最新复合函数的单调性完全解析与练习
- 格式:doc
- 大小:66.50 KB
- 文档页数:6
复 合 函 数 的 单 调 性 例 讲山西忻州五寨一中 摄爱忠高考主要考查:①求复合函数的单调区间;②讨论含参复合函数的单调性或求参数范围问题.①“中间变量”是形成问题转化的桥梁. ②函数思想是解决问题的关键.复合函数定义:1. 设)(u f y =定义域为A,)(x g u =的值域为B,若A B ⊆,则y 关于x 的函数)]([x g f y =叫做函数f 与g 的复合函数,u 叫中间变量.外函数:)(u f y =; 内函数:)(x g u =复合函数的单调性:同增异减.2.若)(x g u = )(u f y =则)]([x g f y =增函数 增函数 增函数 减函数 减函数 增函数 增函数 减函数 减函数 减函数增函数减函数3.求解复合函数的单调性的步骤如下: (1)求复合函数定义域;(2)将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数); (3)判断每个常见函数的单调性;(4)将中间变量的取值范围转化为自变量的取值范围;(5)求出复合函数的单调性。
题型1:内外函数都只有一种单调性的复合型.例 题1:◇已知函数y=log a (2-ax)在[0,1]上是x 的减函数,则a 的取值范围是( )(A).(0,1) (B).(1,2) (C).(0,2) (D).[2,+∞) 解:设y= log a u ,u=2-ax ,∵a 是底数,所以a>0,∵ 函数y=log a u 在u ∈[0,1]上是减函数,而u=2-ax 在区间x ∈[0,1]上是减函数, ∴ y= log a u 是u ∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立, 令g(x)= 2-ax ,由{g(0)=2-a ·0>0g(1)=2-a ·1>0,解得a<2,∴1<a<2,故选(B).变式训练:◇ 已知函数)121ln(-=xy ,求其单调区间. 【分析】:由0121>-x ,得 0<x ,即)0,(-∞∈x . 而函数u y ln =在),0(∞+∈u 上是增函数,函数121-=x u 在)0,(-∞∈x 上是减函数, 故函数)121ln(-=xy 在)0,(-∞∈x 上是减函数. 题型2:外函数有一种单调性内函数有两种单调性的复合型.例 题2:◇求函数y=log 0.5(x 2+4x+3)的单调区间.解:令y= log 0.5u ,u= x 2+4x+3,由x 2+4x+3>0知函数的定义域为),1()3,(∞+-⋃--∞∈x ,因y= log 0.5u 在u ∈(0,+∞)上是减函数,而u= x 2+4x+4在x ∈(-∞,-3)上是减函数, 在(-1,+ ∞)上是增函数,根据复合规律知,函数y=log 0.5(x 2+4x+4) 在x ∈(-∞,-3)上是增函数;在x ∈(-1,+ ∞)上是减函数.变式训练:◇讨论函数34252+-⎪⎭⎫ ⎝⎛=x x y 的单调性。
关于复合函数的单调性问题函数单调性是函数的核心内容之一,也是高考中重点考查的知识,又多以考查复合函数的单调性居多. 复合函数的单调性的复合规律为:若函数y=f(u)与u=g(x)的增减性相同(相反),则y=f[g(x)]是增(减)函数,可概括为“同增异减” .为了帮助学生对复合函数的单调性进一步有一个全面的认识,本文结合几道例题,对复合函数的单调区间的求法及单调性的应用加以归纳总结,供学生在学习中参考.一、外函数与内函数只有一种单调性的复合型:例1已知函数y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是( )(A).(0,1) (B).(1,2)(C).(0,2) (D). 2,+∞)解:设y= logau,u=2-ax,∵a是底数,所以a>0,∵函数y=loga u在u∈[0,1]上是减函数,而u=2-ax在区间x∈[0,1]上是减函数,∴y= logau是u∈(0, +∞)上的增函数,故a>1,还要使2-ax>0在区间上总成立,令g(x)= 2-ax,由{g(0)=2-a·0>0g(1)=2-a·1>0 ,解得a0知函数的定义域为x <1或x>3因y=㏑u在u∈(0,+∞)上是增函数,而u= x2-4x+3在x∈(-∞,1)上是减函数,在(3,+ ∞)上是增函数,根据复合规律知,函数y=㏑(x2-4x+3) 在x∈(-∞,1)上是减函数,在(3,+ ∞)上是增函数。
例3讨论函数y=0.8x2-4x+3的单调性。
解:函数定义域为R。
令u=x2-4x+3,y=0.8u。
指数函数y=0.8u在(-∞,+∞)上是减函数,u=x2-4x+3在(-∞,2]上是减函数,在[2,+∞)上是增函数,∴函数y=0.8x2-4x+3在(-∞,2]上是增函数,在[2,+∞)上是减函数。
三、外函数有两种单调性,而内涵数只有一种单调性的复合型:例4 在下列各区间中,函数y=sin(x+π4)的单调递增区间是( )(A).[π2,π](B).[0,π4] (C).[-π,0](D). [π4,π2]解:令y=sinu,u=x+π4,∵y=sinu在u ∈[2kπ- π2,2kπ+ π2](k∈Z)上单调递增,在u ∈[2kπ- π2,2kπ+π2](k∈Z)上单调递增,而u=x+π4在R上是增函数,根据函数单调性的复合规律,由2kπ- π2≤x+π4≤2kπ+ π2得2kπ- 3π4≤x≤2kπ+π4,当k=0时,- 3π4≤x≤π4,故选(B) .例5讨论函数y=(log2x)2+log2x的单调性。
复合函数单调性的求法与含参数问题若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简而言之,所谓复合函数就是由一些初等函数复合而成的函数。
例1、(1)设 f(x)=2x -3 g(x)=x 2+2 求f[g(x)](或g[f(x)])。
(2)已知:f(x)=x 2-x+3 求:f(x1) f(x+1) (二)求复合函数相关定义域一、已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
例1 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。
解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即⎩⎨⎧≤≤->-<⇔⎪⎩⎪⎨⎧≤+>+⇔≤+<13023202320222x x x x x x x x x ,或 即23-<≤-x 或10≤<x故)2(2x x f +的定义域为[)(]1,02,3 --【评注】所谓定义域是指函数中自变量x 的取值范围,因此我们可以直接将复合函数中x x 22+看成一个整体x ,即由30≤<x 可得3202≤+<x x ,解出x 的范围即可。
练习:设()x x x f -+=22lg ,则⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 (B ) A. ()()4,00,4 - B. ()()4,11,4 --C. ()()2,11,2 --D. ()()4,22,4 --二、已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
有关复合函数单调性的定义和解题方法一、复合函数的定义设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、函数的单调区间1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k(k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.三、复合函数单调性相关定理引理1 :已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)], 故函数y=f [g(x)]在区间(a,b)上是增函数.引理2:已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f [g(x)]在区间(a,b)上是增函数.证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x 1)>g(x 2),记u1=g(x 1),u2=g(x 2)即u 1>u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数。
复合函数单调性一.选择题1.函数f(x)=的图象大致为()A.B.C.D.2.函数y=()的单调递增区间是()A.[﹣1,]B.(﹣∞,)C.[,+∞)D.[,2]3.函数f(x)=的单调减区间为()A.()B.()C.D.(1,+∞)4.已知函数在[1,+∞)上单调递减,则实数a的取值范围是()A.(﹣∞,2)B.[2,+∞)C.D.5.设函数,则使得f(x)≤f(2x﹣1)成立的x的取值范围是()A.(﹣∞,1]B.[1,+∞)C.D.6.已知函数f(x)=log a(﹣x2﹣2x+3),若f(0)<0,则此函数的单调递增区间是()A.(﹣∞,﹣1]B.[﹣1,+∞)C.[﹣1,1)D.(﹣3,﹣1]7.函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,则k的取值范围是()A.(1,+∞)B.(0,1)C.[1,2)D.(0,2)8.函数在[0,1]上是减函数,则实数a的取值范围是()A.0<a<1B.1<a<2C.1<a D.a<29.若函数有最大值,则a的取值范围为()A.B.C.D.(1,2)10.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数11.函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)12.函数y=|log2|x﹣2||的单调递增区间()A.(2,3)B.(3,+∞)C.(1,2)和(3,+∞)D.(﹣∞,﹣1)和(2,3)二.填空题13.已知f(x)=(a2﹣2a﹣2)x是增函数,则实数a的取值范围是.14.函数y=()|x|﹣1的单调增区间为.15.函数f(x)=lgx2的单调递减区间是.16.函数f(x)=(x2﹣6x+5)的单调递减区间是.17.已知函数y=log a(ax2﹣x)在区间[2,4]上是增函数,则实数a的取值范围是.18.函数y=(m2﹣m﹣1)是幂函数且在(0,+∞)上单调递减,则实数m的值为.19.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x.若对任意的x∈[t,t+1],不等式f(x+t)≥f3(x)恒成立,则实数t的取值范围是.20.已知函数f(x)与函数的图象关于直线y=x对称,则函数f(x2+2x)的单调递增区间是.复合函数单调性一.选择题(共12小题)1.函数f(x)=的图象大致为()A.B.C.D.【分析】利用函数的定义域与函数的单调性排除A、B,C,推出结果即可.【解答】解:令g(x)=lnx﹣1,则g′(x)=>0,由g'(x)>0,得x>0,即函数g(x)在(0,+∞)上单调递增,所以当x=e时,函数g(x)=0,函数f(x)=对任意的x∈(0,e),(e,+∞),有f(x)是减函数,故排除A、B、C,故选:D.2.函数y=()的单调递增区间是()A.[﹣1,]B.(﹣∞,)C.[,+∞)D.[,2]【分析】令t=﹣x2+x+2,则y=()t,本题即求函数t的减区间,再利用二次函数的性质可得结论.【解答】解:y=(),令t=﹣x2+x+2=﹣(x﹣)2+,则y=()t,本题即求函数t的减区间.再利用二次函数的性质可得t的减区间为[,+∞),故选:C.3.函数f(x)=的单调减区间为()A.()B.()C.D.(1,+∞)【分析】令t=x2﹣x>0,求得函数的定义域,本题即求t在定义域内的增区间.再利用二次函数的性质可得t在定义域内的增区间.【解答】解:令t=x2﹣x>0,求得x<0,或x>1,故函数的定义域为{x|x<0,或x>1},本题即求t在{x|x<0,或x>1}内的增区间.利用二次函数的性质可得t在{x|x<0,或x>1}内的增区间为(1,+∞),即函数f(x)=的单调减区间为(1,+∞),故选:D.4.已知函数在[1,+∞)上单调递减,则实数a的取值范围是()A.(﹣∞,2)B.[2,+∞)C.D.【分析】可看出该函数是由t=x2﹣ax+3a和y=log0.5t复合而成的复合函数,这样根据二次函数、对数函数和复合函数的单调性及对数函数的定义域便可建立关于a的不等式组,解出a的取值范围即可.【解答】解:设y=f(x),令x2﹣ax+3a=t,则y=log0.5t单调递减;∵f(x)在[1,+∞)上单调递减;∴t=x2﹣ax+3a在[1,+∞)上单调递增,且满足t>0;∴;解得,﹣<a≤2;∴实数a的取值范围是(﹣,2].故选:D.5.设函数,则使得f(x)≤f(2x﹣1)成立的x的取值范围是()A.(﹣∞,1]B.[1,+∞)C.D.【分析】根据题意,分析可得函数f(x)为偶函数且在(0,+∞)上为减函数,进而可以将f(x)≤f(2x﹣1)转化为|x|≥|2x﹣1|,变形可得x2≥4x2﹣4x+1,解可得x的取值范围,即可得答案.【解答】解:根据题意,函数,分析可得f(﹣x)=[1+(﹣x)2]+=(1+x2)+=f(x),则函数f(x)为偶函数,分析易得:f(x)在(0,+∞)上为减函数,若f(x)≤f(2x﹣1),则有f(|x|)≤f(|2x﹣1|),即有|x|≥|2x﹣1|,变形可得x2≥4x2﹣4x+1,解可得:≤x≤1,即x的取值范围是[,1];故选:C.6.已知函数f(x)=log a(﹣x2﹣2x+3),若f(0)<0,则此函数的单调递增区间是()A.(﹣∞,﹣1]B.[﹣1,+∞)C.[﹣1,1)D.(﹣3,﹣1]【分析】令t=﹣x2+2x﹣3>0,求得函数的定义域,根据f(0)=log a3<0,可得0<a<1,f(x)=g(t)=log a t,本题即求函数t在定义域内的减区间,再利用二次函数的性质得出结论.【解答】解:令t=﹣x2﹣2x+3>0,可得﹣3<x<1,故函数的定义域为{x|﹣3<x<1}.根据f(0)=log a3<0,可得0<a<1,f(x)=g(t)=log a t,本题即求函数t在定义域内的减区间.再利用二次函数的性质求得函数t在定义域内的减区间为[﹣1,1),故选:C.7.函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,则k的取值范围是()A.(1,+∞)B.(0,1)C.[1,2)D.(0,2)【分析】由题意可得1>k﹣1≥0,且k+1>1,由此求得k的取值范围.【解答】解:∵函数y=|log2x|在区间(k﹣1,k+1)内有意义且不单调,可得k﹣1≥0,且1∈(k ﹣1,k+1),∴1>k﹣1≥0,且k+1>1.解得1≤k<2,故选:C.8.函数在[0,1]上是减函数,则实数a的取值范围是()A.0<a<1B.1<a<2C.1<a D.a<2【分析】利用对数函数的底数,求出a的范围,利用复合函数的单调性求解即可.【解答】解:函数在[0,1]上是减函数,可得a>0并且a≠1,y=1﹣在[0,1]上是减函数,所以a>1,并且1,解得a∈(1,2).故选:B.9.若函数有最大值,则a的取值范围为()A.B.C.D.(1,2)【分析】由题意可得内层函数t=要有最小正值,且为减函数,可得外层函数y=log a t 为减函数,可知0<a<1.再由二次函数t=的判别式小于0求得x的范围,取交集得答案.【解答】解:令t=,要使函数有最大值,则内层函数t=要有最小正值,且为减函数,则外层函数y=log a t为减函数,可知0<a<1.要使内层函数t=要有最小正值,则,解得.取交集可得:a的取值范围为().故选:B.10.设函数f(x)在R上为增函数,则下列结论一定正确的是()A.y=在R上为减函数B.y=|f(x)|在R上为增函数C.y=2﹣f(x)在R上为减函数D.y=﹣[f(x)]3在R上为增函数【分析】根据题意,依次分析选项:对于A、B、D,举出反例分析可得其错误,对于C,结合复合函数的单调性判定方法,分析可得C正确,即可得答案【解答】解:根据题意,依次分析选项:对于A,对于函数f(x)=x,y==,在R上不是减函数,A错误;对于B,对于函数f(x)=x,y=|f(x)|=|x|,在R上不是减函数,B错误;对于C,令t=f(x),则y=2﹣f(x)=()f(x)=()t,t=f(x)在R上为增函数,y=()t在R上为减函数,则y=2﹣f(x)在R上为减函数,C正确;对于D,对于函数f(x)=x,y=﹣[f(x)]3=﹣x3,在R上是减函数,D错误;故选:C.11.函数f(x)=log0.5(2﹣x)+log0.5(2+x)的单调递增区间是()A.(2,+∞)B.(﹣∞,﹣2)C.(0,2)D.(﹣2,0)【分析】先求出函数的定义域,结合复合函数单调性的性质进行求解即可.【解答】解:要使函数有意义,则得,即﹣2<x<2,即函数的定义域为(﹣2,2),f(x)=log0.5(2﹣x)+log0.5(2+x)=log0.5(2﹣x)(2+x)=log0.5(4﹣x2),设t=4﹣x2,则y=log0.5t是减函数,要求函数f(x)的单调递增区间,等价为求函数t=4﹣x2,的单调递减区间,∵函数t=4﹣x2,的单调递减区间为[0,2),∴f(x)的单调递增区间为(0,2),故选:C.12.函数y=|log2|x﹣2||的单调递增区间()A.(2,3)B.(3,+∞)C.(1,2)和(3,+∞)D.(﹣∞,﹣1)和(2,3)【分析】先求得函数的定义域,然后分情况去掉绝对值符号,根据根据复合函数单调性的判断方法及基本函数的单调性可得函数的单调区间.【解答】解:由x﹣2≠0得函数的定义域为(﹣∞,2)∪(2,+∞),当2<x≤3时,y=﹣log2(x﹣2),单调递减;当x>3时,y=log2(x﹣2),单调递增;当1≤x<2时,y=﹣log2(2﹣x),单调递增;当x<1时,y=log2(2﹣x),单调递减;综上,函数y=|log2|x﹣2||的单调递增区间为:(3,+∞)和(1,2),故选:C.二.填空题(共8小题)13.已知f(x)=(a2﹣2a﹣2)x是增函数,则实数a的取值范围是(﹣∞,﹣1)∪(3,+∞).【分析】利用指数函数的性质,列出不等式求解即可.【解答】解:f(x)=(a2﹣2a﹣2)x是增函数,可得a2﹣2a﹣2>1,解得a∈(﹣∞,﹣1)∪(3,+∞).故答案为:(﹣∞,﹣1)∪(3,+∞).14.函数y=()|x|﹣1的单调增区间为(﹣∞,0)(亦可写成(﹣∞,0]).【分析】利用换元法,结合复合函数单调性之间的关系进行求解即可.【解答】解:设t=|x|﹣1,则y═()t为减函数,要求函数y=()|x|﹣1的单调增区间,根据复合函数单调性之间的关系,等价求函数t=|x|﹣1的减区间,∵当x≤0时,函数t=|x|﹣1是减函数,∴函数t=|x|﹣1的单调递减区间为(﹣∞,0),则函数y=()|x|﹣1的单调增区间为(﹣∞,0),故答案为:(﹣∞,0).15.函数f(x)=lgx2的单调递减区间是(﹣∞,0).【分析】先将f(x)化简,注意到x≠0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断.【解答】解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).16.函数f(x)=(x2﹣6x+5)的单调递减区间是(5,+∞).【分析】先求出fx)的定义域,在利用复合函数的单调性得出答案.【解答】解:有函数f(x)有意义得x2﹣6x+5>0,解得x<1或x>5.令g(x)=x2﹣6x+5,则g(x)在(﹣∞,1)上单调递减,在(5,+∞)上单调递增,∴f(x)=log(x2﹣6x+5)在(﹣∞,1)上单调递增,在(5,+∞)上单调递减.故答案为(5,+∞)17.已知函数y=log a(ax2﹣x)在区间[2,4]上是增函数,则实数a的取值范围是(1,+∞).【分析】先根据复合函数的单调性确定函数g(x)=ax2﹣x的单调性,进而分a>1和0<a<1两种情况讨论.【解答】解:令g(x)=ax2﹣x(a>0,且a≠1),当a>1时,g(x)在[2,4]上单调递增,∴∴a>1当0<a<1时,g(x)在[2,4]上单调递减,∴∴a∈∅综上所述:a>1故答案为:(1,+∞)18.函数y=(m2﹣m﹣1)是幂函数且在(0,+∞)上单调递减,则实数m的值为2.【分析】根据幂函数的系数一定为1可先确定参数m的值,再根据单调性进行排除,可得答案.【解答】解:∵函数y=(m2﹣m﹣1)是幂函数∴可得m2﹣m﹣1=1 解得m=﹣1或2当m=﹣1时,函数为y=x5在区间(0,+∞)上单调递增,不满足题意当m=2时,函数为y=x﹣13在(0,+∞)上单调递减满足条件故答案为:2.19.设f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x.若对任意的x∈[t,t+1],不等式f(x+t)≥f3(x)恒成立,则实数t的取值范围是(﹣∞,﹣2] .【分析】由当x>0时,f(x)=2x.函数是奇函数,可得当x=0时,f(x)=0,当x<0时,f(x)=﹣2﹣x,从而f(x)在R上是单调递增函数,且满足f3(x)=f(3x),再根据不等式f(x+t)≥f3(x)=f(3x)在[t,t+1]恒成立,可得x+t≥3x在[t,t+1]恒成立,即可得出答案.【解答】解:当x>0时,f(x)=2x.∵函数是奇函数∴当x<0时,f(x)=﹣2﹣x∴f(x)=,∴f(x)在R上是单调递增函数,且满足f3(x)=f(3x),∵不不等式f(x+t)≥f3(x)=f(3x)在[t,t+1]恒成立,∴x+t≥3x在[t,t+1]恒成立,即:x≤t在[t,t+1]恒成立,∴t+1≤t解得:t≤﹣2,故答案为:(﹣∞,﹣2].20.已知函数f(x)与函数的图象关于直线y=x对称,则函数f(x2+2x)的单调递增区间是(﹣∞,﹣1] .【分析】先求出函数f(x)的解析式,确定内外函数的单调性,即可求得函数f(x2+2x)的单调递增区间.【解答】解:∵函数f(x)与函数的图象关于直线y=x对称,∴f(x)=∴函数f(x)在R上单调递减∵t=x2+2x=(x+1)2﹣1,∴t=x2+2x在(﹣∞,﹣1]上单调递减∴函数f(x2+2x)的单调递增区间是(﹣∞,﹣1]故答案为:(﹣∞,﹣1].。
复合函数的单调性(人教A版)一、单选题(共8道,每道12分)1.函数的单调递减区间是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性2.函数的单调递减区间为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:复合函数的单调性3.函数的单调递增区间为( )A.(-∞,-2]B.[4,+∞)C.(-∞,-3]D.[-3,+∞)答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性4.函数的单调递增区间为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性5.函数的单调递减区间为( ).A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:复合函数的单调性6.若函数在R上是减函数,则函数的单调递增区间为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性7.若函数的单调递减区间为,则函数( )A.在区间内是减函数B.在区间内是增函数C.在区间内是减函数D.在区间内是减函数答案:C解题思路:试题难度:三颗星知识点:复合函数的单调性8.若函数的单调递减区间为,则函数( )A.在区间(0,1)内是减函数B.在区间内是减函数C.在区间(3,4)内是增函数D.在区间(4,5)内是增函数答案:B解题思路:试题难度:三颗星知识点:复合函数的单调性。
课题:函数的单调性(二)复合函数单调性北京二十二中 刘青教学目标1.掌握有关复合函数单调区间的四个引理。
2.会求复合函数的单调区间。
3。
必须明确复合函数单调区间是定义域的子集.教学重点与难点1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间。
2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.教学过程设计师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.生:设y=f (u)的定义域为A ,u=g (x)的值域为B ,若A ÍB,则y 关于x 函数的y=f[g(x )]叫做函数f 与g 的复合函数,u 叫中间量。
师:很好。
下面我们再复习一下所学过的函数的单调区间。
(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)(教师板书,可适当略写。
)例 求下列函数的单调区间.1。
一次函数y=kx+b (k ≠0)。
解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间。
2。
反比例函数y=x k (k ≠0)。
解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3。
二次函数y=ax 2+bx+c (a ≠0)。
解 当a >1时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <1时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax (a >0,a ≠1)。
解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x (a >0,a ≠1)。
解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间。
课题:函数的单调性(二)复合函数单调性北京二十二中 刘青教学目标1.掌握有关复合函数单调区间的四个引理.2.会求复合函数的单调区间.3.必须明确复合函数单调区间是定义域的子集.教学重点与难点1.教学重点是教会学生应用本节的引理求出所给的复合函数的单调区间.2.教学难点是务必使学生明确复合函数的单调区间是定义域的子集.教学过程设计师:这节课我们将讲复合函数的单调区间,下面我们先复习一下复合函数的定义.生:设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.师:很好.下面我们再复习一下所学过的函数的单调区间.(教师把所学过的函数均写在黑板上,中间留出写答案的地方,当学生回答得正确时,由教师将正确答案写在对应题的下边.)(教师板书,可适当略写.)例 求下列函数的单调区间.1.一次函数y=kx+b(k ≠0).解 当k >0时,(-∞,+∞)是这个函数的单调增区间;当k <0时,(-∞,+∞)是这个函数的单调减区间.2.反比例函数y=x k(k ≠0).解 当k >0时,(-∞,0)和(0,+∞)都是这个函数的单调减区间,当k <0时,(-∞,0)和(0,+∞)都是这个函数的单调增区间.3.二次函数y=ax 2+bx+c(a ≠0).解 当a >0时(-∞,-a b 2)是这个函数的单调减区间,(-a b2,+∞)是它的单调增区间;当a <0时(-∞,-a b 2)是这个函数的单调增区间,(-a b2,+∞)是它的单调减区间;4.指数函数y=ax(a >0,a ≠1).解 当a >1时,(-∞,+∞)是这个函数的单调增区间,当0<a <1时,(-∞,+∞)是这个函数的单调减区间.5.对数函数y=log a x(a >0,a ≠1).解 当a >1时,(0,+∞)是这个函数的单调增区间,当0<a <1时,(0,+∞)是它的单调减区间.师:我们还学过幂函数y=x n (n 为有理数),由于n 的不同取值情况,可使其定义域分几种情况,比较复杂,我们不妨遇到具体情况时,再具体分析.师:我们看看这个函数y=2x 2+2x+1,它显然是复合函数,它的单调性如何?生:它在(-∞,+∞)上是增函数.师:我猜你是这样想的,底等于2的指数函数为增函数,而此函数的定义域为(-∞,+∞),所以你就得到了以上的答案.这种做法显然忽略了二次函数u=x 2+2x+1的存在,没有考虑这个二次函数的单调性.咱们不难猜想复合函数的单调性应由两个函数共同决定,但一时猜不准结论.下面我们引出并证明一些有关的预备定理.(板书)引理1 已知函数y=f [g(x)].若u=g(x)在区间(a,b)上是增函数,其值域为(c ,d),又函数y=f(u)在区间(c,d)上是增函数,那么,原复合函数y=f [g(x)]在区间(a,b)上是增函数.(本引理中的开区间也可以是闭区间或半开半闭区间.)证明 在区间(a,b)内任取两个数x 1,x 2,使a <x 1<x 2<b.因为u=g(x)在区间(a,b)上是增函数,所以g(x 1)<g(x 2),记u1=g(x 1),u2=g(x 2)即u 1<u 2,且u 1,u 2∈(c,d).因为函数y=f(u)在区间(c,d)上是增函数,所以f(u 1)<f(u 2),即f [g(x 1)]<f [f(x 2)],故函数y=f [g(x)]在区间(a,b)上是增函数.师:有了这个引理,我们能不能解决所有复合函数的单调性问题呢?生:不能.因为并非所有的简单函数都是某区间上的增函数.师:你回答得很好.因此,还需增加一些引理,使得求复合函数的单调区间更容易些.(教师可以根据学生情况和时间决定引理2是否在引理1的基础上做些改动即可.建议引理2的证明也是改动引理1的部分证明过程就行了.)引理2 已知函数y=f[g(x)].若u=g(x)在区间(a,b)上是减函数,其值域为(c,d),又函数y=f(u)在区间(c,d)上是减函数,那么,复合函数y=f[g(x)]在区间(a,b)上是增函数.证明在区间(a,b)内任取两个数x1,x2,使a<x1<x2<b.因为函数u=g(x)在区间(a,b)上是减函数,所以g(x1)>g(x2),记u1=g(x1),u2=g(x2)即u1>u2,且u1,u2∈(c,d).因为函数y=f(u)在区间(c,d)上是减函数,所以f(u1)<f(u2),即f[g(x1)]<f[f(x2)],故函数y=f[g(x)]在区间(a,b)上是增函数.师:我们明白了上边的引理及其证明以后,剩下的引理我们自己也能写出了.为了记忆方便,咱们把它们总结成一个图表.(板书)师:你准备怎样记这些引理?有规律吗?(由学生自己总结出规律:当两个函数的单调性相同时,其复合函数是增函数;当两个函数的单调性不同时,其复合函数为减函数.)师:由于中学的教学要求,我们这里只研究y=f(u)为u的单调函数这一类的复合函数.做例题前,全班先讨论一道题目.(板书).例1 求下列函数的单调区间:y=log4(x2-4x+3)师:咱们第一次接触到求解这种类型问题,由于对它的解题步骤、书写格式都不太清楚,我们先把它写在草稿纸上,待讨论出正确的结论后再往笔记本上写.师:下面谁说一下自己的答案?生:这是由 y=log4u与u=x2-4x+3构成的一个复合函数,其中对数函数 y=log4u在定义域(0,+∞)上是增函数,而二次函数u=x2-4x+3,当x∈(-∞,2)时,它是减函数,当x∈(2,+∞)时,它是增函数,.因此,根据今天所学的引理知,(-∞,2)为复合函数的单调减区间;(2,+∞)为复合函数的单调增区间.师:大家是否都同意他的结论?还有没有不同的结论?我可以告诉大家,他的结论不正确.大家再讨论一下,正确的结论应该是什么?生:……生:我发现,当x=1时,原复合函数中的对数函数的真数等于零,于是这个函数没意义.因此,单调区间中不应含原函数没有意义的x的值.师:你说得很好,怎样才能做到这点呢?生:先求复合函数的定义域,再在定义域内求单调区间.师:非常好.我们研究函数的任何性质,都应该首先保证这个函数有意义,否则,函数都不存在了,性质就更无从谈起了.刚才的第一个结论之所以错了,就是因为没考虑对数函数的定义域.注意,对数函数只有在有意义的情况下,才能讨论单调性.所以,当我们求复合函数的单调区间时,第一步应该怎么做?生:求定义域.师:好的.下面我们把这道题作为例1写在笔记本上,我在黑板上写.(板书)解设 y=log4u,u=x2-4x+3.由>0,u=x 2-4x+3,解得原复合函数的定义域为x <1或x >3.师:这步咱们大家都很熟悉了,是求复合函数的定义域.下面该求它的单调区间了,怎样求解,才能保证单调区间落在定义域内呢?生:利用图象.师:这种方法完全可以.只是再说清楚一点,利用哪个函数的图象?可咱们并没学过画复合函数的图象啊?这个问题你想如何解决?生:……师:我来帮你一下.所有的同学都想想,求定义域也好,求单调区间也好,是求x 的取值范围还是求复合函数的函数值的取值范围?或是求中间量u 的取值范围?生:求x 的取值范围.师:所以我们只需画x 的范围就行了,并不要画复合函数的图象.(板书)师:当x ∈(-∞,1)时,u=x 2-4x+3为减函数,而y=log 4u 为增函数,所以(-∞,1)是复合函数的单调减区间;当x ∈(3,±∞)时,u=x 2-4x+3为增函数y=log 4u 为增函数,所以,(3,+∞)是复合函数的单调增区间.师:除了这种办法,我们还可以利用代数方法求解单调区间.下面先求复合函数单调减区间.(板书)u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域)x <2 (u 减)解得x <1.所以x ∈(-∞,1)时,函数u 单调递减.由于y=log 4u 在定义域内是增函数,所以由引理知:u=(x -2)2-1的单调性与复合函数的单调性一致,所以(-∞,1)是复合函数的单调减区间.下面我们求一下复合函数的单调增区间.(板书)u=x 2-4x+3=(x -2)2-1,x >3或x <1,(复合函数定义域)x >2 (u 增)解得x >3.所以(3,+∞)是复合函数的单调增区间.师:下面咱们再看例2.(板书)例2 求下列复合函数的单调区间:y=log 31 (2x -x 2) 师:先在笔记本上准备一下,几分钟后咱们再一起看黑板,我再边讲边写.(板书)解 设 y=log 31u,u=2x -x 2.由 u >0u=2x -x 2解得原复合函数的定义域为0<x <2.由于y=log 31u 在定义域(0,+∞)内是减函数,所以,原复合函数的单调性与二次函数u=2x -x 2的单调性正好相反. 易知u=2x -x 2=-(x -1)2+1在x ≤1时单调增.由0<x <2 (复合函数定义域)x ≤1,(u 增)解得0<x≤1,所以(0,1]是原复合函数的单调减区间.又u=-(x-1)2+1在x≥1时单调减,由x<2, (复合函数定义域)x≥1, (u减)解得0≤x<2,所以[0,1=是原复合函数的单调增区间.师:以上解法中,让定义域与单调区间取公共部分,从而保证了单调区间落在定义域内. 师:下面我们再看一道题目,还是自己先准备一下,就按照黑板上第一题的格式写. (板书)例3 求y=267xx--的单调区间.(几分钟后,教师找一个做得对的或基本做对的学生,由他口述他的全部解题过程,教师在黑板上写,整个都写完后,教师边讲边肯定或修改学生的做法,以使所有同学再熟悉一遍解题思路以及格式要求.)解设y=u,u=7-6x-x2,由u≥0,u=7-6x-x2解得原复合函数的定义域为-7≤x≤1.因为y=u在定义域[0+∞]内是增函数,所以由引理知,原复合函数的单调性与二次函数u=-x2-6x+7的单调性相同.易知u=-x2-6x+7=-(x+3)2+16在x≤-3时单调增加。
由-7≤x≤1,(复合函数定义域)x≤-3,(u增)解得-7≤x≤-3.所以[-7,3]是复合函数的单调增区间.易知u=-x2-6x+7=-(x+3)2+16在x≥-3时单调减,由-7≤x≤1 (复合函数定义域)x≥-3, (u减)解得-3≤x≤1,所以[-3,1]是复合函数的单调减区间.师:下面咱们看最后一道例题,这道题由大家独立地做在笔记本上,我叫一个同学到黑板上来做.(板书)例4 求y=122)21(--xx的单调区间.(学生板书)解设y=u)21(.由u∈R,u=x2-2x-1, 解得原复合函数的定义域为x∈R.因为y=u)21(在定义域R内为减函数,所以由引理知,二次函数u=x2-2x-1的单调性与复合函数的单调性相反.易知,u=x2-2x-1=(x-1)2-2在x≤1时单调减,由x∈R, (复合函数定义域)x≤1, (u减)解得x≤1.所以(-∞,1]是复合函数的单调增区间.同理[1,+∞)是复合函数的单调减区间.师:黑板上这道题做得很好.请大家都与黑板上的整个解题过程对一下.师:下面我小结一下这节课.本节课讲的是复合函数的单调性.大家注意:单调区间必须是定义域的子集,当我们求单调区间时,必须先求出原复合函数的定义域.另外,咱们刚刚学习复合函数的单调性,做这类题目时,一定要按要求做,不要跳步.(作业均为补充题)作业求下列复合函数的单调区间.1.y=log3(x2-2x);(答:(-∞,0)是单调减区间,(2,+∞)是单调增区间.)2.y=log 21(x 2-3x+2);(答:(-∞,1)是单调增区间,(2,+∞)是单调减区间.)3.y=652-+-x x ,(答:[2,25是单调增区间,][25,3]是单调减区间.)4.y=x17.0;(答:(-∞,0),(0,+∞)均为单调增区间.注意,单调区间之间不可以取并集.)5.y=232x -;(答(-∞,0)为单调增区间,(0,+∞)为单调减区间)6.y=3)31(+x ,(答(-∞,+∞)为单调减区间.)7.y=x 2log 3;(答:(0,+∞)为单调减区间.) 8.y=)4(1log2x x -π;(答:(0,2)为单调减区间,(2,4)为单调增区间.) 9.y=426x x -;(答:(0,3)为单调减区间,(3,6)为单调增区间.) 10.y=227x x -;(答(-∞,1)为单调增区间,(1,+∞)为单调减区间.) 课堂教学设计说明1.复习提问简单函数的单调性.2.复习提问复合函数的定义.3.引出并证明一个引理,用表格的形式给出所有的引理.4.对于例1,教师要带着学生分析,着重突出单调区间必须是定义域的子集.例2中的第一题,还是以教师讲解为主.例2中的第二题,过渡到以学生讲述自己解法为主.例2中的第三题,以学生独立完成为主.5.小结,作业.我为什么要采取这几个环节呢?因为从以往的经验看,当要求学生求复合函数的单调区间时,他往往不考虑这个函数的定义域,而这种错误又很顽固,不好纠正.为此,本节课我在廛为什么要求复合函数的定义域,以及定义域与单调区间的关系上,投入了较大的精力.力求使学生做到,想法正确,步骤清晰.为了调动学生的积极性,突出课堂的主体是学生,我把四道例题分了层次,第一道由教师引导、逐步逐层导出解题思路,由教师写出解题的全过程;第二题,思路由学生提供,格式还是再由教师写一遍,这样,既让学生有了获得新知识的快乐,又不必因对解题格式的不熟悉而烦恼;后两道例题是以中上等的学生自己独立解答为主的.每做完一道题,由教师简单地小结、修改,以使好学生掌握得更完备,较差的学生能够跟得上.选校网 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 (按ctrl 点击打开) 描写北宋末年以宋江为首的一百零八人在山东梁山泊聚义的故事。