概率的几种类型
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
概率分布的种类与性质概率分布是概率论中的重要概念,用于描述随机变量的取值与其对应的概率。
不同的随机变量具有不同的概率分布,而概率分布又可以分为多种种类。
本文将介绍常见的概率分布种类及其性质。
一、离散型概率分布离散型概率分布是指随机变量取有限个或可数个值的概率分布。
常见的离散型概率分布有以下几种:1. 伯努利分布(Bernoulli Distribution)伯努利分布是最简单的离散型概率分布,它描述了只有两个可能结果的随机试验,如抛硬币的结果(正面或反面)。
伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。
2. 二项分布(Binomial Distribution)二项分布是一种重要的离散型概率分布,它描述了n次独立重复的伯努利试验中成功次数的概率分布。
二项分布的概率质量函数为: P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中k=0,1,...,n,C(n,k)为组合数,p为成功的概率。
3. 泊松分布(Poisson Distribution)泊松分布是一种用于描述单位时间或单位空间内随机事件发生次数的离散型概率分布。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中k=0,1,2,...,λ为平均发生率。
二、连续型概率分布连续型概率分布是指随机变量取值为连续区间内的概率分布。
常见的连续型概率分布有以下几种:1. 均匀分布(Uniform Distribution)均匀分布是一种简单的连续型概率分布,它在给定区间内的取值概率相等。
均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a为区间下界,b为区间上界。
2. 正态分布(Normal Distribution)正态分布是一种重要的连续型概率分布,也被称为高斯分布。
正态分布具有钟形曲线,对称分布于均值周围。
概率的几种类型一、单次抽样的概率在初中阶段所考查的概率问题都是有限等可能概率,其概率P(A)=(n是基本事件的总和,m是满足条件的基本事件数).例1 (厦门)某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.分析:由于总学生数为49,每个人名字被抽到的机会是等可能的,因此抽到女生名字纸条的概率==.例2 (南京)一张圆桌旁有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐到其他三个座位上.求A与B不相邻而坐的概率.分析:左、下、右三个座位被B,C,D三人随机坐可能的顺序有BCD,BDC,CBD ,CDB,DBC,DCB六种.由于A与B不相邻而坐,就是说B必须坐在A的对面,有CBD ,DBC两种可能,因此P(A与B不相邻而坐)==.二、多次有放回型抽样的概率我们举个例子来说明多次有放回抽样的概率:设袋中有n个小球,现从中依次摸球,每次摸一个,如果摸出一个后,仍放回原袋中,然后再摸下一个,这种摸球方法就是有放回的抽样.有放回抽样解决的方案有两种:一种是P(A)=,还有一种是先计算第一次摸球的概率,如果摸球n次就求(P(A))n.(P(A))n就是所求的概率.例3 (青海湟中)小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是_____.分析:思路1本题相当于盒子里有1,2,3三个小球,小红、小明、小芳三人依次作有放回抽样,求三人同时抽到2号球的概率.从树形图可以看出三人随机出拳总共有27种可能,其中“222”的组合只有1种,因此三人都出包袱的概率是.思路2本题相当于盒子里有1,2,3三个小球,小红、小明、小芳三人依次作有放回抽样,求三人同时抽到2号球的概率.小红出包袱的概率是,因此三人都出包袱的概率是()3=.例4 (泉州)把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树形图或列表法求解).分析:思路一通过画图可以得知:可能的结果有9个,数字之和为偶数的有5个,因此两张卡片数字之和为偶数的概率为.思路二要使得数字之和为偶数,有两种可能:一是两次抽取的都是奇数;二是两次抽取的都是偶数,将分别求得的概率相加,即为所求的概率;由于两次抽取奇数的概率都是,因此两次同时抽取奇数的概率为()2=;同理,两次同时抽取偶数的概率就是.故取出的两张卡片数字之和为偶数的概率为.三、多次无放回抽样的概率无放回抽样与有放回抽样的区别在于取出的小球不再放回,其解决方法也有两个:第一个方法也是P(A)=,第二个方法是依次算好每次抽取的概率,然后把每次抽取的概率相乘即得多次抽取的概率.例5 (宁波)一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是( ).A.B.C.D.分析:思路1我们用1代表红球,用2代表蓝色,画出树形图如下:可知总可能性为12,两次都是蓝色的有2种.所以两次抽取的都是蓝球的概率是.思路2第一次抽取蓝球的概率为,第二次抽取蓝球的概率,所以两次抽取的都是蓝球的概率是€祝剑?例6 (杭州)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是().A.B.C.D.分析:思路一用列表法或树形图,解略.思路二如果排“2008北京”,第一次抽取“20”的概率是,第二次抽取“08”的概率是,第三次抽取“北京”的概率是1,所以排出“2008北京”的概率为,同理排出“北京2008”的概率也是.所以婴儿能得到奖励的概率是+=.四、比较两个事件发生可能性大小比较两个事件发生可能性大小的时候,可以先分别计算两个事件发生的概率,然后比较两个概率的大小.例9 (安徽)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:(1) 三辆车按出现的先后顺序共有哪几种不同的可能?(2) 你认为甲、乙采用的方案,哪一种方案使自己乘上等车的可能性大? 为什么?解:(1)三辆车按出现的先后顺序可能有上中下、上下中、中上下、中下上、下上中、下中上共6种可能.(2)如果按甲的方案,则上到上等车的概率为,如果按乙的方案,则上到上等车的概率为,所以乙的方案使自己乘上等车的可能性大.五、判断游戏是否公平判断一个游戏是否公平只要看看游戏规则对于游戏双方胜出的概率是否相同.例10 (大连)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.(1)这个游戏是否公平?请说明理由;(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.分析:(1)这个游戏的结果共有四种可能:正正、正反、反正、反反,所以甲赢的概率为,乙赢的概率为.所以这个游戏有利于乙方,不公平.(2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢.”。
概率论常见的几种分布常见的几种概率分布概率论是研究随机现象的数学理论,其中涉及到许多常见的概率分布。
概率分布描述了随机变量在不同取值上的概率分布情况。
本文将介绍几种常见的概率分布,包括均匀分布、正态分布、泊松分布和指数分布。
一、均匀分布均匀分布是最简单的概率分布之一,也被称为矩形分布。
在均匀分布中,随机变量在一定的取值范围内的概率是相等的。
例如,抛一枚公正的硬币,正面朝上和反面朝上的概率都是1/2。
均匀分布通常用于模拟随机数发生器的输出,或者在一定范围内随机选择一个数值。
二、正态分布正态分布是最重要的概率分布之一,也被称为高斯分布。
在正态分布中,随机变量在取值范围内的概率密度函数呈钟形曲线状。
正态分布具有许多重要的性质,例如均值、标准差等。
正态分布在自然界和社会科学中广泛应用,例如身高、体重、考试成绩等都符合正态分布。
三、泊松分布泊松分布描述了单位时间或空间内事件发生的次数的概率分布情况。
泊松分布的特点是,事件之间相互独立且平均发生率恒定。
泊松分布通常用于描述稀有事件的发生情况,例如单位时间内的电话呼叫次数、单位面积内的交通事故次数等。
四、指数分布指数分布描述了连续随机变量首次达到某一值的时间间隔的概率分布情况。
指数分布的特点是,事件之间相互独立且事件发生的概率与时间间隔成反比。
指数分布通常用于模拟随机事件的发生时间间隔,例如单位时间内的电话呼叫间隔、单位距离内的交通事故间隔等。
除了上述几种常见的概率分布外,还有许多其他概率分布,例如二项分布、伽玛分布、贝塔分布等。
每种概率分布都有其特定的应用场景和数学性质,对于不同的问题可以选择适合的概率分布进行建模和分析。
总结起来,概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。
这些分布在各自的领域有着广泛的应用,可以帮助我们理解和解决许多随机现象和问题。
对于研究概率论和统计学的人来说,熟悉这些常见的概率分布是非常重要的。
高中数学六种概率模型在高中数学中,概率是一个重要的概念,在日常生活中也随处可见。
概率模型是用来描述不确定事件发生的可能性的数学模型。
在高中数学中,我们学习了六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
第一种概率模型是等可能模型。
在等可能模型中,我们假设所有的结果是等可能发生的,例如掷硬币、掷骰子等。
在这种情况下,我们可以通过计算事件发生的可能性来求解概率。
例如,抛掷一枚硬币,出现正面的概率和出现反面的概率都是1/2。
第二种概率模型是几何模型。
几何模型适用于一些连续事件,例如抛掷一根棍子,棍子落在某个距离范围内的概率。
这种情况下,我们需要用到几何概率的计算方法,即事件的概率等于事件所占的长度或面积与总长度或面积的比值。
第三种概率模型是排列模型。
排列模型适用于有序事件的概率计算。
例如,从一副扑克牌中抽出三张牌,求得其中一种特定牌型的概率。
这种情况下,我们可以使用排列的计算公式,将事件的可能性与总的可能性进行比较。
第四种概率模型是组合模型。
组合模型适用于无序事件的概率计算。
例如,从一副扑克牌中抽出三张牌,求得其中任意三张牌的概率。
这种情况下,我们可以使用组合的计算公式,将事件的可能性与总的可能性进行比较。
第五种概率模型是条件概率模型。
条件概率模型是指在已知一些信息的情况下,求另外一些信息的概率。
例如,在已知某人生病的情况下,求他感染某种疾病的概率。
在条件概率中,我们需要用到贝叶斯公式来计算概率。
第六种概率模型是贝叶斯模型。
贝叶斯模型是一种用来更新先验概率的模型。
在贝叶斯模型中,我们通过观察到的事实来更新我们对事件发生的概率的估计。
这种模型常常用于统计学和机器学习中。
高中数学中有六种常见的概率模型,分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
这些模型可以帮助我们计算事件发生的可能性,对我们理解概率提供了有力的工具。
通过学习这些模型,我们可以更好地理解和应用概率知识,为未来的学习和工作打下坚实的基础。
高中数学中几种常见的概率模型高中数学中几种常见的概率模型:古典概型、几何概型、贝努利概型、超几何分布概型1、古典概型:也叫传统概率、其定义是由法国数学家拉普拉斯提出的。
如果一个随机试验所包含的单位事件是有限的,且每个单位事件发生的可能性均相等,则这个随机试验叫做拉普拉斯试验,这种条件下的概率模型就叫古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的;古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
2、几何概型:是概率模型之一,别名几何概率模型,如果每个事件发生的概率只与构成该事件区域的长度成比例,则称这样的概率模型为几何概率模型。
在这个模型下,随机实验所有可能的结果都是无限的,并且每个基本结果发生的概率是相同的。
一个试验是否为几何概型在于这个试验是否具有几何概型的两个特征,无限性和等可能性,只有同时具备这两个特点的概型才是几何概型。
3、贝努利模型:为纪念瑞士科学家雅各布·贝努利而命名。
对随机试验中某事件是否发生,实验的可能结果只有两个,这个只有两个可能结果的实验被称为贝努利实验;重复进行n次独立的贝努利试验,这里“重复”的意思是指各次试验的条件是相同的,它意味着各次试验中事件发生的概率保持不变。
“独立是指是指各次试验的结果是相互独立的。
基于n重贝努利试验建立的模型,即为贝努利模型。
4、超几何分布:是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
高中数学六种概率模型概率是数学中的重要概念,用于描述事件发生的可能性。
在高中数学中,概率是一个重要的内容,它有着广泛的应用。
在数学中,我们常常使用六种概率模型来描述和计算概率,它们分别是等可能模型、几何模型、排列模型、组合模型、条件概率模型和贝叶斯模型。
一、等可能模型等可能模型是最简单的概率模型之一,它假设每个事件发生的可能性相等。
例如,抛一枚公正的硬币,出现正面或反面的概率都是1/2。
又如,掷一颗公正的骰子,出现任意一个数字的概率都是1/6。
等可能模型的特点是简单明了,计算方法也非常简单,只需将某个事件发生的可能性除以总的可能性即可。
二、几何模型几何模型是描述概率的一种模型,它应用于空间中的几何问题。
例如,在一个正方形的平面上随机选择一个点,那么这个点落在正方形的某个子集中的概率就可以使用几何模型来描述。
几何模型的特点是需要用到几何图形的性质和计算方法,通常需要使用面积或体积的概念来描述概率。
三、排列模型排列模型是用于描述事件发生顺序的概率模型。
例如,从1到10这十个数字中随机选择3个数字,按照选择的顺序排列,那么不同的排列方式的概率可以使用排列模型来计算。
排列模型的特点是需要考虑事件发生的顺序,通常需要使用排列的计算方法。
四、组合模型组合模型是用于描述事件发生组合的概率模型。
例如,从1到10这十个数字中随机选择3个数字,不考虑选择的顺序,那么不同的组合方式的概率可以使用组合模型来计算。
组合模型的特点是不考虑事件发生的顺序,通常需要使用组合的计算方法。
五、条件概率模型条件概率模型是用于描述事件在给定条件下发生的概率。
例如,已知某个学生参加了数学竞赛,并且获得了奖项,那么在已知该学生获奖的条件下,他是男生的概率可以使用条件概率模型来计算。
条件概率模型的特点是需要考虑给定条件下事件发生的概率,通常需要使用条件概率的计算方法。
六、贝叶斯模型贝叶斯模型是用于描述事件的先验概率和后验概率之间的关系的概率模型。
数的概率分布概率分布是概率论中重要的概念之一,用于描述一个随机变量取值的可能性。
在数学和统计学领域里,数的概率分布研究了在特定情况下数值出现的概率。
本文将介绍数的概率分布的基本含义、常见的概率分布类型以及其在实际应用中的重要性。
一、概率分布的基本定义概率分布是随机变量的可能取值及其对应概率的描述。
随机变量可以是离散型变量或连续型变量。
离散型变量的取值有限且可数,如掷骰子的点数;连续型变量的取值为无限个且不可数,如人的身高。
概率分布描述了随机变量每个取值的概率。
二、常见的概率分布类型1. 离散型概率分布离散型概率分布用于描述随机变量为离散型的情况。
以下是几种常见的离散型概率分布:(1)伯努利分布伯努利分布是一种简单的离散型分布,常用于描述试验只有两个可能结果的情况,如硬币的正反面。
(2)二项分布二项分布是描述n次成功失败试验的离散型分布,例如n次掷硬币中正面朝上的次数。
(3)泊松分布泊松分布用于描述单位时间内随机事件发生的次数,如单位时间内电话呼叫次数、交通事故发生次数等。
2. 连续型概率分布连续型概率分布用于描述随机变量为连续型的情况。
以下是几种常见的连续型概率分布:(1)均匀分布均匀分布描述了在一个区间内随机取值时,每个取值的概率相等,如抛硬币的落点在一个平面上的坐标。
(2)正态分布正态分布是最常见的连续型概率分布之一,也称为高斯分布。
它以钟形曲线为特征,广泛应用于自然和社会科学领域,如身高、体重等。
(3)指数分布指数分布用于描述事件发生的时间间隔或等待时间,如设备故障发生的时间间隔、用户等待的响应时间等。
三、概率分布在实际应用中的重要性概率分布在实际应用中具有重要的作用,主要体现在以下几个方面:1. 预测和决策通过分析和建模某个事件或现象的概率分布,可以对未来可能的结果进行预测。
例如,在金融领域中,通过对股票收益率的概率分析,可以帮助投资者做出决策。
2. 风险评估概率分布可以用于评估风险。
在保险行业中,通过对保险索赔次数或大小的概率分析,可以估算保险公司的风险,并确定合理的保费。
16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。
常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。
以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。
1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。
2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。
3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。
4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。
5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。
6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。
概率的几种类型
一、单次抽样的概率
在初中阶段所考查的概率问题都是有限等可能概率,其概率P(A)=(n是基本事件的总和,m是满足条件的基本事件数).
例1 (厦门)某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是.
分析:由于总学生数为49,每个人名字被抽到的机会是等可能的,因此抽到女生名字纸条的概率==.例2 (南京)一张圆桌旁有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐到其他三个座位上.求A与B不相邻而坐的概率.
分析:左、下、右三个座位被B,C,D三人随机坐可能的顺序有BCD,BDC,CBD ,CDB,DBC,DCB六种.由于A与B不相邻而坐,就是说B必须坐在A的对面,有CBD ,DBC两种可能,因此P(A与B不相邻而坐)==.
二、多次有放回型抽样的概率
我们举个例子来说明多次有放回抽样的概率:设袋中有n个小球,现从中依次摸球,每次摸一个,如果摸出一个后,仍放回原袋中,然后再摸下一个,这种摸球方法就是有放回的抽样.有放回抽样解决的方案有两种:一种是P(A)=,还有一种是先计算第一次摸球的概率,如果摸球n次就求(P(A))n.(P(A))n就是所求的概率.
例3 (青海湟中)小红、小明、小芳在一起做游戏时,需要确定游戏的先后顺序.他们约定用“剪子、包袱、锤子”的方式确定.问在一个回合中三个人都出包袱的概率是_____.
分析:思路1本题相当于盒子里有1,2,3三个小球,小红、小明、小芳三人依次作有放回抽样,求三人同时抽到2号球的概率.
从树形图可以看出三人随机出拳总共有27种可能,其中“222”的组合只有1种,因此三人都出包袱的概率是.
思路2本题相当于盒子里有1,2,3三个小球,小红、小明、小芳三人依次作有放回抽样,求三人同时抽到2号球的概率.小红出包袱的概率是,因此三人都出包袱的概率是()3=.例4 (泉州)把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上数字1,2,3.将这两组卡片分别放入两盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树形图或列表法求解
分析:思路一通过画图可以得知:可能的结果有9个,数字之和为偶数的有5个,因此两张卡片数字之和为偶数的概率为.
思路二要使得数字之和为偶数,有两种可能:一是两次抽取的都是奇数;二是两次抽取的都是偶数,将分别求得的概率相加,即为所求的概率;由于两次抽取奇数的概率都是,因此两次同时抽取奇数的概率为()2=;同理,
两次同时抽取偶数的概率就是.故取出的两张卡片数字之和为偶数的概率为.
三、多次无放回抽样的概率
无放回抽样与有放回抽样的区别在于取出的小球不再放回,其解决方法也有两个:第一个方法也是P(A)=,第二个方法是依次算好每次抽取的概率,然后把每次抽取的概率相乘即得多次抽取的概率.例5 (宁波)一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是( ).A.B.C.D.
分析:思路1我们用1代表红球,用2代表蓝色,画出树形图如下:
可知总可能性为12,两次都是蓝色的有2种.所以两次抽取的都是蓝球的概率是.
思路2第一次抽取蓝球的概率为,第二次抽取蓝球的概率,所以两次抽取的都是蓝球的概率是€祝剑?
例6 (杭州)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是().A.B.C.D.
分析:思路一用列表法或树形图,解略.
思路二如果排“2008北京”,第一次抽取“20”的概率是,第二次抽取“08”的概率是,第三次抽取“北京”的概率是1,所以排出“2008北京”的概率为,同理排出“北京2008”的概率也是.所以婴儿能得到奖励的概率是+=.
四、比较两个事件发生可能性大小
比较两个事件发生可能性大小的时候,可以先分别计算两个事件发生的概率,然后比较两个概率的大小.例9 (安徽)两人要去某风景区游玩,每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度,也不知道汽车开过来的顺序.两人采用了不同的乘车方案:甲无论如何总是上开来的第一辆车.而乙则是先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,如果第二辆车的舒适程度比第一辆好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.如果把这三辆车的舒适程度分为上、中、下三等,请尝试着解决下面的问题:
(1) 三辆车按出现的先后顺序共有哪几种不同的可能?
(2) 你认为甲、乙采用的方案,哪一种方案使自己乘上等车的可能性大? 为什么?
解:(1)三辆车按出现的先后顺序可能有上中下、上下中、中上下、中下上、下上中、下中上共6种可能.(2)如果按甲的方案,则上到上等车的概率为,如果按乙的方案,则上到上等车的概率为,所以乙的方案使自己乘上等车的可能性大.
五、判断游戏是否公平
判断一个游戏是否公平只要看看游戏规则对于游戏双方胜出的概率是否相同.
例10 (大连)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢.
(1)这个游戏是否公平?请说明理由;
(2)如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则,设计一个不公平的游戏.
分析:(1)这个游戏的结果共有四种可能:正正、正反、反正、反反,所以甲赢的概率为,乙赢的概率为.所以这个游戏有利于乙方,不公平.
2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢.”。