3分)若等腰三角形的顶角为40°,则它的底角度数为( )A. 40°B. 50°C. 60°D. 70°2. (xx苏州7题3分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为( )A. 35°B. 45°C. 55°D. 60°第2题图第3题图3. (xx扬州7题3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB 上,PM=PN,若MN=2,则OM=( )A. 3B. 4C. 5D. 64. (xx淮安16题3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是________.5. (xx徐州16题3分)如图,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=________.第5题图第6题图6. (xx宿迁16题3分)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC 是等腰三角形的点P有且只有3个,则AB的长为________.7. (xx南通16题3分)如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=______度.第7题图8. (xx南京25题10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)第8题图9. (xx宿迁21题6分)如图,已知AB=AC=AD,且AD∥BC.求证:∠C=2∠D.第9题图命题点2 等边三角形的性质与判定(xx年1次,xx年2次,xx年2次,xx年2次) 10. (xx常州18题2分)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD,正△APE和正△PBC,则四边形PCDE面积的最大值是________.第10题图答案 1. D 【解析】∵等腰三角形的两个底角相等,顶角是40°,∴其底角为180°-40°2=70°. 2. C 【解析】∵AB =AC ,D 为BC 中点,∴∠BAC =2∠BAD =70°,∴∠C =180°-70°2=55°.3. C 【解析】如解图,过点P 作PD ⊥OB ,交OB 于点D ,在Rt △OPD 中,∵∠AOB =60°,∴∠OPD =30°,∴OD =12OP =12×12=6,∵PM =PN ,PD ⊥MN ,MN =2,∴MD =ND =12MN =1,∴OM =OD -MD =6-1=5.第3题解图4. 10 【解析】若三条线段的长分别为2,2,4,∵2+2=4,∴它们不能构成三角形,即此种情况不存在;若三条线段的长分别为2,4,4,此时能构成三角形,且周长为10.故该等腰三角形的周长为10.5. 15° 【解析】∵AB =AC ,∠A =50°,∴∠ACB =∠ABC =12(180°-50°)=65°,∵将△ABC 折叠,使点A 落在点B 处,折痕为DE ,∠A =50°,∴∠ABE =∠A =50°,∴∠CBE =∠ABC -∠ABE =65°-50°=15°.6. 4或2 3 【解析】满足△PBC 是等腰三角形的点P 有且只有3个,以BC 为底的三角形必有一个:(1)如解图①,分别以B ,C 为圆心,BC 长为半径的圆与直线AD 有两个交点时,满足题意,以BC 为腰的等腰三角形中有一个与以BC 为底的三角形重合,∴△P 1BC 是等边三角形,∠ABP 1=30°,利用三角函数可求出AB =23;(2)如解图②,当以B 为圆心,BC 长为半径的圆与直线AD 只有一个交点,此时也满足题意,AB =BC =4.第6题解图7. 52 【解析】∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C,设∠B=∠BAD=x,∴∠ADC =2x,∴∠C=2x,∴∠B+∠C=3x,∵∠BAC=102°,∴∠B+∠C=78°,∴3x=78°,解得x=26°,∴∠ADC=52°.8. 【思维教练】3可能是等腰三角形的腰长,也可能是等腰三角形的底边长,等腰三角形的顶角可能是锐角,可能是直角,也可能是钝角.要把所有的问题考虑全.解:如解图所示.第8题解图9. 证明:∵AB=AD=AC,∴∠ABC=∠C,∠ABD=∠D,∵AD∥BC,∴∠D=∠DBC=∠ABD,∴∠C=∠ABC=2∠ABD=2∠D.10. 1 【解析】连接DE、DC,∵△ABD,△APE,△BPC都是等边三角形,∴∠EAD=∠EAP -∠DAP=∠PAB,同理∠PBA=∠CBD,∴△AED≌△APB(SAS),△APB≌△DCB(SAS),∴ED =PB,AP=DC,∵PB=PC,AP=EP,∴ED=PC,EP=DC,∴四边形PCDE是平行四边形,∠BCD=∠AED=90°,∴S五边形ABCDE=S△ABD+S△AED+S△BCD,S▱PCDE=S五边形ABCDE-S△APB-S△APE-S△BCP,S △AED=S△BCD=S△APB,S▱PCDE=S△ABD+2S△APB-S△APB-S△APE-S△BPC=S△ABD+S△APB-S△APE-S△BPC,设AP=x,BP=y,原式=34×22+12xy-34x2-34y2=3+12xy-34(x2+y2)=3+12xy-3=12xy=S△APB,∴当AP=BP时,S▱PCDE最大=S△ABP最大=2×2×12=1.第10题解图34110 853E 蔾32213 7DD5 緕N 21943 55B7 喷38102 94D6 铖\ !20327 4F67 佧20604 507C 偼/34530 86E2 蛢38379 95EB 闫。
2019年中考数学总复习等腰三角形专题综合训练题1.在△ABC中,∠ABC=30°,∠BAC=70°.在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.7条 B.8条C.9条D.10条2. 如图,在△ABC中,AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数为( )A.80° B.75° C.65° D.45°3. 如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=( )A.3 B.4 C.5 D.64. 如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3 C.2.5 D.25. 如图,在△ABC中,AB=AC,AD是∠B AC的平分线.已知AB=5,AD=3,则BC的长为( )A.5 B.6 C.8 D.106. 如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于____.7. 如图钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是____.8. 在△ABC中,∠C是最小内角.若过顶点B的一条直线把这个三角形分成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC的关于点B的伴侣分割线.例如:如图1,△ABC 中,∠A=90°,∠C=20°,若过顶点B的一条直线BD交AC于点D,且∠DBC=20°,则直线BD是△ABC 的关于点B的伴侣分割线.(1)如图2,△ABC中,∠C=20°,∠ABC=110°.请在图中画出△ABC关于点B的伴侣分割线,并注明角度;(2)△ABC中,设∠B的度数为y,最小内角∠C的度数为x.试探索y与x应满足什么要求时,△ABC存在关于点B的伴侣分割线.9. 如图,抛物线y=ax2+bx过A(4,0),B(1,3)两点,点C,B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H.(1)求抛物线的表达式;(2)若点M在直线BH上运动,点N在x轴上运动,当以点C、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN的面积.解析:第(2)题分别以点C,M,N为直角顶点分三类进行讨论,利用全等三角形和勾股定理求CM或CN的长,利用面积公式进行计算.10. 如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)11. 在等腰Rt△ABC中,∠C=90°,AC=1,过点C作直线l∥AB,F是l上的一点,且AB=AF,求点F 到直线BC的距离.12. 如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0),B(3,0),C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)点M 是直线l 上的动点,且△MAC 为等腰三角形,求出所有符合条件的点M 的坐标.13. 如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 是∠ABC 的平分线,CE ⊥BD ,垂足是E ,BA 和CE 的延长线交于点F.(1) 在图中找出与△ABD 全等的三角形,并证明你的结论; (2) 证明:BD =2EC.参考答案: 1. C2. D 【解析】∠BCA=12(180°-∠A)=75°,∠BCD =∠BCA-∠DCA=∠BCA-∠A=75°-30°=45°.3. C【解析】作PQ⊥MN 于Q ,由PM =PN 知PQ 垂直平分MN∴MQ=1.∠AOB=60°,OP =12,∴OQ =12OP =6,OM=OQ -MQ =6-1=5. 4. C【解析】 如图,以BC 为边作等腰直角三角形△EBC,延长BE 交AD 于F ,得△ABF 是等腰直角三角形,作EG⊥CD 于G ,得△EGC 是等腰直角三角形,在矩形ABCD 中剪去△ABF,△BCE ,△ECG 得到四边形EFDG ,此时剩余部分的面积最小,最小值为4×6-12×4×4-12×3×6-12×3×3=2.5,故选C.5. C 【解析】∵AB=AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BD =CD ,∴BD =AB 2-AD 2=4,∴BC =2BD =8,故选C. 6. 20° 【解析】过点A 作AD∥l 1,根据平行线的性质可得∠BAD=∠β.AD∥l 2,从而得到∠DAC=∠α=40°.再根据等边△ABC 可得到∠BAC=60°,∴∠β=∠BAD=∠BAC-∠DAC=60°-40°=20°.7. 12° 【解析】设∠A=x ,∵AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,∴∠A =∠AP 2P 1=∠AP 13P 14=x ,∴∠P 2P 1P 3=∠P 13P 14P 12=2x ,∴∠P 3P 2P 4=∠P 12P 13P 11=3x ,……,∠P 7P 6P 8=∠P 8P 9P 7=7x ,∴∠AP 7P 8=7x ,∠AP 8P 7=7x.在△AP 7P 8中,∠A +∠AP 7P 8+∠AP 8P 7=180°,即x +7x +7x =180°,解得x =12°.8. 解:(1)画图正确,角度标注正确,如图① (2)考虑直角顶点,只有点A ,B ,D 三种情况.当点A 为直角顶点时,如图②,此时y =90°-x.当点B 为直角顶点时,再分两种情况:若∠DBC=90°,如图③,此时y =90°+12(90°-x)=135°-12x.若∠ABD=90°,如图④,此时y =90°+x.当点D 为直角顶点时,又分两种情况:若△ABD 是等腰三角形,如图⑤,此时y =45°+(90°-x)=135°-x.若△DBC 是等腰三角形,如图⑥,此时x =45°,45°<y <90°9. 解:(1)把点A(4,0),B(1,3)代入抛物线y =ax 2+bx 中,得⎩⎪⎨⎪⎧0=16a +4b ,3=a +b ,解得⎩⎪⎨⎪⎧a =-1,b =4,∴抛物线表达式为:y =-x 2+4x (2)点C 的坐标为(3,3),点B 的坐标为(1,3),以点C ,M ,N 为顶点的三角形为等腰直角三角形时,分三类情况讨论:①以点M 为直角顶点且M 在x 轴上方时,如图2,CM =MN ,∠CMN=90°,则△CBM≌△MHN,∴BC =MH =2,BM =HN =3-2=1,∴M(1,2),N(2,0),由勾股定理得MC =22+12=5,∴S △CMN =12×5×5=52;②以点M 为直角顶点且M 在x 轴下方时,如图3,作辅助线,构建如图所示的两直角三角形:Rt △NEM 和Rt △MDC ,得Rt △NEM ≌Rt △MDC ,∴MD =ME =2,EM =CD =5,由勾股定理得CM =22+52=29,∴S △CMN=12×29×29=292;③以点N 为直角顶点且N 在y 轴左侧时,如图4,CN =MN ,∠MNC =90°,作辅助线,同理得CN =32+52=34,∴S △CMN =12×34×34=17;④以点N 为直角顶点且N 在y 轴右侧时,作辅助线,如图5,同理得CN =32+12=10,∴S △CMN =12×10×10=5;⑤以C 为直角顶点时,不能构成满足条件的等腰直角三角形.综上所述,△CMN 的面积为52或292或17或510. 解:满足条件的所有等腰三角形如下图所示:解析:利用等腰三角形的性质,分别以长度为3的边为等腰三角形的底边和腰长进行分类.11. 解:①如图a ,延长AC ,作FD⊥BC 于点D ,FE ⊥AC 于点E ,易得四边形CDFE 是正方形,则CD =DF=FE =EC.∵在等腰直角△ABC 中,AC =BC =1,AB =AF ,∴AB =AC 2+BC 2=12+12=2,∴AF = 2.在Rt △AEF 中,(1+EC)2+EF 2=AF 2,即 (1+DF)2+DF 2=(2)2,解得DF =3-12;②如图b ,延长BC ,作FD⊥BC 于点D ,延长CA ,作FE⊥CA 于点E ,易得四边形CDFE 是正方形,则CD =DF =FE =EC.在Rt △AEF 中,(EC -1)2+EF 2=AF 2,即(FD -1)2+FD 2=(2)2,解得FD =3+12.综上可知,点F 到BC 的距离为3+12或3-1212. 解:(1)将A(-1,0),B(3,0),C(0,-3)代入抛物线y =ax 2+bx +c 中,得⎩⎪⎨⎪⎧a -b +c =0,9a +3b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3,故抛物线的解析式为y =x 2-2x -3 (2)如图,抛物线的对称轴为x =-b 2a=1,设M(1,m),已知A(-1,0),C(0,-3),则MA 2=m 2+4,MC 2=(3+m)2+1=m 2+6m +10,AC 2=10.①若MA =MC ,则MA 2=MC 2,得m 2+4=m 2+6m +10,解得m =-1;②若MA =AC ,则MA 2=AC 2,得m 2+4=10,得m =±6;③若MC =AC ,则MC 2=AC 2,得m 2+6m +10=10,得m 1=0,m 2=-6,当m =-6时,M ,A ,C 三点共线,不构成三角形,不合题意,故舍去.综上可知,符合条件的M 点的坐标为 (1,6)(1,-6)(1,-1)(1,0)13. 解:(1)△ABD≌△ACF,证明:∵AB =AC ,∠BAC =90°,∴∠FAC =∠BAC=90°,∵BD ⊥CE ,∠BAC =90°,∠ADB =∠EDC,∴∠ABD =∠ACF,∴△ABD ≌△ACF(ASA)(2)∵△ABD≌△ACF,∴BD =CF ,∵BD ⊥CE ,∴∠BEF =∠BEC,∵BD 是∠ABC 的平分线,∴∠FBE =∠CBE,∵BE =BE ,∴△FBE ≌△CBE(ASA),∴CF =2CE ,∴BD =2CE2019-2020学年数学中考模拟试卷一、选择题1.在下列图形中,既是轴对称图形,又是中心对称图形的是( )A .直角三角形B .正五边形C .正方形D .平行四边形2.某篮球运动员在连续7场比赛中的得分(单位:分)依次为21,16,17,23,20,20,23,则这组数据的平均数与中位数分别是( ) A .20分,17分B .20分,22分C .20分,19分D .20分,20分3.如图是二次函数y =ax 2+bx+c 的部分图象,由图象可知,满足不等式ax 2+bx+c >0的x 的取值范围是( )A.﹣1<x <5B.x >5C.x <﹣1且x >5D.x <﹣1或x >54.把a 移到根号内得( )B. C.5.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 26.甲,乙工程队分别承接600米,800米的道路修建工程,已知乙比甲每天多修建12米,结果甲比乙提早1天完成,问甲每天修建多少米?设甲每天修建x 米,根据题意可列出方程是( ) A .x 600=80012x -﹣1 B .x 600=80012x -+1C .x 600=80012x +﹣1 D .x 600=80012x ++1 7.如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y=kx-2与线段AB 有交点,则K 的值不可能是( )A .-5B .-2C .3D .58.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D′的坐标是( )A .(2,10)B .(﹣2,0)C .(2,10)或(﹣2,0)D .(10,2)或(﹣2,0)9.如图,D 、E 分别是ABC ∆的边AB 、BC 上的点,DE AC ,AE 、CD 相交于点O ,则下列结论一定正确的是( )A .BD EOAD AO= B .CO CECD CB= C .AB COBD OD= D .BD ODBE OE= 10.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.6B.5C.4D.711.下列计算中,正确的是( )A 2±B .2+=C .a 2•a 4=a 8D .(a 3)2=a 612.现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是( ) A .平均数不变,方差变大 B .平均数不变,方差不变 C .平均数不变,方差变小 D .平均数变小,方差不变二、填空题13.已知 5 个数据:8,8,x ,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是 __________.14.在平面直角坐标系xOy 中,点A (4,3)为⊙O 上一点,B 为⊙O 内一点,请写出一个符合条件要求的点B 的坐标______.15.若关于x 的一元二次方程x 2﹣4x+m =0有实数根,则实数m 满足_____.16.如果2(2+(a ,b 为有理数),那么a+b 等于_____.17.如图,矩形ABCD 中,4AB =,6AD =,点E 为AD 中点,点P 为线段AB 上一个动点,连接EP ,将APE ∆沿PE 折叠得到FPE ∆,连接CE ,CF ,当ECF ∆为直角三角形时,AP 的长为_____.18.从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是________ 三、解答题19.某校在一次大课间活动中,采用了四种活动形式:A :跑步;B :跳绳;C :做操;D :游戏,全校学生都选择了一种形式参与活动,小明对同学们选择的活动形式进行了随机抽样调查,并绘制了不完整的两幅统计图(如图):(1)本次共调查了多少名学生?(2)跳绳B 对应扇形的圆心角为多少度?(3)学校在每班A 、B 、C 、D 四种活动形式中,随机抽取两种开展活动,求每班抽取的两种形式恰好是“做操”和“跳绳”的概率.20.某公司可投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品,公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为8元/件,此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y =﹣x+28.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为6元/件,为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过14万件,请计算该公司第二年的利润W 2至少为多少万元.21.在□ABCD 中,经过A 、B 、C 三点的⊙O 与AD 相切于点A ,经过点C 的切线与AD 的延长线相交于点P ,连接AC .(1)求证:AB =AC ;(2)若AB =4,⊙O PD 的长.22.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④…… (1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明. 23.已知AB 为O 的直径,EF 切O 于点D ,过点B 作BH EF ⊥于点H ,交O 于点C ,连接BD .(Ⅰ)如图①,若BDH 65∠=︒,求ABH ∠的大小; (Ⅱ)如图②,若C 为BD 的中点,求ABH ∠的大小.24.如图,在等腰△ABC 中,AB =BC ,点D 是AC 边的中点,延长BD 至点E ,使得DE =BD ,连结CE .(1)求证:△ABD ≌△CED .(2)当BC =5,CD =3时,求△BCE 的周长.25.如图,AB是半⊙O的直径,点C,D为半圆O上的点,AE||OD,过点D的⊙O的切线交AC的延长线于点E,M为弦AC中点(1)填空:四边形ODEM的形状是;(2)①若CEkCM=,则当k为多少时,四边形AODC为菱形,请说明理由;②当四边形AODC为菱形时,若四边形ODEM的面积为O的半径.【参考答案】***一、选择题二、填空题13.或 1014.(2,2).15.4m≤16.1017.1或9 418.1 4三、解答题19.(1) 本次共调查了300名学生;(2) 36︒;(3)1 6【解析】【分析】(1)用A类学生数除以它所占的百分比即可得到总人数(2)先算出B类的总数,再利用B的总数除以总的调查人数在乘以360°即可得到答案(3)利用画树状图可知一共有十二种结果,而做操”和“跳绳”的结果数为2,即可得到答案【详解】(1)120÷40%=300(人),所以本次共调查了300名学生;(2)喜欢B类的人数为300﹣120﹣60﹣90=30(人),所以跳绳B对应扇形的圆心角=360°×30300=36°;(3)画树状图为:共有12种等可能的结果数,其中每班抽取的两种形式恰好是“做操”和“跳绳”的结果数为2,所以每班抽取的两种形式恰好是“做操”和“跳绳”的概率=21 126.【点睛】此题综合考查了扇形统计图,条形统计图,画树状图等,解题关键在于对图形性质的理解20.(1)W1=﹣x2+36x﹣304.(2)该产品第一年的售价是18元.(3)该公司第二年的利润W2至少为92万元.【解析】【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数的性质即可解决问题.【详解】(1)W1=(x﹣8)(﹣x+28)﹣80=﹣x2+36x﹣304;(2)由题意:20=﹣x2+36x﹣304.解得:x=18,答:该产品第一年的售价是18元;(3)∵公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过14万件.∴14≤x≤18,W2=(x﹣6)(﹣x+28)﹣20=﹣x2+34x﹣188,∵抛物线的对称轴x=17,又14≤x≤18,∴x=14时,W2有最小值,最小值=92(万元),答:该公司第二年的利润W2至少为92万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.21.(1)见解析,(2【解析】【分析】(1)连接AO并延长交BC于点E,交⊙O于点F,由切线的性质可得∠FAP=90°,根据平行四边形的性质可得∠AEB=90°,由垂径定理点BE=CE,根据垂直平分线的性质即可得AB=AC;(2)连接FC,OC,设OE=x,则EF x,根据AF为直径可得∠ACF=90°,利用勾股定理可得CF的长,利用勾股定理可证明OC2-OE2=CF2-EF2,即可求出x的值,进而可得EC、BC的长,由平行线性质可得∠PAC=∠ACB,由切线长定理可得PA=PC,即可证明∠PAC=∠PCA,由AB=AC可得∠ABC=∠ACB,利用等量代换可得∠ABC=∠PAC,即可证明△PAC∽△ABC,根据相似三角形的性质可求出AP的长,根据PD=AP-AD即可得答案.【详解】(1)连接AO并延长交BC于点E,交⊙O于点F.∵AP是⊙O的切线,AF是⊙O的直径,∴AF⊥AP,∴∠FAP=90°.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AEB=∠FAP=90°,∴AF⊥BC.∵AF是⊙O的直径,AF⊥BC,∴BE=CE.∵AF⊥BC,BE=CE,∴AB=AC.(2)连接FC,OC.设OE=x,则EF x.∵AF是⊙O的直径,∴∠ACF=90°.∵AC=AB=4,AF=∴在Rt△ACF中,∠ACF=90°,∴CF2.∵在Rt△OEC中,∠OEC=90°,∴CE2=OC2-OE2.∵在Rt△FEC中,∠FEC=90°,∴CE2=CF2-EF2.∴OC2-OE2=CF2-EF2.即2-x2=22x)2.解得x=5.∴EC5.∴BC=2EC.∵四边形ABCD是平行四边形,∴AD=BC=5.∵AD∥BC,∴∠PAC=∠ACB.∵PA,PC是⊙O的切线,∴PA=PC.∴∠PAC=∠PCA.∵AB=AC,∴∠ABC=∠ACB.∴∠PAC=∠ABC,∠PCA=∠ACB.∴△PAC∽△ABC,∴APAB=ACBC.∴AP=ACBC·AB=∴PD=AP-AD.【点睛】本题考查切线的性质、圆周角定理的推论、垂径定理、平行四边形的性质及相似三角形的判定与性质,直径所对的圆周角是直角;圆的切线垂直于过切点的半径;垂直于弦的直径平分弦,且平分弦所对的两条弧;有两个角对应相等的两个三角形相似;熟练掌握相关性质及定理是解题关键.22.(1)4×6+1=52,9×11+1=102;(2)(n﹣1)(n+1)+1=n2;证明见解析.【解析】【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.23.(Ⅰ)∠ABH=50°;(Ⅱ)60ABH ∠=︒.【解析】【分析】(Ⅰ)连接OD ,由切线性质可得OD ⊥EF ,根据锐角互余的关系可求出∠ODB 和∠DBH 的度数,根据等腰三角形的性质可求出∠OBD 的度数,根据∠ABH=∠ABD+∠DBH 即可得答案;(Ⅱ) 连接OD ,OC ,由C 为BD 的中点可得DOC BOC ∠∠=,由平行线性质可得DOC OCB ∠∠=,根据等腰三角形的性质可得OCB OBC ∠∠=,即可证明△OCB 是等边三角形,即可得答案.【详解】(Ⅰ)连接OD .∵EF 切O 于点D ,∴OD EF ⊥.∵BDH 65=︒,BH EF ⊥,∴ODB DBH 25∠∠==︒.∵OB OD =,∴ABD ODB 25∠∠==︒.∴ABH ABD DBH 50∠∠∠=+=︒.(Ⅱ)连接OD ,OC .由(Ⅰ)可得OD//BH ,∴DOC OCB ∠∠=,∵C 为BD 的中点,∴DOC BOC ∠∠=.∴OCB BOC ∠∠=.∵OB OC =,∴OCB OBC ∠∠=.∴ΔOCB 为等边三角形,∴ABH 60∠=︒.【点睛】本题考查了切线的性质、等腰三角形的性质及等边三角形的判定,圆的切线垂直于经过切点的半径;运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.(1)见解析;(2)△BCE的周长为18.【解析】【分析】(1)利用全等三角形的判定定理SAS证得结论;(2)利用勾股定理求得BD=4,然后利用三角形的周长公式解答.【详解】(1)证明:∵AB=BC,点D是AC边的中点,∴AD=CD,∠ADB=∠CDE=90°.又∵DE=BD,∴△ABD≌△CED(SAS);(2)解:∵BD===4,∴BE=2BD=8.又∵CE=AB=BC=5,∴BC+CE+BE=5+5+8=18,即△BCE的周长为18.【点睛】本题考查了全等三角形的判定与性质,在应用全等三角形的判定时,要注意三角形间的公共边、公共角或对顶角,必要时添加适当辅助线构造三角形.25.(1)四边形AODC为菱形,见解析;(2)①当k为1时,四边形AODC为菱形.理由见解析;②⊙O的半径为.【解析】【分析】(1)运用切线定理、垂径定理、平行线的性质证明四个角均为90°,即可说明四边形ODEM为矩形;(2)①当k为1时,四边形AODC为菱形.连接CD,CO.由四边形AODC为菱形,可得AO=OD=CD=AC,由OM垂直平分AC,得到OA=OC,所以OA=OC=AC,因此△OAC为等边三角形,于是∠CAO=60°,∠CDO =60°,∠ECD=30°,所以CE=12CD=12AC,又CM=12AC,因此CE=CM,即CECM=1,所以当k为1时,四边形AODC为菱形;②由四边形ODEM 的面积为可知OD•MO=43,由①四边形AODC 为菱形时,∠MAO =60°,所以OMOA=sin ∠MAO =sin60°,MO ,因此OD•MO=OA•2OA =,所以OA =. 【详解】(1)∵DE 是⊙O 的切线,∴OD ⊥DE ,∠ODE =90°,∵M 为弦AC 中点,∴OM ⊥AC ,∠OME =90°,∵AE||OD ,∴∠E =90°,∠MOD =90°,∴四边形ODEM 是矩形;(2)①当k 为1时,四边形AODC 为菱形.理由如下:连接C D ,CO .∵四边形AODC 为菱形,∴AO =OD =CD =AC ,∵OM 垂直平分AC ,∴OA =OC ,∴OA =OC =AC ,∴△OAC 为等边三角形,∴∠CAO =60°,∠CDO =60°,∴∠ECD =30°,∴CE =12CD =12AC , ∵CM =12AC , ∴CE =CM , ∴1CE CM= , 当k 为1时,四边形AODC 为菱形;②∵四边形ODEM 的面积为,∴OD•MO=由①四边形AODC 为菱形时,∠MAO =60°,∴sin sin 60OM MAO OA ︒=∠= ,MO ,OA⋅=,∴OD•MO=2∴OA=∴⊙O的半径为【点睛】本题是圆的综合题,熟练掌握矩形、菱形、三角函数、垂径定理等是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.在-2,3.14,5π,这6个数中,无理数共有( ) A .4个 B .3个 C .2个 D .1个2.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OB =6cm ,高OC =8cm .则这个圆锥漏斗的侧面积是( )A .30cm 2B .30πcm 2C .60πcm 2D .120cm 23.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( )A .﹣4B .﹣2C .3D .54.在平面直角坐标系xOy 中,以点(3,4)为圆心,4为半径的圆一定A .与x 轴和y 轴都相交B .与x 轴和y 轴都相切C .与x 轴相交、与y 轴相切D .与x 轴相切、与y 轴相交. 5.如图,在中,,分别是上两点,,点分别是的中点,则的长为( )A.10B.8C.D.206.将一图形绕着点O 顺时针方向旋转70后,再绕着点O 逆时针方向旋转120,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转多少度?( )A .逆时针方向,50B .顺时针方向,50C .顺时针方向,190D .逆时针方向,1907.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( )A .400400(130%)x x -+=4B .400400(130%)x x-+=4C .400400(130%)x x --=4D .4004004(130%)x x-=- 8.下列运算正确的是( )A .236a a a ⋅=B .22423a a a +=C .236(2)2a a -=-D .422()a a a ÷-= 9.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连接DF ,则下列四个结论中,错误的是( )A.△AEF ~△CABB.CF=2AFC.DF=DCD.tan ∠CAD=3410.如图,正方形ABCD 的顶点A (1,1),B (3,1),规定把正方形ABCD“先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD 的顶点C 的坐标为( )A .(﹣2018,3)B .(﹣2018,﹣3)C .(﹣2016,3)D .(﹣2016,﹣3)11.在体育模拟考中,某6人小组的1000米长跑得分(单位:分)分别为:10,9,8,10,10,9,则这组数据的众数和中位数分别是( )A .9分,8分B .9分,9.5分C .10分,9分D .10分,9.5分12.如图,已知BC 是圆柱底面的直径,AB 是圆柱的高,在圆柱的侧面上,过点A 、C 嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB 剪开,所得的圆柱侧面展开图是( )A .B .C .D .二、填空题13.抛物线y=(2x﹣1)2+t与x轴的两个交点之间的距离为4,则t的值是_____.14.用不等号“>”或“<”连接:sin50°_____cos50°.15.已知x﹣y=2,则x2﹣y2﹣4y=_____.16.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=kx(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为___.17.如图,在△ABC中,∠C=90°,∠A=30°,a∥b,点B在直线b上,∠1=138°,则∠2=______度.18.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+12PC的最小值等于_____.三、解答题19.随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生,在扇形统计图中“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20.如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC=43,且BC=6,AD=4.求cosA的值.21.已知函数y=y1+y2,其中y1与x成反比例,y2与x﹣2成正比例,函数的自变量x的取值范围是x≥12,且当x=1或x=4时,y的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:.(2)函数图象探究:①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.22.东北大米主要种植于黑龙江省、吉林省、辽宁省的广大平原地区,种植在极其肥沃的黑土地中,吸收了足够的氮、磷、钾等多种矿物元素,阳光雨露充足,又有纯净无污染的灌溉用水,生长周期比较长,一般五个月左右.东北大米颗粒饱满,质地坚硬,色泽清白透明;饭粒油亮,香味浓郁;蒸煮后出饭率高,粘性较小,米质较脆.刘阿姨到超市购买东北大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg.这种东北大米的原价是多少?23.解不等式组1531xx x+≤⎧⎨->⎩①②请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得_________;(Ⅱ)解不等式②,得_________;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为________.24.解方程:213xx x+=-.25.先化简,再求值:2221(1)244x xx x x+++÷--+,其中x=3.【参考答案】*** 一、选择题二、填空题13.-1614.>15.416.(0,53)或(0,15).17.12 18.5 三、解答题19.(1)100,108°;(2)补图见解析;(3)1 3【解析】【分析】(1)由20÷20%可得这次统计共抽查人数,根据圆心角公式可得结果;(2)先求喜欢用短信的人数,再画图;(3)用树状图方法求概率.【详解】解:(1)20÷20%=100;所以这次统计共抽查了100名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数=360°×30100=108°; (2)喜欢用短信的人数为:100×5%=5人, 补充图形,如图所示:(3)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3, 所以恰好选用“微信”联系的概率=39=13.【点睛】考核知识点:从统计图表获取信息,求概率.20.5【解析】 【分析】先在Rt △BDC 中,利用锐角三角函数的定义求出CD 的长,由AC=AD+DC 求出AC 的长,然后在Rt △ABC 中,根据勾股定理求出AB 的长,从而求出 cosA 的值. 【详解】解:在Rt △BDC 中, tan ∠DBC=43, 且BC=6 , ∴ tan ∠DBC=DC BC =6DC =43, ∴CD=8, ∴AC=AD+DC=12,在Rt △ABC 中,,∴ cosA =ACAB =. 【点睛】本题主要考查解直角三角形.熟练掌握三角函数的定义是解题的关键.21.(1)2112y x x =+-;(2)①见解析;②见解析;(3)①y 2<y 1<y 3;②1<k≤134,12≤x≤8. 【解析】 【分析】(1)根据题意设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+-,即可解答(2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答 ②观察图象得:x≥12,图象最低点为(2,1),再代入即可 【详解】 (1)设11k y x=,y 2=k 2(x ﹣2),则12(2)ky k x x =+- ,由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩,∴该函数解析式为2112y x x =+- , 故答案为:2112y x x =+-, (2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大, ∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3, ②观察图象得:x≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k≤134, 此时x 的范围是:12≤x≤8. 故答案为:1<k≤134,12≤x≤8. 【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键 22.这种大米的原价是每千克7元. 【解析】 【分析】设这种大米的原价是每千克x 元,根据第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次共购买了40kg ,列出方程即可解答 【详解】解:设这种大米的原价是每千克x 元, 根据题意,得105140400.8x x+=, 解得:x =7.经检验,x =7是原方程的解. 答:这种大米的原价是每千克7元. 【点睛】此题考查分式方程的应用,解题关键在于列出方程 23.(Ⅰ)4x ≤;(Ⅱ)12x >;(Ⅲ)见解析;(Ⅳ)142x <≤. 【解析】 【分析】(Ⅰ)直接移项即可得出答案;(Ⅱ)移项,两边同时除以2,即可得答案;(Ⅲ)根据解集在数轴上的表示方法表示出①②的解集即可;(Ⅳ)根据数轴找出两个解集的公共部分即可. 【详解】 (Ⅰ)15x +≤ 移项得:x≤4, 故答案为:x≤4 (Ⅱ) 31x x -> 移项得:2x>1, 解得:x>12,故答案为:x>12(Ⅲ)不等式①和②的解集在数轴上表示如图所示:(Ⅳ) 由数轴可得①和②的解集的公共解集为142x <≤, 故原不等式的解集为:142x <≤, 故答案为:142x <≤ 【点睛】本题考查的是一元一次不等式组的整数解,会求一元一次不等式组的解集是解决此类问题的关键.求不等式组的解集,借助数轴找公共部分或遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 24.x =65. 【解析】 【分析】根据分式方程的解法求解即可. 【详解】去分母得:2x ﹣6+x 2=x 2﹣3x , 解得:x =65, 检验x =65是原方程的解. 【点睛】本题主要考查分式方程的解法,注意根的验证. 25.3 【解析】 【分析】先算括号内的加法,把除法变成乘法,算乘法,再代入求出即可. 【详解】2221(1)244x x x x x +++÷--+ 2222(2)21x x x x x -++-=⋅-+ 2(1)(2)21x x x x x +-=⋅-+ =x (x ﹣2)=x2﹣2x,当x=3时,原式=32﹣2×3=3.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.。
2019年全国中考试题解析版分类汇编-等腰三角形的性质和判定注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017•铜仁地区7,3分〕以下关于等腰三角形的性质表达错误的选项是〔〕A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C、等腰三角形是中心对称图形D、等腰三角形是轴对称图形考点:等腰三角形的性质;轴对称图形;中心对称图形。
分析:根据等腰三角形的性质:等腰三角形两底角相等〔等边对等角〕,等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合〔三线合一〕,等腰三角形是轴对称图形但不是中心对称图形,即可求得答案、解答:解:A、等腰三角形两底角相等,故本选项正确;B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合,故本选项正确;C、等腰三角形不是中心对称图形,故本选项错误;D、等腰三角形是轴对称图形,故本选项正确、应选C、点评:此题考查了等腰三角形的性质、注意等边对等角,三线合一,以及其对称性的应用、2.〔2017内蒙古呼和浩特,7,3〕如果等腰三角形两边长是6cm和3cm,那么它的周长是〔〕A、9cmB、12cmC、15cm或12cmD、15cm考点:等腰三角形的性质;三角形三边关系、专题:分类讨论、分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长、根据三角形三边关系定理列出不等式,确定是否符合题意、解答:解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形、应选D、点评:此题从边的方面考查三角形,涉及分类讨论的思想方法、求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去、3.〔2017辽宁沈阳,7,3〕如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,那么图中的等腰三角形有〔〕A、2个B、4个C、6个D、8个考点:等腰三角形的判定;矩形的性质。
【2019-2020年度】中考数学专题19 全等三角形试题(含解析)☞解读考点【2015年题组】1.(2015六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【答案】D.【解析】试题分析:A.可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B.可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.利用ASA判定△ABC≌△DCB,故此选项不符合题意;D.SSA不能判定△ABC≌△DCB,故此选项符合题意;故选D.考点:全等三角形的判定.2.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【答案】B.考点:全等三角形的判定与性质.3.(2015义乌)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【答案】D.【解析】试题分析:在△ADC和△ABC中,∵AD=AB,DC=BC,AC=AC,∴△ADC≌△ABC (SSS),∴∠DAC=∠BAC,即∠QAE=∠PAE.故选D.考点:全等三角形的应用.4.(2015泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【答案】D.考点:1.全等三角形的判定;2.线段垂直平分线的性质;3.等腰三角形的性质;4.综合题.5.(2015宜昌)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()12 A.0个 B.1个 C.2个 D.3个【答案】D.【解析】试题分析:在△ABD与△CBD中,∵AD=CD,AB=BC,DB=DB,∴△ABD≌△CBD (SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,∵AD=CD,∠ADB=∠CDB,OD=OD,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D.考点:1.全等三角形的判定与性质;2.新定义;3.阅读型.6.(2015宜昌)如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个 B.2个 C.3个 D.4个【答案】C.考点:全等三角形的判定.7.(2015荆门)如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.综合题;4.压轴题.8.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH12其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.【解析】试题分析:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;2∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.9.(2015柳州)如图,△ABC≌△DEF,则EF= .【答案】5.【解析】试题分析:∵△ABC≌△DEF,∴BC=EF,则EF=5.故答案为:5.考点:全等三角形的性质.10.(2015盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.【答案】DC=BC或∠DAC=∠BAC.考点:1.全等三角形的判定;2.开放型.11.(2015贵港)如图,在正方形ABCD的外侧,作等边三角形CDE,连接AE,BE,则∠AEB的度数为.【答案】30°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质;3.正方形的性质;4.综合题.12.(2015常州)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.【答案】(400,800).【解析】试题分析:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中,∵AD=AB,∠ODA=∠ABC,DO=BC,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC=AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).考点:1.勾股定理的应用;2.坐标确定位置;3.全等三角形的应用.13.(2015福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是【答案】.1考点:1.旋转的性质;2.全等三角形的判定与性质;3.角平分线的性质;4.等边三角形的判定与性质;5.等腰直角三角形;6.综合题.14.(2015鄂尔多斯)如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.12【答案】4.考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.综合题.15.(2015长春)如图,在平面直角坐标系中,点P 在函数()的图象上.过点P 分别作x 轴、y 轴的垂线,垂足分别为A 、B ,取线段OB 的中点C ,连结PC 并延长交x 轴于点D .则△APD 的面积为 .6y x =0x >【答案】6.【解析】试题分析:∵PB⊥y 轴,PA⊥x 轴,∴=|k|=6,在△PBC 与△DOC 中,∵∠PBC=∠DOC=90°,BC=BC ,∠PCB=∠DCO,∴△PBC≌△DOC,∴S△APD=S 矩形APBO=6.故答案为:6.APBD S 矩形考点:1.反比例函数系数k 的几何意义;2.全等三角形的判定与性质.16.(2015)如图,OP 平分∠MON,PE⊥OM 于E ,PF⊥ON 于F ,OA=OB ,则图中有 对全等三角形.【答案】3.考点:1.全等三角形的判定;2.角平分线的性质;3.综合题.17.(2015贺州)如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B 、C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan∠α=.有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 (填入正确结论的序号).34214245【答案】②③.若△BDE 为直角三角形,则有两种情况:(1)若∠BED=90°,∵∠BDE=∠CAD ,∠B=∠C ,∴△BDE ∽△CAD ,∴∠CDA=∠BED=90°,∴AD ⊥BC ,∵AB=AC ,∴BD=BC=12;12(2)若∠BDE=90°,如图2,设BD=x ,则DC=24-x ,∵∠CAD=∠BDE=90°,∠B=∠C=∠α,∴cos ∠C=cosB=,∴,解得:,∴若△BDE 为直角三角形,则BD 为12或,故③正确;45154245AC DC x ==-214x =214设BE=x ,CD=y ,∵△BDE ∽△CAD ,∴,∴,∴,∴,∴,∴,∴0<BE ≤,∴故④错误;BE CD BD CA =2415x y y =-21524x y y =-215144(12)x y =--15144x ≤485x ≤485故答案为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.18.(2015南宁)如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,且AE=CF ,(1)求证:△ADE≌△CB F ;(2)若∠DEB=90°,求证:四边形DEBF 是矩形.【答案】(1)证明见试题解析;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.矩形的判定.19.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .【答案】证明见试题解析.【解析】试题分析:根据两边及其夹角对应相等可以判断△ADE≌△AEB,再由全等三角形对应边相等可说明结论.证明:在△ADE和△AEB中,∵AB=AC,∠A=∠A,AD=AE,∴△ADE≌△AEB,∴BE=CD.考点:全等三角形的判定与性质.20.(2015来宾)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【答案】(1)△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;(2)证明见试题解析.考点:1.平行四边形的性质;2.全等三角形的判定与性质.21.(2015百色)如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗?若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.【答案】(1)证明见试题解析;(2)能,△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.考点:1.全等三角形的判定与性质;2.几何变换的类型;3.网格型.22.(2015常州)如图,在▱ABCD中,∠BCD=120°,分别延长DC、BC到点E,F,使得△BCE和△CDF都是正三角形.(1)求证:AE=AF;(2)求∠EAF的度数.【答案】(1)证明见试题解析;(2)60°.【解析】试题分析:(1)根据平行四边形的性质得到∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,根据等边三角形的性质得到BE=BC,DF=CD,∠EBC=∠CDF=60°,即可证出∠ABE=∠FDA,AB=DF,BE=AD,由SAS证明△ABE≌△FDA,得出对应边相等即可;(2)根据全等三角形的性质得到∠AEB=∠FAD,求出∠AEB+∠BAE=60°,得出∠FAD+∠BAE=60°,即可得出∠EAF的度数.试题解析:(1)∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∠ABC=∠ADC,AB=CD,BC=AD,∵△BCE和△CDF都是正三角形,∴BE=BC,DF=CD,∠EBC=∠CDF=60°,∴∠ABE=∠FDA,AB=DF,BE=AD,在△ABE和△FDA中,∵AB=DF,∠ABE=JIAO FDA,BE=AD,∴△ABE≌△FDA(SAS),∴AE=AF;(2)∵△ABE≌△FDA,∴∠AEB=∠FAD,∵∠ABE=60°+60°=120°,∴∠AEB+∠BAE=60°,∴∠FAD+∠BAE=60°,∴∠EAF=120°﹣60°=60°.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的性质.23.(2015乐山)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.【答案】(1)证明见试题解析;(2)试题解析:(1)∵AD∥BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,∵∠BEF=∠DEC,∠F=∠C,BE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=,在Rt△BCD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴,∴CE=,∴BE=BC﹣EC=.222-=EC EC CD(2)33考点:1.翻折变换(折叠问题);2.全等三角形的判定与性质;3.综合题.24.(2015潜江)已知∠MAN=135°,正方形ABCD绕点A旋转.(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是;②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是何种三角形,并说明理由.【答案】(1)①MN=BM+DN;②成立;(2)直角三角形.(2)如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得到DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.先证明△AMN≌△AEN.得到MN=EN.由DN,DE,NE为直角三角形的三边,得到以线段BM,MN,DN的长度为三边长的三角形是直角三角形.②如图2,若BM≠DN,①中的数量关系仍成立.理由如下:延长NC到点P,使DP=BM,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABM=∠ADC=90°.在△ABM与△ADP中,∵AB=AD,∠ABM=∠ADP,BM=DP,∴△ABM≌△ADP(SAS),∴AM=AP,∠1=∠2=∠3,∵∠1+∠4=90°,∴∠3+∠4=90°,∵∠MAN=135°,∴∠PAN=360°﹣∠MAN﹣(∠3+∠4)=360°﹣135°﹣90°=135°.在△ANM与△ANP中,∵AM=AP,∠MAN=∠PAN,AN=AN,∴△ANM≌△ANP(SAS),∴MN=PN,∵PN=DP+DN=BM+DN,∴MN=BM+DN;(2)以线段BM,MN,DN的长度为三边长的三角形是直角三角形.理由如下:如图3,将△ABM绕点A逆时针旋转90°,得到△ADE,连结NE.由旋转的性质得:DE=BM,AE=AM,∠EAM=90°,∠NDE=90°.∵∠MAN135°,∴∠EAN360°∠MAN∠EAM =135°,∴∠EAN =∠MAN.在△AMN与△AEN中,∵AM=AE,∠MAN=∠EAN,AN=AN,∴△AMN≌△AEN.∴MN=EN.∵DN,DE,NE为直角三角形的三边,∴以线段BM,MN,DN的长度为三边长的三角形是直角三角形.==--考点:1.几何变换综合题;2.全等三角形的判定与性质;3.勾股定理的逆定理;4.和差倍分;5.探究型;6.综合题;7.压轴题.【2014年题组】1.(2014年贵州黔西南)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【答案】C.考点:全等三角形的判定.2.(2014年湖南益阳)如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是( )A .AE=CFB .BE=FDC .BF=DED .∠1=∠2【答案】A .【解析】试题分析:根据平行四边形的性质以及全等三角形的判定分别作出判断:A 、当AE=CF 时,构成的条件是SSA ,无法得出△ABE≌△CDF,故此选项符合题意;B 、当BE=FD 时,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;C 、当BF=ED 时,由等量减等量差相等得BE=FD ,构成的条件是SAS ,可得△ABE≌△CDF,故此选项不符合题意;D 、当∠1=∠2时,构成的条件是ASA ,可得△ABE≌△CDF,故此选项不符合题意.故选A .考点:1.平行四边形的性质;2.全等三角形的判定.3.(2014年江苏连云港)如图,若△ABC 和△DEF 的面积分别为、,则( )1S 2SA .B .C .D .1212S S =1272S S =12S S =1285S S = 【答案】C .考点:1.全等三角形的判定和性质;2.等底等高三角形的性质.4.(2014年福建福州)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使..若AB=10,则EF 的长是_______ .12CF BC =【答案】5.【解析】∵在Rt△ABC 中,∠ACB=90°,点D ,E 分别是边AB ,AC 的中点,AB=10,∴AD=5,AE=EC ,,∠AED=90°.12DE BC =∵,∴DE=FC .12CF BC =在Rt△ADE 和Rt△EFC 中,∵AE=EC ,DE=FC ,∴Rt△ADE≌Rt△EFC (SAS ).∴EF=AD=5.考点:1.三角形中位线定理;2.全等三角形的判定和性质.5.(2014年湖南长沙)如图,点B 、E 、C 、F 在一条直线上,AB ∥DE ,AB=DE ,BE=CF ,AC=6,则DF= __________ .【答案】6.考点:1.平行的性质;2.全等三角形的判定和性质.6.(2014年湖南常德)如图,已知△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC=BC ,AD=AO ,若∠BAC=80°,则∠BCA 的度数为______.【答案】60°.【解析】试题分析:∵△ABC 三个内角的平分线交于点O ,∴∠ACO=∠BCO.在△COD 和△COB 中,∵CD=CB,∠OCD=∠OCB,CO=CO ,∴△COD≌△COB (SAS ).∴∠D=∠CBO.∵∠BAC=80°,∴∠BAD=100°,∠BAO=40°.∴∠DAO=140°.∵AD=AO,∴∠D=20°.∴∠CBO=20°.∴∠ABC=40°.∴∠BCA=60°.考点:1.角的平分线定义;2.全等三角形的判定和性质;3.等腰三角形的性质.7、(2014年福建福州7分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见试题解析.考点:全等三角形的判定和性质.8.(2014年湖北宜昌)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD 平分∠CAB.(1)求∠CAD的度数;(2)延长AC至E,使CE=AC,求证:DA=DE.【答案】(1)30°;(2)证明见试题解析.【解析】试题分析:(1)利用“直角三角形的两个锐角互余”的性质和角平分的性质进行解答.(2)由ASA证明△ACD≌△ECD来推知DA=DE.试题解析:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,∴∠CAB=60°.又∵AD平分∠CAB,∴∠CAD=∠CAB=30°,即∠CAD=30°.12(2)证明:∵∠ACD+∠ECD=180°,且∠ACD=90°,∴∠ECD=90°.∴∠ACD=∠ECD.在△ACD与△ECD中,∵AC=EC,∠ACD=∠ECD,CD=CD,∴△ACD≌△ECD(SAS).∴DA=DE.考点:1.直角三角形两锐角的关系;2.全等三角形的判定与性质.☞考点归纳归纳 1:全等三角形的性质基础知识归纳:全等三角形的对应边相等,对应角相等基本方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题注意问题归纳:利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.【例1】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为.【答案】60°.考点:1.全等三角形的判定与性质;2.等腰三角形的性质.归纳 2:全等三角形的判定方法基础知识归纳:三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”).基本方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.注意问题归纳:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)【例2】如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.AC=DF D.∠ACB=∠F【答案】C.考点:全等三角形的判定与性质.归纳 3:角平分线基础知识归纳:角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.基本方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意问题归纳:注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.【例3】如图所示,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【答案】证明见试题解析.考点:1.全等三角形的判定和性质;2.角平分线的性质.☞1年模拟1.(2015届中考二模)用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A O B AOB'''∠=∠A .(SAS )B .(SSS )C .(AAS )D .(ASA )【答案】B .【解析】试题分析:由题意可知,利用尺规作图法,可知OC=O ′C ′,OD=O ′D ′,CD=C ′D ′,根据全等三角形的判定定理(SSS )可得△OCD ≌△O ′C ′D ′,得出.故选B .A O B AOB '''∠=∠考点:1.全等三角形的判定;2.尺规作图.2.(2015届中考二模)如图,等边△ABC 的边AB 上一点P ,作PE⊥AC 于E ,Q 为BC 延长线上的一点,当PA=CQ 时,连接PQ 交AC 于点D ,下列结论中不一定正确的是( )A .PD=DQB .DE=AC C .AE=CQD .PQ ⊥AB2121 【答案】D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.平行线的性质.3.(2015届中考模拟)如图,在同一平面内,将两个全等的等腰直角三角形ABC 和AFG 摆放在一起,A 为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为2,若△ABC 固定不动,△AFG 绕点A 旋转,AF 、AG 与边BC 的交点分别为D 、E (点D 不与点B 重合,点E 不与点C 重合),设BE=m ,CD=n .下列结论:(1)图中有三对相似而不全等的三角形;(2)m•n=2;(3)BD2+CE2=DE2;(4)△ABD≌△ACE;(5)DF=AE .其中正确的有( )A 、2个B 、3个C 、4个D 、5个【答案】A .(5)当AF 与AB 重合时,AE=AF ,AB=AF ,得到DF ≠AF ,于是由AE 与DF 不一定相等;12212试题解析:(1)△ABE ∽△DAE ,△ABE ∽△DCA ,故(1)错误;(2)∵△ABE ∽△DCA ,∴,由题意可知CA=BA=, ∴,∴m=,∴mn=2;(1<n <2); 故(2)正确;BE BAAC CD =n =2n (3)证明:将△ACE 绕点A 顺时针旋转90°至△ABH 的位置,则CE=HB ,AE=AH ,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD ,在△EAD 和△HAD 中, ∵AE=AH ,∠HAD=∠EAH-∠FAG=45°=∠EAD ,AD=AD , ∴△EAD ≌△HAD ,∴DH=DE .又∠HBD=∠ABH+∠ABD=90°, ∴BD2+CE2=DH2, 即BD2+CE2=DE2; 故(3)正确;(4)若△ABC固定不动,△AFG绕点A旋转,∴∠BAD≠∠CAE,∴△ABD与△ACE不一定全等,∴(4)错误;(5)当AF与AB重合时,AE=AF,AB=AF,∴DF≠AF,∴AE与DF不一定相等;∴(5)错误.故选A.121 2考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.等腰直角三角形.4.(2015届中考二模)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2 B.1:3 C.1:4 D.1:5【答案】A.考点:1.平行四边形的性质;2.全等三角形的判定与性质.5.(2015届中考模拟二)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.7.5 B.8 C.15 D.无法确定【答案】A.考点:1.角平分线的性质;2.全等三角形的判定与性质.6.(2015届中考二模)如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.【答案】证明见解析.【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF ,∴∠A=∠E .在△ABC 和△DEF 中,,∴△ABC ≌△EDF .A E C F AB ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AC=EF .考点:全等三角形的判定与性质.7.(2015届中考二模)如图,在△ABC 中,D 为AB 边上一点,F 为AC 的中点,连接DF 并延长至E ,使得EF=DF ,连接AE 和EC .(1)求证:四边形ADCE 为平行四边形;(2)如果DF=,∠FCD=30°,∠AED=45°,求DC的长.【答案】(1)证明见解析;(2).2+(2)解:如图,过点F 作FG ⊥DC 与G .∵四边形ADCE 为平行四边形,∴AE ∥CD .∴∠FDG=∠AED=45°,在Rt △FDG 中,∠FGD=90°,∠FDG=45°,DF=,∵cos ∠FDG=,∴DG=GF===2.DG DFcos DF FDG ⋅∠cos45︒ 在Rt △FCG 中,∠FGC=90°,∠FCG=30°,GF=2,∵tan ∠FCG=,∴,FGGC 2tan tan30FG CG FCG ===∠︒∴DC=DG+GC=.2+考点:1.解直角三角形;2.平行四边形的判定与性质;3.全等三角形的判定与性质.8.(2015届中考二模)如图1,在△ABC 中,CA=CB ,∠ACB=90°,D 是△ABC内部一点,∠ADC=135°,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE.(1)①依题意补全图形;②请判断∠ADC和∠CDE之间的数量关系,并直接写出答案;(2)在(1)的条件下,连接BE,过点C作CM⊥DE,请判断线段CM,AE和BE之间的数量关系,并说明理由;(3)如图2,在正方形ABCD中,AB=,如果PD=1,∠BPD=90°,请直接写出点A到BP【答案】(1)①作图见解析;②∠ADC+∠CDE=180°;(2)AE=BE+2CM,理由解析;(3)(2)线段CM,AE和BE之间的数量关系是AE=BE+2CM,理由如下:∵线段CD绕点C逆时针旋转90°得到线段CE,∴CD=CE,∠DCE=90°,∴∠CDE=∠CED=45°.又∵∠ADC=135°,∴∠ADC+∠CDE=180°,∴A、D、E三点在同一条直线上,∴AE=AD+DE.又∵∠ACB=90°,∴∠ACB-∠DCB=∠DCE-∠DCB,即∠ACD=∠BCE.又∵AC=BC,CD=CE,∴△ACD≌△BCE,∴AD=BE.∵CD=CE,∠DCE=90°,CM⊥DE,∴DE=2CM,∴AE=BE+2CM.(3)点A到BP考点:1.作图—旋转变换;2.探究型;3.和差倍分;4.全等三角形的判定与性质.9.(2015届中考二模)如图,点D是等边△ABC中BC边上一点,过点D分别作DE∥AB,DF∥AC,交AC ,AB 于E ,F ,连接BE ,CF ,分别交DF ,DE 于点N ,M ,连接MN .试判断△DMN 的形状,并说明理由.【答案】△DMN 为等边三角形,理由见解析.考点:1.等边三角形的判定与性质;2.全等三角形的判定与性质.10.(2015届中考一模)如图,已知,在△ABC 中,CA=CB ,∠ACB=90°,E ,F 分别是CA ,CB 边的三等分点,将△ECF 绕点C 逆时针旋转α角(0°<α<90°),得到△MCN,连接AM ,BN .(1)求证:AM=BN ;(2)当MA∥CN 时,试求旋转角α的余弦值.【答案】(1)证明见解析;(2).13(2)∵MA∥CN,∴∠ACN=∠CAM,∵∠ACN+∠ACM=90°,∴∠CAM+∠ACM=90°,∴∠AMC=90°,∴cos α=.13CM CE AC AC == 考点:1.全等三角形的判定与性质;2.旋转的性质;3.锐角三角函数的定义.11.(2015届中考模拟)已知四边形ABCD 中,AB=BC ,∠ABC=120°,∠MBN=60°,∠MBN 绕B 点旋转,它的两边分别交AD ,DC (或它们的延长线)于E ,F .当∠MBN 绕B 点旋转到AE=CF 时(如图1),易证AE+CF=EF ;当∠MBN 绕B 点旋转到AE≠CF 时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE ,CF ,EF 又有怎样的数量关系?请写出你的猜想,不需证明.【答案】证明见解析.∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;121 2∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;121 2则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,BK BEKBF EBF BF BF⎪∠⎪⎩∠⎧⎨===∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE-CF=EF.考点:1.全等三角形的判定与性质;2.和差倍分;3.存在型;4.探究型;5.综合题.12.(2015届中考一模)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.12【答案】(1)证明见解析,(2)四边形ABCD是矩形,理由见解析.考点:1.全等三角形的判定与性质;2.平行四边形的判定与性质;3.矩形的判定;4.探究型.13.(2015届九年级下学期4月中考模拟)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图1,DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图2中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由;(2)在图3中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.【答案】(1)BD=DP成立.证明见解析;(2)BD=DP.证明见解析.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,,∴△BDF≌△PDA(ASA),∴BD=DP .⎪⎩⎪⎨⎧︒=∠=∠=∠=∠4521DAP DFB DA DF(2)BD=DP .证明如下:如答图3,过点D 作DF ⊥MN ,交AB 的延长线于点F ,则△ADF 为等腰直角三角形,∴DA=DF .在△BDF 与△PDA 中,,∴△BDF ≌△PDA (ASA ),∴BD=DP .⎪⎩⎪⎨⎧∠=∠=︒=∠=∠PDA BDF DA DF PAD F 45考点:1.全等三角形的判定与性质;2.等腰直角三角形;3.平行四边形的性质;4.探究型.14.(2015届初中毕业班综合测试)如图,在△ABC 与△ABD 中,BC 与AD 相交于点O ,∠1=∠2,CO=DO .求证:∠C=∠D.【答案】证明见解析.考点:全等三角形的判定与性质.15.(2015届中考一模)已知:如图,在▱ABCD 中,线段EF 分别交AD .AC .BC 于点E 、O 、F ,EF⊥AC,AO=CO .(1)求证:△ABF≌△CDE;(2)在本题的已知条件中,有一个条件如果去掉,并不影响(1)的证明,你认为这个多余的条件是 (直接写出这个条件).【答案】(1)证明见解析;(2)EF ⊥AC .考点:1.平行四边形的性质;2.全等三角形的判定与性质.16.(2015届中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:∵MN⊥EF,∴∠E+∠EBM=90°,且∠EBM=∠ABN,∴∠ABN+∠E=90°,∵BF=EF,∴∠E=∠EBF,∴∠ABN+∠EBF=90°,又∵∠EBC=90°,∴∠CBF+∠EBF=90°,∴∠ABN=∠CBF,∵四边形ABCD为正方形,∴AB=BC,∠NAB=∠CBF=90°,在△ABN和△CBF中∴△ABN≌△CBF(ASA),∴BF=BN,又由旋转可得EF=FG=BF,∴BN=FG,∵∠GFM=∠BME=90°,∴BN∥FG,∴四边形BFGN为菱形.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.。
第19课时 三角形及其全等 课时作业1.在△ABC 中,若一个内角等于另外两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°2.如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( )A .2B .43C .3D .323.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,过点D 作DE ∥BC 交AC 于点E ,若∠A =54°,∠B =46°.则∠CDE 的大小为( )A .45°B .40°C .39°D .35°4.如图,DE 是△ABC 的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且AC =8,BC =5,则△BEC 的周长是( )A .12B .13C .14D .155.如图,在△ABC 中,∠C =90°,AC =8,DC =13AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( ) A .4 B .3 C .2 D .16.如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E .若AD =3 cm ,则BE 的长为( )A .332 cmB .4 cmC .3 2 cmD .6 cm7.如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°8.如图,△ABC ≌△DEC ,B ,C ,D 在同一直线上,且CE =3 cm ,CD =6 cm ,则BD 的长为( )A .9 cmB .6 cmC .3 cmD .不确定9.如图,点B ,F ,C ,E 在一条直线上,AB ∥ED ,AC ∥FD ,那么添加下列一个条件后,无法判定△ABC ≌△DEF 的是( )A .∠A =∠DB .AC =DF C .AB =ED D .BF =EC10.如图,D 是AB 上的一点,DF 交AC 于点E ,DE =EF ,FC ∥A B.若AB =4,CF =3,则BD 的长是( )A .0.5B .1C .1.5D .211.如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM .下列结论:①AC =BD ;②∠AMB =40°;③OM 平分∠BOC ;④MO 平分∠BM C.其中正确的个数为( )A.4 B.3 C.2 D.112.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )A.∠B B.∠A C.∠EMF D.∠AFB13.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB于E.若DE=1,则BC的长为( )A.2+2 B.2+3C.2+3D.314.如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC ≌△DEF,则还需添加的一个条件是______________(只填一个即可).15.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D;②AC=DB;③AB=DC,其中能确定△ABC≌△DCB的是_______(只填序号).16.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.17.用三角板作ABC的边BC上的高,下列三角板的摆放位置正确的是()A B C D18.如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE,∠BEC=∠DE C.若AB=6,则CD=________.19.如图,在△ABC中,D,E分别是BC,AC的中点,AD与BE相交于点G,若DG=1,则AD=________.20.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB 与AC的和;④BF=CF.其中正确的有()A.①②③B.①②③④C.①②D.①21.如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.23.如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF,EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.24.(1)如图1,△ABC与△ADE均是顶角为40°的等腰三角形,BC、DE分别是底边,求证:BD=CE;(2)如图2,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:∠AEB的度数为;线段BE与AD之间的数量关系是.(3)如图3,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.。
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……第23讲 等腰三角形1. (2011,河北)如图①,等边三角形ABD ,等边三角形CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图②,则阴影部分的周长为 2 .第1题图【解析】 如答图.∵等边三角形ABD ,等边三角形CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,∴A ′M =A ′N =MN ,MO =DM =DO ,OD ′=D ′E =OE ,EG =EC =GC ,B ′G =RG =RB ′,RB =RN =BN .∴OM +MN +NR +GR +EG +OE =A ′B ′+CD =1+1=2.第1题答图2. (2013,河北)如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40 n mile 的速度向正北方向航行,2 h 后到达位于灯塔P 的北偏东40°方向的N 处,则N 处与灯塔P 间的距离为(D)第2题图A. 40 n mileB. 60 n mileC. 70 n mileD. 80 n mile【解析】 根据题意,得MN =2×40=80(n mile).∵∠M =70°,∠N =40°,∴∠NPM =180°-∠M -∠N =180°-70°-40°=70°.∴∠NPM =∠M .∴NP =MN =80 n mile.3. (2014,河北)如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白的值为(C)第3题图A. 3B. 4C. 5D. 6【解析】 如答图.因为六边形是正六边形,所以△OAC 是边长为a 的等边三角形,即两个空白三角形的面积等于S △OAC ,即S 阴影S 空白=5.第3题答图4. (2016,河北)如图,∠AOB =120°,OP 平分∠AOB ,且OP =2.若点M ,N 分别在OA ,OB 上,且△PMN 为等边三角形,则满足上述条件的△PMN 有(D)第4题图A. 1个B. 2个C. 3个D. 3个以上【解析】 只需要满足∠MPN =60°即可.如答图,过点P 作PC ⊥OB 于点C ,PD ⊥OA 于点D ,则PC =PD ,∠DPC =360°-90°×2-120°=60°.∵∠DPC =∠DPM +∠MPC =60°,∠MPN=∠MPC +∠CPN =60°,∴∠DPM =∠CPN .在△DPM 和△CPN 中,⎩⎪⎨⎪⎧∠MDP =∠NCP ,PD =PC ,∠DPM =∠CPN ,∴△DPM ≌△CPN .∴PM =PN .∴∠PMN =∠PNM .∵∠MPN =60°,∴△PMN 为等边三角形,而满足∠MPN =60°的△PMN 有无数个.第4题答图等腰三角形的性质例1 等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为(C)A. 70°B. 20°C. 20°或70°D. 40°或140°【解析】 本题分两种情况.①如答图①,当该等腰三角形为钝角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=12×(90°-50°)=20°.②如答图②,当该等腰三角形为锐角三角形时,∵一腰上的高与另一腰的夹角是50°,∴底角=12×[180°-(90°-50°)]=70°.综上所述,这个等腰三角形的底角为20°或70°.例1答图针对训练1 (2018,无锡模拟)若等腰三角形的顶角为80°,则它的一个底角的度数为(B)A. 20°B. 50°C. 80°D. 100°【解析】 ∵等腰三角形的顶角为80°,∴它的一个底角为(180°-80°)÷2=50°. 针对训练2 (2018,钦州二模)若一个等腰三角形的三边长分别为x ,3,2x -1,则这个等腰三角形的周长为__11或8__.【解析】 当x =3时,2x -1=5.∵3+3>5,∴能组成三角形.此时三角形的周长为3+3+5=11.当x =2x -1时,x =1.∵1+1<3,∴不能组成三角形.当2x -1=3时,x =2.∵3+2>3,∴能组成三角形.此时三角形的周长为3+3+2=8.综上所述,这个等腰三角形的周长为11或8.等腰三角形的判定例2 (2018,桂林)如图,在△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,则图中等腰三角形的个数是 3 .例2题图【解析】 ∵AB =AC ,∠A =36°,∴△ABC 是等腰三角形,∠ABC =∠C =180°-36°2=72°.∵BD 平分∠ABC ,∴∠ABD =∠DBC =36°.∵在△ABD 中,∠A =∠ABD =36°,∴△ABD 是等腰三角形.∵∠ABD =∠A =36°,∴∠BDC =72°.∵在△BDC 中,∠C =∠BDC =72°,∴△BDC 是等腰三角形.所以共有3个等腰三角形.针对训练3 (导学号5892921)如图,在△ABC 中,BC =4,BD 平分∠ABC ,过点A 作AD ⊥BD 于点D ,过点D 作DE ∥CB ,分别交AB ,AC 于点E ,F .若EF =2DF ,则AB 的长为(B)训练3题图A. 4B. 6C. 8D. 10【解析】 如答图,延长AD ,BC 交于点G .∵BD 平分∠ABC ,AD ⊥BD ,∴∠BAD =∠G .∴AB =BG .∴D 是AG 的中点.∵DE ∥BG ,∴E 是AB 的中点,F 是AC 的中点.∴DE 是△ABG 的中位线,EF 是△ABC 的中位线.∴EF =12BC =2.∵EF =2DF ,∴DF =1.∴DE =3.∴BG =2DE =6.∴AB =6.训练3答图等边三角形的性质与判定例3 (导学号5892921)如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内的两点,AD 平分∠BAC ,∠EBC =∠E =60°.若BE =6 cm ,DE =2 cm ,则BC 的长为(C)例3题图A. 4 cmB. 6 cmC. 8 cmD. 12 cm【解析】 如答图,延长ED 交BC 于点M ,延长AD 交BC 于点N .∵AB =AC ,AD 平分∠BAC ,∴AN ⊥BC ,BN =CN .∵∠EBC =∠E =60°,∴∠EMB =60°.∴△BEM 为等边三角形,∠NDM =30°.∴BE =BM =EM .∵BE =6 cm ,DE =2 cm ,∴DM =4 cm.∴NM =2 cm.∴BN =4 cm.∴BC =2BN =8(cm).例3答图针对训练4 如图,在平面直角坐标系中,O 为坐标原点,A (0,3),B (-1,0),平行于AB 的直线l 交y 轴于点C .若直线l 上存在点P ,使得△PAB 是等边三角形,则点C 的坐标为(C)训练4题图A. (1,0)或(-3,0)B. (0,1)或(0,-3)C. (0,-3)或(0,33)D. (-3,0)或(3,3)【解析】 如答图.∵A (0,3),B (-1,0),∴OA =3,OB =1.∴tan ∠ABO = 3. ∴∠ABO =60°.∴AB =2OB =2.在x 轴的正半轴上取一点P (1,0),连接PA ,则△APB 是等边三角形.易得直线AB 的解析式为y =3x +3,∴直线PC 的解析式为y =3x - 3.∴C (0,-3).作点P 关于直线AB 的对称点P ′(-2,3),过点P ′平行于AB 的直线的解析式为y=3x+33,∴可得C′(0,33).综上所述,满足条件的点C的坐标为(0,-3)或(0,33).训练4答图一、选择题1. (2018,宿迁)若实数m,n满足等式|m-2|+n-4=0,且m,n恰好是等腰三角形ABC的两边长,则△ABC的周长是(B)A. 12B. 10C. 8D. 6【解析】∵|m-2|+n-4=0,∴m-2=0,n-4=0.解得m=2,n=4.当m=2为腰长时,三边长为2,2,4,不符合三边关系.当n=4为腰长时,三边长为2,4,4,符合三边关系,所以周长为2+4+4=10.2. 如图,AB∥CD,AD=CD,∠1=70°30′,则∠2的度数是(D)第2题图A. 40°30′B. 39°30′C. 40°D. 39°【解析】∵AB∥CD,∴∠ACD=∠1=70°30′.∵AD=CD,∴∠CAD=∠ACD=70°30′.∴∠2=180°-∠ACD-∠CAD=180°-70°30′-70°30′=39°.3. (2018,石家庄模拟)如图,等腰三角形ABC的底边BC与底边上的高AD相等,高AD 在数轴上,其中点A,D分别表示数轴上的实数-2,2,则AC的长为(C)第3题图A. 2B. 4C. 2 5D. 45【解析】∵点A,D分别表示实数-2,2,∴AD=4.∵等腰三角形ABC的底边BC与底边上的高AD相等,∴BC=4.∴CD=2.在Rt△ACD中,AC=AD2+CD2=42+22=2 5.4. (2018,连云港东海县二模)已知等腰三角形的周长是10,底边长y是腰长x的函数,在下列图象中,能正确反映y 与x 之间函数关系的图象是(C)A B C D【解析】 由题意,得2x +y =10.∴y =-2x +10.由三角形的三边关系,得⎩⎪⎨⎪⎧2x >-2x +10,x +(-2x +10)>x .解得2.5<x <5.所以正确反映y 与x 之间函数关系的图象是选项C. 5. (2018,保定模拟)如图,在△ABC 中,AB =AC =6,由作图痕迹可得DE 的长为(B)第5题图A. 2B. 3C. 4D. 6【解析】 由作图,可知AD =BD =3,AE 平分∠BAC .∵AB =AC ,∴∠AEB =90°.∴DE =AD =BD =3.6. (2018,湖州)如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB =AC ,∠CAD =20°,则∠ACE 的度数是(B)第6题图A. 20°B. 35°C. 40°D. 70°【解析】 ∵AD 是△ABC 的中线,AB =AC ,∠CAD =20°,∴∠CAB =2∠CAD =40°,∠B=∠ACB =12(180°-∠CAB )=70°.∵CE 是△ABC 的角平分线,∴∠ACE =12∠ACB = 35°.7. (2018,福建A)如图,在等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC =45°,则∠ACE 等于(A)第7题图A. 15°B. 30°C. 45°D. 60°【解析】 ∵△ABC 是等边三角形,AD ⊥BC ,∴∠ACB =60°,BD =CD ,即AD 是BC 的垂直平分线.∵点E 在AD 上,∴BE =CE .∴∠EBC =∠ECB .∵∠EBC =45°,∴∠ECB =45°.∴∠ACE =∠ACB -∠ECB =15°.8. (2018,兰州模拟,导学号5892921)如图,在⊙O 内有折线OABC ,其中OA =10,AB =16,∠A =∠B =60°,则⊙O 的半径为(B)第8题图A. 13B. 14C. 16D. 18【解析】 如答图,延长AO 交BC 于点D ,作OE ⊥BC 于点E ,连接OB .∵∠A =∠ABC =60°,∴∠ADB =60°.∴△ADB 为等边三角形.∴BD =AD =AB =16.∴OD =6.∵∠ADB =60°,∴DE =12OD =3,OE =3 3.∴BE =13.∴OB 2=OE 2+BE 2=27+169=196.∴OB =14.第8题答图二、 填空题9. (2018,长春)如图,在△ABC 中,AB =AC .以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连接BD .若∠A =32°,则∠CDB 的度数为 37° .第9题图【解析】 ∵AB =AC ,∠A =32°,∴∠ABC =∠ACB =74°.∵BC =DC ,∴∠CDB =∠CBD =12∠ACB =37°.10. (2018,乐山)如图,四边形ABCD 是正方形,延长AB 到点E ,使AE =AC ,连接CE ,则∠BCE 的度数是22.5°.第10题图【解析】 ∵四边形ABCD 是正方形,∴∠CAB =∠ACB =45°.∵AC =AE ,∴∠ACE =∠AEC =12(180°-∠CAE )=67.5°.∴∠BCE =∠ACE -∠ACB =22.5°.11. (2018,吉林)我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k .若k =12,则该等腰三角形的顶角的度数为36°. 【解析】 如答图.∵在△ABC 中,AB =AC ,∴∠B =∠C .∵k =12,∴∠A ∶∠B =1∶2,即5∠A =180°.∴∠A =36°.第11题答图12. (2018,娄底)如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,BF ⊥AC 于点F ,DE =3 cm ,则BF = 6 cm.第12题图【解析】 在Rt △ADB 和Rt △ADC 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,∴Rt △ADB ≌Rt △ADC .∴S △ABC = 2S △ABD =2×12AB ·DE =AB ·DE =3AB .∵S △ABC =12AC ·BF ,AC =AB ,∴12BF =3.∴BF =6. 13. (2018,遵义)如图,在△ABC 中,点D 在BC 边上,BD =AD =AC ,E 为CD 的中点.若∠CAE =16°,则∠B 为 37° .第13题图【解析】 ∵AD =AC ,E 是CD 的中点,∴∠ADC =∠C ,AE ⊥CD .∴∠AEC =90°.∴∠ADC =∠C =90°-∠CAE =74°.∵AD =BD ,∴∠B =∠BAD .∴2∠B =∠ADC =74°.∴∠B =37°.三、 解答题14. (2018,唐山路南区三模)证明等腰三角形的判定方法:如果一个三角形有两个角相等,那么这两个角所对的边也相等.已知:如图,在△ABC 中,∠B =∠C ,求证:AB =AC .第14题图【思路分析】 根据等腰三角形的判定方法可知:已知缺少的条件为∠B =∠C ,要证的结论为AB =AC .过点A 作AD 平分∠BAC ,交BC 于点D ,由∠BAD =∠CAD ,∠B =∠C 及AD =AD 可证出△ABD ≌△ACD ,再利用全等三角形的性质可证出AB =AC .解:∠C AC证明:如答图,过点A 作AD 平分∠BAC ,交BC 于点D .在△ABD 和△ACD 中,⎩⎪⎨⎪⎧∠BAD =∠CAD ,∠B =∠C ,AD =AD ,∴△ABD ≌△ACD (AAS).∴AB =AC .第14题答图15. 如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在AB ,BC ,AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.第15题图【思路分析】 (1)由AB =AC ,得∠B =∠C .利用SAS 证明△DBE ≌△ECF ,然后即可证明△DEF 是等腰三角形.(2)根据∠A =40°可求出∠B =∠C =70°.根据△DBE ≌△ECF ,利用三角形内角和定理和平角定义即可求出∠DEF 的度数.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎪⎨⎪⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF .∴DE =EF .∴△DEF 是等腰三角形.(2)解:如答图.∵△DBE ≌△ECF ,∴∠1=∠3,∠2=∠4.∵∠A =40°,∠A +∠B +∠C =180°,AB =AC ,∴∠B =∠C =12×(180°-40°)=70°. ∴∠1+∠2=110°.∴∠3+∠2=110°.∴∠DEF =70°.第15题答图1. (2018,连云港模拟,导学号5892921)如图,在△ABC 中,∠A =60°,BC 为定长,以BC 为直径的⊙O 分别交AB ,AC 于点D ,E ,连接DE ,DE =EC .下列结论:①BC =2DE ;②BD +CE =2DE .其中一定正确的有(A)第1题图A. 2个B. 1个C. 0个D. 无法判断【解析】 如答图,连接CD ,OD ,则∠ADC =90°.∵∠A =60°,∴∠ACD =30°.∴∠DOE =2∠DCE =60°.∵OD =OE ,∴△DOE 是等边三角形.∴DE =OD ,即BC =2DE ,①正确.∵DE =EC ,∴∠COE =∠DOE =60°.∴∠BOD =60°.∴BD =DE =CE .∴BD +CE =2DE ,②正确.第1题答图2. (2018,玉林)如图,∠AOB =60°,OA =OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边三角形ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是(A)第2题图A. 平行B. 相交C. 垂直D. 平行、相交或垂直【解析】 ∵∠AOB =60°,OA =OB ,∴△OAB 是等边三角形.∴OA =AB ,∠OAB =∠ABO =60°.①当点C 在线段OB 上时,如答图①.∵△ACD 是等边三角形,∴AC =AD ,∠CAD =60°.∴∠OAC =∠BAD .在△AOC 和△ABD 中,⎩⎪⎨⎪⎧OA =BA ,∠OAC =∠BAD ,AC =AD ,∴△AOC ≌△ABD .∴∠ABD =∠AOC =60°.∴∠DBE =180°-∠ABO -∠ABD =60°=∠AOB .∴BD ∥OA . ②当点C 在OB 的延长线上时,如答图②.同①的方法得出OA ∥BD .第2题答图3. 如图,在△ABC 中,AB =AC ,点D 在边AC 上,且BD =DA =BC .(1)如图①,∠A = 36°,∠C = 72°;(2)如图②,若M 为线段AC 上的点,过点M 作直线MH ⊥BD 于点H ,分别交直线AB ,BC 于尚水出品 点N ,E .①求证:△BNE 是等腰三角形;②试写出线段AN ,CE ,CD 之间的数量关系,并加以证明.第3题图【思路分析】 (1)根据等腰三角形的性质得到∠A =∠DBA =12∠BDC =12∠C ,根据三角形的内角和定理即可得到结论.(2)①根据已知条件得到∠ABD =36°,∠CBD =36°,根据垂直的定义得到∠BHN =∠EHB =90°,根据全等三角形的性质即可得到结论.②由①知,BN =BE ,根据线段的和差和等量代换即可得到结论.(1)解:36° 72°(2)①证明:∵BD =DA ,∴∠ABD =∠A =36°.∵BD =BC ,∴∠BDC =∠C =72°.∴∠CBD =36°.∵BH ⊥EN ,∴∠BHN =∠EHB =90°.在△BNH 和△BEH 中,⎩⎪⎨⎪⎧∠NBH =∠EBH ,BH =BH ,∠BHN =∠BHE ,∴△BNH ≌△BEH .∴BN =BE .∴△BNE 是等腰三角形.②解:CD =AN +CE .证明:由①知,BN =BE .∵AB =AC ,∴AN =AB -BN =AC -BE .∵CE =BE -BC ,∴AN +CE =AC -BC .∵BD =DA =BC ,∴CD =AC -AD =AC -BC .∴CD =AN +CE .。
等腰三角形选择题1. (2020浙江省湖州市3分)如图1 ,在等腰三角形ABC中,AB=AC=4 , BC=7 .如图2,在底边BC上取一点D ,连结AD ,使得∠ DAC= ∠ ACD .如图3,将△ ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE ,得到四边形ABED .则BE的长是()A . 4B . ' ' C. 3. [D. 2 ^【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ ABD MBE ,得二亍事二-,只要求出BM、BD即可解决问题.L>∏l DIi【解答】解:∙∙∙ AB =AC ,∙∙∙∠ABC= ∠ C, τ∠ DAC= ∠ ACD ,∙∠DAC= ∠ ABC ,τ∠ C= ∠ C ,1τ∠ ABM= ∠ C= ∠ MED ,33τ∠ DAM= ∠ DAC= ∠ DBA , ∠ADM= ∠ADB ,.AD = DH'BD = DA,即•DM=162_33X7,MB=BD - DM=332- 162•••△ CAD CBA ,-CD=1∙∙∙ A 、B 、E 、D 四点共圆,∙∙∙∠ ADB= ∠ BEM , ∠ EBM= ∠ EAD= ∠ ABD ,AB - -BD BM - 'BE- U 2― 33X皿33T V2. (2020广西百色3分)如图,正 △ ABC 的边长为2,过点B 的直线I 丄AB ,且△ ABC 与AD+CD 的最小值是(A . 4B . 3 2 C. 2.3 D . 2+3【考点】轴对称-最短路线问题;等边三角形的性质.【分析】 连接CC ,连接A'C 交y 轴于点D ,连接AD ,此时AD+CD 的值最小,根据等边 三角形的性质即可得出四边形 CBA C'为菱形,根据菱形的性质即可求出 A'C 勺长度,从而 得出结论. 【解答】 解:连接CC ,连接IAC I 于点D ,连接AD ,此时AD+CD 的值最小,如图所 示. •••△ ABC 与厶A BC 为正三角形,且 △ ABC 与厶A BC 关于直线I 对称,•••四边形CBA C 为边长为2的菱形,且∠ BA C l=60° .∙. A C=2× 3 A ∣ B=2 3 .BE=PMED =AB故选B .D 为线段BC'上一动点,则~2 3故选C.3. (2020广西桂林3分)已知直线y= - 3 x+3与坐标轴分别交于点A , B ,点P在抛物线y= - (X - 3)2+4上,能使△ ABP为等腰三角形的点P的个数有()A . 3个B . 4个C. 5个D . 6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定. 【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC, 由直线y= - . -;x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ ABC等边三角形,再令抛物线解析式中y=0求出抛物线与X轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC ,如图所示.令一次函数y= - k*x+3中x=0 ,则y=3,•••点A的坐标为(0, 3);令一次函数y= - ;x+3中y=0 ,则-显2x+3 ,解得:X=二•点B的坐标为(f, 0).•AB=2 .';.•••抛物线的对称轴为X= _•点C的坐标为(2 •-;, 3),∙°∙ AC=2 *-;-f=AB=BC , • △ ABC为等边三角形.2+4 中 y=0 ,则-H ( X - 「;)2+4=0 ,解得:X=-小,或x=3样•点E 的坐标为(-√空,0),点F 的坐标为(, 0). △ ABP 为等腰三角形分三种情况:① 当AB=BP 时,以B 点为圆心,AB 长度为半径做圆,与抛物线交于 ②当AB=AP 时,以A 点为圆心,AB 长度为半径做圆,与抛物线交于C 、M 两点,;③ 当AP=BP 时,作线段AB 的垂直平分线,交抛物线交于 C 、M 两点; •能使△ ABP 为等腰三角形的点 P 的个数有3个. 故选A .4. (2020贵州安顺3分)已知实数X , y 满足^一⑴+旳-“,则以X ,的值为两边长 的等腰三角形的周长是()A . 20 或 16B . 20C . 16D .以上答案均不对【分析】根据非负数的意义列出关于 X 、y 的方程并求出X 、y 的值,再根据X 是腰长和底边 长两种情况讨论求解. 【解答】解:根据题意得rχ- 4=0Iy-8=0(1)若4是腰长,则三角形的三边长为: 4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为: 4、& 8,能组成三角形,周长为 4+8+8=20 . 故选B .【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系; 解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关 系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.令y=-丄(X - C 、M 、N 三点;5. (2020湖北武汉3分)平面直角坐标系中,已知A(2, 2)、B(4, 0).若在坐标轴上取点。
2019-2020学年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)等腰三角形◆考点聚焦1.等腰三角形的判定与性质.2.等边三角形的判定与性质.3.运用等腰三角形、等边三角形的判定与性质解决有关计算与证明问题.◆备考后法1.运用三角形不等关系,•结合等腰三角形的判定与性质解决等腰三角形中高、边、角的计算问题,并要注意分类讨论.2.要正确辨析等腰三角形的判定与性质.3.能熟练运用等腰三角形、方程(组)、函数等知识综合解决实际问题.◆识记巩固1.等腰三角形的性质定理及推论:____________________________.2.等腰三角形的判定定理及推论:____________________________.识记巩固参考答案:1.等腰三角形的两个底角相等(等边对等角);•等腰三角形的顶角平分线平分底边并且垂直于底边(三线合一);等边三角形的各有都相等,且每个角都等于60°.2.如果一个三角形的两角相等,那么这两个角所对的边也相等(等角对等边).•三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.◆典例解析例1 (2011浙江衢州,23,10分),.ABC∠=∠==C AC BC∆是一张等腰直角三角形纸板,Rt2要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = .求第10次剪取后,余下的所有小三角形的面积和.【答案】(1)解法1:如图甲,由题意得,1,1CFDE AE DE EC EC S ====正方形即.如图乙,设MN x =,则由题意,得,AM MQ PN NB MN x =====23389PNMQx x S ∴==∴==正方形解得 又819> ∴甲种剪法所得的正方形的面积更大说明:图甲可另解为:由题意得点D 、E 、F 分别为AB AC BC 、、的中点,112ABC CFDE S S ==正方形解法2:如图甲,由题意得AE DE EC ==,即EC=1如图乙,设,MN x AM MQ QP PN NB MN x =======则由题意得33221x x EC MN∴==>>解得又即 ∴甲种剪法所得的正方形的面积更大F E BQ(2)212S =(3)10912S = (3)解法1:探索规律可知:112n n S -=‘ 剩余三角形的面积和为:()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭ 解法2:由题意可知, 第一次剪取后剩余三角形面积和为112=1=S S -第二次剪取后剩余三角形面积和为12211122S S S -=-== 第三次剪取后剩余三角形面积和为233111244S S S -=-==第十次剪取后剩余三角形面积和为9101091=2S S S -= 例2 如图,△ABC 中,E ,F 分别是AB ,AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,•DF•⊥AC ;③AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②③;①③②;②③①.(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.解析 (1)①②⇒③正确;①③⇒②错误;②③⇒①正确.(2)先证①②⇒③,如图1.∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE=DF ,∠AED=∠AFD=90°.在Rt △AED 和Rt △AFD 中,,,DE DF AD AD =⎧⎨=⎩∴△AED ≌△AFD (HL ).∴AE=AF .∴△AEF 是等腰三角形,∴AD ⊥EF .再证②③⇒①.图1 图2 图3方法一:如图2,DE ⊥AB ,EF ⊥AD ,DF ⊥AC .易证△DEH ∽△DAE ,△DFH ∽△DAF .∴,DE DH DH DF AD DE DF AD==, ∴DE 2=AD·DH,DF 2=DH·AD. ∴DE 2=DF 2,∴DE=DF,∴AD 平分∠BAC.方法二:如图3,取AD 的中点O ,连结EO ,FO .∵DE ⊥AB ,DF ⊥AC ,∴OE ,OF 分别是Rt △ADE ,Rt △ADF 斜边上的中线.∴OE=12AD ,OF=12AD . 即O 点到A ,E ,D ,F 的距离相等. ∴A ,E ,D ,F 四点在以O 为圆心,12AD 为半径的圆上,AD 是直径,EF 是⊙O 的弦,而EF•⊥AD ,∴AD 平分EDF ,即ED DF =.∴∠DAE=∠DAF ,即AD 平分∠BAC .点评 本题是义务教育课程标准实验教科书数学(人教版)八年级上第111•页拓广探索题的变式与拓展,该例在教材中多次以不同形式出现,八年级(上)(人教版)第150页第13题,第158页第11题.因此,•在九年级的学习过程中一定要重视教材中的典型例题,习题,想一想这些题还可以进行怎样的变式,•与前后的知识与方法有什么联系,还可以得到什么结论等.这样可以不断提高自己的综合解题能力.2011年真题一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )32 (B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个MEC A【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形;③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ;一定正确的结论有A .1个B .2个C .3个D .4个 【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,长为半径画弧,分别交、ABC E FG(第7题) ABC DEAB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm【答案】D7. (2011四川凉山州,8,4分)如图,在ABC △中,13AB AC ==,10BC =,点D 为BC 的中点,DE DE AB ⊥,垂足为点E ,则DE 等于( )A .1013B .1513C .6013D .7513【答案】C8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
一、选择题
1. (2015年湖南衡阳,7,3分)已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为
A.11
B.16
C.17
D.16或17
【答案】D
【解析】解:分两种情况:当三边长为5,5,6时,周长为16;当三边长为5,6,6时,周长为17.故选D.
2.(2014江苏省苏州市,7,3分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数
为()
A.35°B.45°C.55°D.60°
2019-2020年中考数学真题汇编详解19:等腰三角形
【答案】C
【解析】因为AB=AC,D为BC中点,所以∠BAC=2∠BAD=70°,所以∠C的度数为55°.
二、填空题
1. (2015浙江省绍兴市,13,5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。
小敏设计了一种
衣架,在使用时能轻易收拢,然后套进衣服后松开即可。
如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是▲ cm。
【答案】18
【解析】本题考查了等边三角形的判定方法和性质,解题的关键是正确把握等边三角形的判定方法,将生活实际问题进行适当的数学建模.由条件可知△AOB中,OA=OB=18cm,∠AOB=60°,则△AOB是等边三角形,所以AB=18cm,即A,B两点之间的距离是18cm。
2.(2015义乌13,4分)由于木质的衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm.若衣架收拢时,∠AOB==60°,如图2,则此时AB= cm.
【答案】18
3.(2015湖南省永州市,17,3分)在等腰△ABC中,AB=AC,则有BC边上的中线、高线和∠BAC的平分线
重合于AD(如图一).若将等腰△ABC的顶点A向右平行移动后,得到△A'BC(如图二).那么,此时BC 边上的中线、BC边上的高线和∠BA′C的平分线应依次分别是________,________,________ (填A′D、A′F、A′E)
图二图一
C
C B A B A'
(第17题图)
【答案】A ′D 、A ′F 、A ′E
【解析】解:本题通过画图,即可得出结论.
三、解答题
1. (2015山东省青岛市,23,10分)
问题提出:用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
问题探究:不妨假设能搭成m 种不同的等腰三角形.为了探究m 与n 之间的关系,我们可以先从特殊入手,通过
试验、观察、类比,最后归纳、猜测得出结论.
探究一:(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
此时,显然能搭成一种等腰三角形.
所以,当n=3时,m=1.
(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
只能分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成等腰三角形.
所以,当n=4时,m=0.
(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
若分成1根木棒、1根木棒和3根木棒,则不能搭成等腰三角形;
若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.
所以,当n=5时,m=1.
(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
若分成1根木棒、1根木棒和4根木棒,则不能搭成等腰三角形;
若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.
所以,当n=6时,m=1.
综上所述,可得:
表①
探究二:
(3)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
(仿照上述探究方法,写出解答过程,并把结果填在表②中)
(4)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?
(只需把结果填在表②中)
你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,….
问题解决:用n 根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?
(设n分别等于4k-1、4k、4k+1、4k+2,其中k是正整数,把结果填在表③中)
表③:
问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)
其中面积最大的等腰三角形每腰用了根木棒(只填结果).
【答案】解:(3)若分成1根木棒、1根木棒和5根木棒,则不能搭成等腰三角形;
若分成2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形.
若分成3根木棒、3根木棒和1根木棒,则能搭成一种等腰三角形.
所以,当n=6时,m=2.
问题应用:
∵2016÷4=504,
∴能搭成504种不同的等腰三角形.
面积最大的等腰三角形每腰用了672根木棒.。