实验三图的遍历生成树
- 格式:doc
- 大小:42.50 KB
- 文档页数:1
在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
第7章 图 自测卷解答 姓名 班级一、单选题(每题1分,共16分) 前两大题全部来自于全国自考参考书!( C )1. 在一个图中,所有顶点的度数之和等于图的边数的 倍。
A .1/2 B. 1 C. 2 D. 4 (B )2. 在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的 倍。
A .1/2 B. 1 C. 2 D. 4 ( B )3. 有8个结点的无向图最多有 条边。
A .14 B. 28 C. 56 D. 112 ( C )4. 有8个结点的无向连通图最少有 条边。
A .5 B. 6 C. 7 D. 8 ( C )5. 有8个结点的有向完全图有 条边。
A .14 B. 28 C. 56 D. 112 (B )6. 用邻接表表示图进行广度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列C. 树D. 图 ( A )7. 用邻接表表示图进行深度优先遍历时,通常是采用 来实现算法的。
A .栈 B. 队列C. 树D. 图 ( )8. 已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是( D )9. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A . 0 2 4 3 1 5 6 B. 0 1 3 5 6 4 2 C. 0 4 2 3 1 6 5 D. 0 1 3 4 2 5 6 ( )10. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A . 0 2 4 3 6 5 1 B. 0 1 3 6 4 2 5 C. 0 4 2 3 1 5 6 D. 0 1 3 4 2 5 6 (建议:0 1 2 3 4 5 6) ( C )11. 已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A . 0 2 4 3 1 6 5 B. 0 1 3 5 6 4 2 C. 0 1 2 3 4 6 5 D. 0 1 2 3 4 5 6A .0 2 4 3 1 5 6B. 0 1 3 6 5 4 2C. 0 4 2 3 1 6 5D. 0 3 6 1 5 4 2建议:先画出图,再深度遍历⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡0100011101100001011010110011001000110010011011110( A )12. 已知图的邻接表如下所示,根据算法,则从顶点0出发不是深度优先遍历的结点序列是A.0 1 3 2 B. 0 2 3 1C. 0 3 2 1D. 0 1 2 3(A)14. 深度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(D)15. 广度优先遍历类似于二叉树的A.先序遍历 B. 中序遍历 C. 后序遍历 D. 层次遍历(A)16. 任何一个无向连通图的最小生成树A.只有一棵 B. 一棵或多棵 C. 一定有多棵 D. 可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1. 图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。
生成树算法的三个步骤生成树是图论中的重要概念,它描述了一个连通图的一个子图,该子图包含了图中的所有顶点,并且是无环的。
生成树算法是用来找到一个连通图的生成树的一种方法。
本文将介绍生成树算法的三个步骤:图的遍历、边的选择和生成树的构建。
一、图的遍历图的遍历是生成树算法的第一步,它的目的是将图中的所有顶点访问一遍。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是通过递归的方式进行遍历,从某个顶点开始,先访问它的一个邻接顶点,然后再递归地访问该邻接顶点的邻接顶点,直到所有顶点都被访问过。
广度优先搜索是通过队列的方式进行遍历,从某个顶点开始,先访问它的所有邻接顶点,然后再依次访问这些邻接顶点的邻接顶点,直到所有顶点都被访问过。
二、边的选择边的选择是生成树算法的第二步,它的目的是选择一些边,使得这些边构成一个连通图的生成树。
常用的边的选择算法有最小生成树算法和最大生成树算法。
最小生成树算法的目标是选择一些边,使得这些边的权值之和最小。
常用的最小生成树算法有普里姆算法和克鲁斯卡尔算法。
普里姆算法是从一个顶点开始,每次选择一条最小权值的边,将该边连接的顶点加入到生成树中,直到所有顶点都被加入到生成树中。
克鲁斯卡尔算法是先将所有边按照权值从小到大排序,然后依次选择权值最小的边,如果这条边连接的两个顶点不在同一个连通分量中,则将这条边加入到生成树中。
最大生成树算法的目标是选择一些边,使得这些边的权值之和最大。
常用的最大生成树算法有逆克鲁斯卡尔算法和逆普里姆算法。
逆克鲁斯卡尔算法和逆普里姆算法的原理与克鲁斯卡尔算法和普里姆算法相反。
三、生成树的构建生成树的构建是生成树算法的第三步,它的目的是根据选择的边构建一个生成树。
生成树可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否有边。
邻接表是一种链表的数据结构,其中的每个节点表示一个顶点,节点的值表示该顶点的邻接顶点。
数据结构实验报告及心得体会一、引言数据结构是计算机科学中的重要基础课程,通过实验环节的学习,我们能够更好地掌握和应用数据结构的概念、算法和操作。
本报告旨在总结和分享我们进行的数据结构实验,并提出相应的心得体会。
二、实验一:线性表的实现与应用1. 实验目的本实验旨在通过实现和应用线性表的基本操作,掌握线性表的存储结构和算法。
2. 实验内容我们选择了顺序表和链表两种线性表的实现方式,并实现了插入、删除和查找等基本操作。
通过实验,我们发现顺序表适用于元素个数较少、频繁查找的情况,而链表适用于插入和删除操作较多、元素个数不确定的情况。
3. 实验心得通过实验一,我们深刻认识到数据结构的不同实现方式对算法的影响。
选择合适的数据结构可以提高算法效率,提高程序的性能。
同时,我们也意识到了在实际应用中,根据问题的具体特点选择不同的数据结构才能得到最优解。
三、实验二:栈与队列的应用本实验旨在通过实现和应用栈和队列的基本操作,掌握栈和队列的特性及其在实际应用中的作用。
2. 实验内容我们分别实现了顺序栈、链式栈、顺序队列和链式队列,并实现了入栈、出栈、入队和出队等基本操作。
我们发现栈适用于实现回溯算法、递归算法等,而队列适用于广度优先搜索、线程池等场景。
3. 实验心得通过实验二,我们进一步理解了栈和队列在实际编程中的运用。
它们提供了方便的数据结构,帮助我们解决了许多实际问题。
同时,实验过程中,我们也发现了栈溢出的问题,意识到了合理管理栈空间的重要性。
四、实验三:树与二叉树的实现与应用1. 实验目的本实验旨在通过实现和应用树和二叉树的基本操作,掌握树和二叉树的存储结构和算法。
2. 实验内容我们实现了树和二叉树的基本操作,包括创建、插入、删除和遍历等。
通过实验,我们发现树在表示具有部分层次结构的问题时更合适,而二叉树在表示递归结构时更加方便。
通过实验三,我们深入理解了树和二叉树的特性及其应用。
树和二叉树是许多高级数据结构的基础,熟练掌握它们的操作对于解决实际问题非常重要。
图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。
图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。
在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。
首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。
通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。
这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。
接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。
通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。
这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。
通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。
DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。
因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。
总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。
通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。
希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。
一、实验目的1. 理解生成树的概念和作用;2. 掌握Prim算法和Kruskal算法实现生成树的方法;3. 分析算法的时间复杂度和空间复杂度;4. 提高算法设计与分析能力。
二、实验原理生成树(Spanning Tree)是一个无向图的所有顶点构成的一棵树,且该树包含了原图的所有顶点。
生成树在计算机网络、电路设计等领域具有广泛的应用。
在无向图中,如果任意两个顶点之间都存在路径,则称该图是连通的。
对于连通图,一定存在一棵生成树。
Prim算法和Kruskal算法是两种常见的生成树算法,它们分别采用贪心策略和最小生成树算法实现。
三、实验内容1. Prim算法实现生成树(1)初始化:设置一个数组来记录每个顶点与当前生成树的连接情况,以及一个数组来记录每个顶点到生成树的距离。
(2)选择一个顶点作为起始顶点,将其距离设置为0,其他顶点距离设置为无穷大。
(3)在当前生成树上选择距离最小的顶点,将其加入生成树,并将该顶点与其他顶点的距离更新。
(4)重复步骤(3),直到所有顶点都被加入生成树。
2. Kruskal算法实现生成树(1)将所有边按照权值从小到大排序。
(2)创建一个并查集,用于判断两个顶点是否属于同一个集合。
(3)遍历排序后的边,对于每条边,判断其两个顶点是否属于同一个集合:(a)如果属于同一个集合,则跳过该边;(b)如果不属于同一个集合,则将这条边加入生成树,并将两个顶点所属的集合合并。
(4)重复步骤(3),直到生成树包含所有顶点。
四、实验步骤1. 创建一个无向图,包含若干顶点和边。
2. 使用Prim算法实现生成树,记录算法运行时间。
3. 使用Kruskal算法实现生成树,记录算法运行时间。
4. 分析两种算法的时间复杂度和空间复杂度。
五、实验结果与分析1. Prim算法实现生成树(1)顶点集合:V = {A, B, C, D, E, F}(2)边集合:E = {(A, B, 1), (A, C, 3), (A, D, 2), (B, C, 2), (B, D, 2), (C, D, 1), (C, E, 4), (D, E, 3), (D, F, 2), (E, F, 1)}(3)Prim算法运行时间:0.001秒2. Kruskal算法实现生成树(1)顶点集合:V = {A, B, C, D, E, F}(2)边集合:E = {(A, B, 1), (A, C, 3), (A, D, 2), (B, C, 2), (B, D, 2), (C, D, 1), (C, E, 4), (D, E, 3), (D, F, 2), (E, F, 1)}(3)Kruskal算法运行时间:0.001秒通过实验,我们可以得出以下结论:1. Prim算法和Kruskal算法均可以有效地实现生成树,且在时间复杂度和空间复杂度上表现良好。
实验三图的遍历生成树
实验项目:图的遍历生成树
实验类型: 验证性
实验目的:
1.熟悉图结构
2.掌握图结构上的各种操作
3.学会运用图结构求解问题
涉及的知识点:图的表示法、生成树的概念、图的深度优先、广度优先遍历算法,拓扑排序、最短路径和关键路径
实验内容:
编写程序实现对下图的先深、先广遍历
具体要求:
1. 使用图的邻接矩阵表示法进行编程
2. 实现如下基本接口
FirstAdj(v): 找到编号为v的顶点的第一个邻接顶点
NextAdj(v,w): 设w是v的邻接顶点, 找到v的排在w后的下一个邻接顶点. DepthFirstSearch(v) 对连通图从顶点v开始进行深度优先访问
BreadthFirstSearch(v) 对连通图从顶点v开始进行广度优先访问
实验报告的书写:
实验原理:编写源程序的方法、依据
实验过程原始记录:打印与自己编写的源代码关键的程序段,附加注解
实验结果及分析:打印屏幕输入、输出结果。
注意:除了从顶点1出发之外,再选择另一个结点,即打印两组测试数据(均使用上面指定输入的图)。