代数式与方程单元测试卷
- 格式:doc
- 大小:25.00 KB
- 文档页数:3
浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.一个两位数x和一个三位数y,若将两位数x放在三位数y的左边组成一个五位数,则组成的这个五位数表示为( )A. xyB. 10000x+yC. 100x+1000yD. 1000x+y2.有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是( )A.x(6−x)米 2B. x(12−x)米 2C. x(6−3x)米 2D. x(6−32x)米 23.某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售.那么调整后每件衬衣的零售价是( )A. a(1+m%)(1−n%)元B. a(1+m%)n%元C. a⋅m%(1−n%)元D. a(1+m%⋅n%)元4.观察如图图形,它们是按一定规律排列的,依照此规律,第n个图形中的小点一共有( )A. 3n24个 B. 3n2+32个 C. 3n2+n4个 D. 3n2+3n2个5.由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州−兴宁−华城−河源−惠州−东莞−广州.那么要为这次列车制作的火车票有( )A. 6种B. 12种C. 21种D. 42种6.当x=2时,代数式ax3+bx+1值为3,那么当x=−2时,代数式ax3+bx+1的值是( )A. −3B. 1C. −1D. 27.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )A. 33B. 301C. 386D. 5718.下列代数式中,哪个不是整式( )A. x2+1B. −2C. 1xD. π9.在73x2−x、2πx3y、1x、−4、a中单项式的个数是( )A. 1B. 2C. 3D. 410.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是( )A. 3B. 9C. 6D. 811.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b−c>0;③a|a|+b |b|+|c|c=1;④bc−a>0;⑤|a−b|−|c+a|+|b−c|=−2a,其中正确的有个.( )A. 1B. 2C. 3D. 412.多项式8x2−3x+5与3x3−4mx2−5x+7多项式相加后,不含二次项,则m的值是( )A. 2B. 4C. −2D. −4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是____________万元.14.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图形中阴影部分小正方形的个数是.15.已知代数式x2−4x−2的值为5,则代数式2x2−8x−5的值为______ .16.如果数轴上表示a,b两数的点的位置如图所示,那么|a−b|+|a+b|的计算结果是______.三、解答题(本大题共9小题,共72分。
浙教版初中数学七年级上册第四单元《代数式》单元测试卷 考试范围:第四章;考试时间:120分钟;总分:120分 第I 卷(选择题) 一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14 C. 73x 2 D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72分。
代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。
代数式与方程单元测试卷班级 姓名一、填空。
(除标出的题外,每空2分,共46分)1.一种牛奶原来的单价是2元/盒,现在每盒涨价a 元。
现在的单价是( )元/盒,现在买5盒要( )元。
2.一条路长x 米,原计划n 天完成,实际提前2天完成,实际( )天完成,实际平均每天修路( )米。
3.一个三角形三边长分别为3a ,4a 和5a 。
它的周长是( )。
4. 练习本单价为m 元/本。
东东买了5本,小西买了3本。
①两人买练习本一共花了( )元。
②东东比小西多花( )元。
5.鸡兔同笼,鸡a 只,兔b 只。
鸡兔头共( )只,鸡兔脚共( )只。
6. 化肥厂计划年产化肥m 吨,实际每月比计划多生产n 吨。
①m+12n 表示( )。
②12m +n 表示( )。
7.3月12日是植树节,四(1)班和四(2)班的同学都参加了植树活动。
(1)班种了a 棵,(2)班种的比(1)的2倍少6棵。
两个班一共种了( )棵。
两班相差( )棵。
①如果(1)班种了22棵,(2)班种了( )棵。
②如果(2)班种了22棵,(1)班种了( )棵。
③如果两班一共种了42棵,(1)班种了( )棵。
(1分)8.明明一家开车自驾游。
上午从A 地出发行了x 千米。
下午从B 地出发,每小时行70km ,行了2小时。
下午比上午多行40千米。
下午行驶的路程可以用代数式表示成( )千米 或( )千米。
(3分)9.在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,再加上3,就近似地得到该地当时的温度(℃)。
①某次测得蟋蟀1分钟叫a次,当时的温度大约是()℃。
②蟋蟀1分钟叫154次,当时的温度大约是()℃。
③当气温达到30℃时,蟋蟀1分钟大约要叫()次。
(1分)10.小力摆小正方形。
(7分)……照这样一直摆下去,①填表。
②摆15层,用了多少个小正方形?③用120个小正方形可以摆几层?二、解方程。
(每题4分,共24分)3x+5=41 120-3x=105 36(x-3)=18025x-17x=136 19x=17x+58 16x=12(x+6)三、解决问题。
第3章代数式单元测试卷(B卷提升篇)【苏科版】考试时间:45分钟;满分:100分学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•宁波期中)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予4a实际意义的例子中不正确的是()A.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数B.正方形的边长为a,则4a表示正方形的周长C.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额D.若三角形的底边长为3,面积为6a,则4a表示这边上的高2.(3分)(2018秋•洪山区期中)下列去括号或添括号:①3a2﹣6a﹣4ab+1=3a2﹣[6a﹣(4ab﹣1)]②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a+3)④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2其中正确的有()个A.1B.2C.3D.43.(3分)(2018秋•海淀区校级期中)若代数式21 3x x的值为6,则3x2﹣x+4的值为()A.22B.10C.7 D.无法确定4.(3分)(2018秋•杭州期中)若单项式7x2n y m﹣n与单项式﹣3x6y2n的和是4x2n y2n,则m与n的值分别是( ) A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =35.(3分)(2018秋•宁波期中)李老师从家到学校以每分钟v 米走t (t >10)分钟即可到达.一天,刚要出门,李老师就接到学校电话要求提前10分钟到校,那么李老师每分钟需多走( ) A .10vtt +米 B .()10vtt t -+米 C .()10vtv t -+米 D .()10vtv t --米 6.(3分)(2019春•湖州期中)若A 是四次多项式,B 是三次多项式,则A +B 是( ) A .七次多项式B .四次多项式C .三次多项式D .不能确定7.(3分)(2018秋•盐都区期中)如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如:x 3+3xy 2+4xyz +2y 3是3次齐次多项式,若a x +3b 2﹣6ab 3c 2是齐次多项式,则x 的值为( ) A .﹣1B .0C .1D .28.(3分)(2017秋•包河区期中)已知x ﹣y =3,m +n =2,则(y +m )﹣(x ﹣n )的值是( ) A .﹣1B .1C .﹣5D .59.(3分)(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm10.(3分)(2019春•相城区期中)在数学中,为了书写简便,18世纪数学家欧拉就引进了“求和”符号“∑”.例如:记1123(1)nk n n ==+++⋯+-+∑,3()(3)(4)()nk x k x x x n =+=++++⋯++∑;已知22[()()]3nk x k x k xm =+-=+∑,则m 的值是( )A .﹣4B .﹣16C .﹣25D .﹣29第Ⅱ卷(非选择题)二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•延平区校级期中)请你写出一个含x 、y 两个字母且它的系数是﹣3的三次单项式 . 12.(3分)(2019秋•济宁期中)化简:﹣2a ﹣(﹣2a ﹣1)的结果是 . 13.(3分)(2018秋•西城区校级期中)若2523(3)34mm x y xy ---+是关于x ,y 的六次三项式,则m = .14.(3分)单项式﹣3x m y 3与单项式412n x y 的和仍是单项式,则m ﹣2n = .15.(3分)(2018秋•金堂县期中)某同学做一道题,已知两个多项式A 、B ,求A ﹣2B 的值.他误将A ﹣2B 看成2A ﹣B ,经过正确计算求得结果为3x 2﹣3x +5,已知B =x 2﹣x ﹣1,则正确答案是 . 16.(3分)(2018秋•常州期中)如图所示的运算程序中,若开始输入的x 值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为 .17.(3分)(2018秋•海淀区校级期中)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x 两,则用含x 的式子表示一只燕的重量为 两.18.(3分)(2018秋•惠山区校级期中)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),……,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2019= .三.解答题(共5小题,满分46分)19.(6分)(2019秋•铁力市校级期中)化简:(1)8a 2b +2a 2b ﹣3b 2﹣4a 2b ﹣ab 2(2)2222111326m n mn nm n m --+.20.(8分)(2018秋•高邮市期中)小聪在做题目:化简(2x 2+6x +5)﹣2(☻x +x 2+2)发现x 的系数“☻”被污染了,看不清楚. (1)小聪自己想了个“☻”表示的数,得到答案为(3x +1),求:小聪想的“☻”所表示的数; (2)老师看到了说:“你想错了,该题化简的结果是常数.”请通过计算说明原题中“☻”所表示的数.21.(10分)(2018秋•新洲区期中)已知含字母m ,n 的代数式是:3[m 2+2(n 2+mn ﹣3)]﹣3(m 2+2n 2)﹣4(mn ﹣m ﹣1). (1)化简这个代数式.(2)小明取m ,n 互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0.那么小明所取的字母n 的值等于多少?(3)聪明的小智从化简的代数式中发现,只要字母n 取一个固定的数,无论字母m 取何数,代数式的值恒为一个不变的数,那么小智所取的字母n 的值是多少呢?22.(10分)(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm 、宽为18.5cm 、厚为1cm ,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?23.(12分)(2018秋•市南区校级期中)将正方形ABCD(如图1)作如下划分,第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH再划分,得图3,则图3中共有9个正方形;(1)若把左上角的正方形依次划分下去,则第100次划分后,图中共有 个正方形; (2)继续划分下去,第n 次划分后图中共有 个正方形;(3)能否将正方形ABCD 划分成有2018个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把效量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果.计算 2331111(1)44444n ++++⋯⋯+(直接写出答案即可)第3章代数式单元测试卷(B卷提升篇)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)(2018秋•宁波期中)我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予4a实际意义的例子中不正确的是()A.若4和a分别表示一个两位数中的十位数字和个位数字,则4a表示这个两位数B.正方形的边长为a,则4a表示正方形的周长C.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额D.若三角形的底边长为3,面积为6a,则4a表示这边上的高【分析】分别判断每个选项即可得.【解答】解:A.若4和a分别表示一个两位数中的十位数字和个位数字,则40+a表示这个两位数,此选项错误;B.正方形的边长为a,则4a表示正方形的周长,此选项正确;C.若葡萄的价格是4元/千克,则4a表示买a千克葡萄的金额,此选项正确;D.若三角形的底边长为3,面积为6a,则4a表示这边上的高,此选项正确;故选:A.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.2.(3分)(2018秋•洪山区期中)下列去括号或添括号:①3a2﹣6a﹣4ab+1=3a2﹣[6a﹣(4ab﹣1)]②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a+3)④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2其中正确的有()个A.1B.2C.3D.4【分析】根据添括号和去括号法则分别对每一项进行分析,即可得出答案.【解答】解:①3a2﹣6a﹣4ab+1=3a2﹣[6a+(4ab﹣1)]故本选项错误;②2a﹣2(﹣3x+2y﹣1)=2a+6x﹣4y+2,故本选项正确;③a2﹣5a﹣ab+3=(a2﹣ab)﹣(5a﹣3),故本选项错误;④3ab﹣[5ab2﹣(2a2b﹣2)﹣a2b2]=3ab﹣[5ab2﹣2a2b+2﹣a2b2]=3ab﹣5ab2+2a2b﹣2+a2b2,故本选项正确;故选:B.【点评】本题考查了添括号和去括号,添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“﹣”,添括号后,括号里的各项都改变符号;去括号的方法:去括号时,括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.3.(3分)(2018秋•海淀区校级期中)若代数式x2﹣的值为6,则3x2﹣x+4的值为()A.22B.10C.7 D.无法确定【分析】观察题中的两个代数式,可以把x2﹣看成一个整体,将3x2﹣x+4变形为3(x2﹣x)+4,再代入求值即可.【解答】解:∵x2﹣=6,∴3x2﹣x+4=3(x2﹣x)+4=3×6+4=18+4=22.故选:A.【点评】本题考查代数式求值的知识,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2﹣的值,然后利用“整体代入法”求代数式的值.4.(3分)(2018秋•杭州期中)若单项式7x2n y m﹣n与单项式﹣3x6y2n的和是4x2n y2n,则m与n的值分别是()A.m=3,n=9B.m=9,n=9C.m=9,n=3D.m=3,n=3【分析】根据同类项的概念即可求出m与n的值.【解答】解:由同类项的概念可知:2n=6,m﹣n=2n,∴n=3,m=9,故选:C.【点评】本题考查同类项的概念,解题的关键是相同字母的指数需要相等,从而求出m与n的值,本题属于基础题型.5.(3分)(2018秋•宁波期中)李老师从家到学校以每分钟v米走t(t>10)分钟即可到达.一天,刚要出门,李老师就接到学校电话要求提前10分钟到校,那么李老师每分钟需多走()A.米B.米C.米D.米【分析】根据题意,可以用代数式表示出李老师每分钟需多走多少米本题得以解决.【解答】解:由题意可得,李老师每分钟需多走:()米,故选:D.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.6.(3分)(2019春•湖州期中)若A是四次多项式,B是三次多项式,则A+B是()A.七次多项式B.四次多项式C.三次多项式D.不能确定【分析】根据合并同类项法则和多项式的加减法法则可做出判断.【解答】解:多项式相加,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,由于多项式的次数是“多项式中次数最高的项的次数”,A是一个四次多项式,因此A+B一定是四次多项式或单项式.故选:D.【点评】本题主要考查整式的加减,要准确把握合并同类项的法则,合并同类项时只是把系数相加减,字母和字母的指数不变,多项式的次数是“多项式中次数最高的项的次数”.7.(3分)(2018秋•盐都区期中)如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式.如:x3+3xy2+4xyz+2y3是3次齐次多项式,若a x+3b2﹣6ab3c2是齐次多项式,则x的值为()A.﹣1B.0C.1D.2【分析】根据齐次多项式的定义一个多项式的各项的次数都相同,得出关于m的方程x+3+2=6,解方程即可求出x的值.【解答】解:由题意,得x+3+2=6,解得x=1.故选:C.【点评】本题考查了学生的阅读能力与知识的迁移能力.正确理解齐次多项式与单项式的次数的定义是解题的关键.8.(3分)(2019秋•包河区期中)已知x﹣y=3,m+n=2,则(y+m)﹣(x﹣n)的值是()A.﹣1B.1C.﹣5D.5【分析】根据整式的运算法则进行化简,然后将x﹣y与m+n的值代入原式即可求出答案.【解答】解:原式=y+m﹣x+n=﹣(x﹣y)+(m+n)当x﹣y=3,m+n=2时,原式=﹣3+2=﹣1,故选:A.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.9.(3分)(2019春•南京期中)如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm,宽为6cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.16cm B.24cm C.28cm D.32cm【分析】设小长方形的长为x,宽为y,根据图形求出3y+x=7,表示出阴影部分周长之和即可【解答】解:设小长方形的长为xcm,宽为ycm(x>y),则根据题意得:3y+x=7,阴影部分周长和为:2(6﹣3y+6﹣x)+2×7=12+2(﹣3y﹣x)+12+14=38+2×(﹣7)=24(cm)故选:B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(3分)(2019春•相城区期中)在数学中,为了书写简便,18世纪数学家欧拉就引进了“求和”符号“∑”.例如:记=1+2+3+…+(n﹣1)+n,(x+3)+(x+4)+…+(x+n);已知3x2+m,则m的值是()A.﹣4B.﹣16C.﹣25D.﹣29【分析】根据题目中的式子,可以将3x2+m展开,从而可以得到n和m的值,本题得以解决.【解答】解:∵3x2+m,∴(x+2)(x﹣2)+(x+3)(x﹣3)+…+(x+n)(x﹣n)=3x2+m,∴x2﹣4+x2﹣9+…+x2﹣n2=3x2+m,∴n=4,m=﹣4﹣9﹣42=﹣29,故选:D.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出m的值.二.填空题(共8小题,满分24分,每小题3分)11.(3分)(2018秋•延平区校级期中)请你写出一个含x、y两个字母且它的系数是﹣3的三次单项式﹣3xy2或﹣3x2y等,答案不唯一.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据题意可写出﹣3xy2或﹣3x2y等,答案不唯一.故答案为:﹣3xy2或﹣3x2y等,答案不唯一,【点评】考查了单项式,此题为开放性题目,答案不唯一,要求能够根据单项式的系数和次数的定义正确求解.12.(3分)(2019秋•济宁期中)化简:﹣2a﹣(﹣2a﹣1)的结果是1.【分析】所求式子利用去括号法则去括号后,合并同类项即可得到结果.【解答】解:原式=﹣2a+2a+1=1.故答案是:1.【点评】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.13.(3分)(2018秋•西城区校级期中)若(m﹣3)是关于x,y的六次三项式,则m=﹣3.【分析】先观察多项式的项数,再确定每项的次数,最高次项的次数就是多项式的次数.【解答】解:∵(m﹣3)是关于x,y的六次三项式,∴m﹣3≠0,m2﹣5+2=6,解得:m=﹣3.故答案为:﹣3.【点评】此题主要考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.14.(3分)单项式﹣3x m y3与单项式x4y n的和仍是单项式,则m﹣2n=﹣2.【分析】根据单项式﹣3x m y3与单项式x4y n的和仍是单项式知这两个单项式是同类项,依据同类项的定义求得m和n的值,代入计算可得.【解答】解:∵单项式﹣3x m y3与单项式x4y n的和仍是单项式,∴单项式﹣3x m y3与单项式x4y n是同类项,∴m=4,n=3,则m﹣2n=4﹣2×3=﹣2,故答案为:﹣2.【点评】本题考查合并同类项的法则,解题的关键是单项式﹣3x m y3与单项式x4y n是同类项从而求出m 与n的值.本题属于基础题型.15.(3分)(2018秋•金堂县期中)某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将A﹣2B看成2A﹣B,经过正确计算求得结果为3x2﹣3x+5,已知B=x2﹣x﹣1,则正确答案是4.【分析】先根据2A﹣B=3x2﹣3x+5,B=x2﹣x﹣1求出A的表达式,再求出A﹣2B的值即可.【解答】解:∵2A﹣B=3x2﹣3x+5,B=x2﹣x﹣1,∴2A=(3x2﹣3x+5)+(x2﹣x﹣1)=4x2﹣4x+4,∴A=2x2﹣2x+2,∴A﹣2B=(2x2﹣2x+2)﹣2(x2﹣x﹣1)=2x2﹣2x+2﹣2x2+2x+2=4.故答案为:4.【点评】本题考查的是整式的加减,熟知整式的加减实质上是去括号,合并同类项是解答此题的关键.16.(3分)(2018秋•常州期中)如图所示的运算程序中,若开始输入的x值为64,我们发现第一次输出的结果为32,第二次输出的结果为16,……,则第2018次输出的结果为2.【分析】把x=64代入程序中计算,以此类推得到一般性规律,即可确定出第2018次输出的结果.【解答】解:把x=64代入得:×64=32,把x=32代入得:×32=16,把x=16代入得:×16=8,把x=8代入得:×8=4,把x=4代入得:×4=2,把x=2代入得:×2=1,把x=1代入得:1+3=4,以此类推,∵(2018﹣3)÷3=671……2,∴第2018次输出的结果为2,故答案为:2.【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键.17.(3分)(2018秋•海淀区校级期中)《九章算术》是我国古代一部数学专著,其中第八卷《方程》记载:“今有五雀六燕,集称之衝,雀俱重,燕俱轻,一雀一燕交而处,衡视平”,意思是“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两,则用含x的式子表示一只燕的重量为x两.【分析】设一只燕的重量为y两,根据“五只雀比六只燕重.但是将这群雀和这群燕互相交换一只以后,两群鸟一样重,如果假设一只雀重x两”,列出关于x和y的方程,解之,求得含有x得y,代入求出五只雀的重量和六只燕的重量,如果五只雀比六只燕重,则为所求答案.【解答】解:设一只燕的重量为y两,根据题意得:4x+y=x+5y,4y=3x,y=x,则五只雀的重量为:5x,六只燕的重量为:x×6=x,5x>x,(符合题意),故答案为:x.【点评】本题考查了列代数式,正确找出等量关系列出方程是解题的关键.18.(3分)(2018秋•惠山区校级期中)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),……,现用等式A M=(i,j)表示正奇数M 是第i组第j个数(从左往右数),如A7=(2,3),则A2019=(32,49).【分析】根据题意可以发现题目中的数据都是奇数,从第一组开始,每组中的奇数都是奇数个,然后再根据等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),从而可以计算出A2019的值.【解答】解:2019是第=1010个数,设2019在第n组,则1+3+5+7+…+(2n﹣1)≥1010,即≥1010,解得:n≥33.3,当n=31时,1+3+5+7+…+61=961;当n=32时,1+3+5+7+…+63=1024;故第1007个数在第32组,第1024个数为:2×1024﹣1=2047,第32组的第一个数为:2×962﹣1=1923,则2019是+1=49个数.故A2019=(32,49),故答案为:(32,49).【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出A2019的值.三.解答题(共5小题,满分46分)19.(6分)(2019秋•铁力市校级期中)化简:(1)8a2b+2a2b﹣3b2﹣4a2b﹣ab2(2).【分析】(1)根据合并同类项法则计算可得;(2)根据合并同类项法则计算可得.【解答】解:(1)原式=(8+2﹣4)a2b﹣3b2﹣ab2=6a2b﹣3b2﹣ab2;(2)原式=(﹣1)m2n+(﹣+)mn2=﹣m2n﹣mn2.【点评】本题主要考查合并同类项,解题的关键是熟练掌握合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.20.(8分)(2018秋•高邮市期中)小聪在做题目:化简(2x2+6x+5)﹣2(☻x+x2+2)发现x的系数“☻”被污染了,看不清楚.(1)小聪自己想了个“☻”表示的数,得到答案为(3x+1),求:小聪想的“☻”所表示的数;(2)老师看到了说:“你想错了,该题化简的结果是常数.”请通过计算说明原题中“☻”所表示的数.【分析】(1)利用错误式子解出☻;(2)设原题中“☻”所表示的数为a,化简(2x2+6x+5)﹣2(ax+x2+2),根据化简的结果是常数,得出x的一次项系数为0,即可求解.【解答】解(1)∵(2x2+6x+5)﹣(3x+1)=2x2+6x+5﹣3x﹣1=2x2+3x+4=2(x+x2+2),∴☻=;(2)设原题中“☻”所表示的数为a,∵(2x2+6x+5)﹣2(ax+x2+2)=2x2+6x+5﹣2ax﹣2x2﹣4=(6﹣2a)x+1,∵化简结果为常数,∴6﹣2a=0,∴a=3.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(10分)(2018秋•新洲区期中)已知含字母m,n的代数式是:3[m2+2(n2+mn﹣3)]﹣3(m2+2n2)﹣4(mn﹣m﹣1).(1)化简这个代数式.(2)小明取m,n互为倒数的一对数值代入化简的代数式中,恰好计算得代数式的值等于0.那么小明所取的字母n的值等于多少?(3)聪明的小智从化简的代数式中发现,只要字母n取一个固定的数,无论字母m取何数,代数式的值恒为一个不变的数,那么小智所取的字母n的值是多少呢?【分析】(1)原式去括号合并即可得到结果;(2)由m,n互为倒数得到mn=1,代入(1)结果中计算求出b的值即可;(3)根据(1)的结果确定出n的值即可.【解答】解:(1)原式=3[m2+2n2+2mn﹣6]﹣3m2﹣6n2﹣3m2﹣6n2﹣4mn+4m+4=3m2+6n2+6mn﹣18﹣3m2﹣6n2﹣3m2﹣6n2﹣4mn+4m+4=2mn+4m﹣14;(2)∵mn=1,∴原式=2+4m﹣14=0,解得m=3,∴n=;(3)原式=2m(n+2)﹣14,则n+2=0,解得n=﹣2.故小智所取的字母n的值是﹣2.【点评】考查了整式的加减,倒数,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.22.(10分)(2019春•瑶海区期中)书是人类进步的阶梯!为爱护书一般都将书本用封皮包好,现有一本如图1的数学课本,其长为26cm、宽为18.5cm、厚为1cm,小海宝用一张长方形纸包好了这本数学书,他将封面和封底各折进去xcm封皮展开后如图(2)所示,求:(1)则小海宝所用包书纸的面积是多少?(用含x的代数式表示)(2)当封面和封底各折进去2cm时,请帮小海宝计算一下他需要的包装纸至少需要多少平方厘米?【分析】(1)将封面和封底各折进去xcm.列出代数式计算即可;(2)把x=2cm代入(1)的代数式,求解即可.【解答】解:(1)小海宝所用包书纸的面积是:(18.5×2+1+2x)(26+2x)=(38+2x)(26+2x)=4x2+128x+988(cm2);(2)当x=2cm时,S=4×22+128×2+988=1260(cm2).答:需要的包装纸至少是1260平方厘米.【点评】本题考查了列代数式及求代数式的值,能够得到折叠进去的宽度和矩形纸的长、宽的关系,是解决问题的关键.23.(12分)(2018秋•市南区校级期中)将正方形ABCD(如图1)作如下划分,第1次划分:分别连接正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH再划分,得图3,则图3中共有9个正方形;(1)若把左上角的正方形依次划分下去,则第100次划分后,图中共有401个正方形;(2)继续划分下去,第n次划分后图中共有4n+1个正方形;(3)能否将正方形ABCD划分成有2018个正方形的图形?如果能,请算出是第几次划分,如果不能,需说明理由.(4)如果设原正方形的边长为1,通过不断地分割该面积为1的正方形,并把效量关系和几何图形巧妙地结合起来,可以很容易得到一些计算结果,试着探究求出下面表达式的结果.计算(1++++……+)(直接写出答案即可)【分析】(1)探究规律,利用规律即可解决问题;(2)构建方程即可解决问题;(3)构建方程即可判断;(4)利用数形结合的思想解决问题,根据(1++++……+)=S正方形ABCD﹣()n+1•S正计算即可;方形ABCD【解答】解:(1)∵第一次可得5个正方形,第二次可得9个正方形,第三次可得13个正方形,∴第n次可得(4n+1)个正方形,∴第100次可得正方形:4×100+1=401(个);故答案为:401;(2)由(1)得:第n次可得(4n+1)个正方形,故答案为:4n+1;(3)不能,∵4n+1=2018,解得:n=504.25,∴n不是整数,∴不能将正方形ABCD划分成有2018个正方形的图形;(4)由题意:(1++++……+)=S正方形ABCD﹣()n+1•S正方形ABCD=1﹣.【点评】本题考查规律型:图形的变化类问题,解题的关键是学会从特殊到一般的探究规律分方法,属于中考常考题型.。
初中数学代数式的运算单元测试一、选择题1. 下列运算式中,计算结果为6的是()A. 3 × 2 + 1B. 4 × 3 - 2C. 5 × 2 + 1D. 6 × 3 ÷ 22. 若x = -2,则下列运算结果为正数的是()A. x^2 + 3x - 2B. x^2 - 3x - 2C. x^2 + 3x + 2D. x^2 - 3x + 23. 已知a = 3,b = -4,c = 7,则a(b - c)的结果为()A. 33B. -33C. 19D. -194. 单项式2x^2 - 3xy - y^2 + xz简化后的结果是()A. 2x^2 - 3xy - y^2 + xzB. 2x^2 - 3xy - y^2 - xzC. 2x^2 + 3xy - y^2 + xzD. 2x^2 - 3xy + y^2 + xz5. 若(x - 2)(x + 1) = 0,则x的值为()A. -1和2B. 1和-2C. 2和-1D. 1和2二、填空题1. 12xy ÷ 6xy的结果为__________。
2. (3a^2 - 4ab + 2b^2) - (a^2 - 2ab - b^2)的结果为__________。
3. 若x = -2,则x^3 - 3x^2 + 2x的结果为__________。
4. 若(x + 2)(x - 3) = 0,则x的值为__________。
5. 2(3x + 4) - (5 - 2x)的结果为__________。
三、解答题1. 计算并化简:(3x^2 - 2xy + y^2) + (4xy + 5y^2 - x^2)。
2. 若(a - 3)(a + 2) = 0,求a的值。
3. 将4x(x - 3) - 2(x^2 - 2x)化简并写成一般式。
4. 若x = 2,计算并求出下列表达式的值:2x^2 - 3(2 - x) + 4(x^2 + 1)。
代数式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,是代数式的是()A. x + y = 5B. 4>3C. 0D. a^2+b^2≠ 02. 用代数式表示“a的3倍与b的差的平方”,正确的是()A. (3a - b)^2B. 3(a - b)^2C. 3a - b^2D. (a - 3b)^23. 当a = 2,b=-1时,代数式a^2+2ab + b^2的值是()A. 1B. -1C. 9D. 44. 代数式2x - (1)/(3)的系数是()A. 2B. -(1)/(3)C. 2xD. -15. 下列代数式中,单项式有()个。
3x^2y,(1)/(2)xy^2,-5,a,(2)/(x),x + yA. 3B. 4C. 5D. 66. 单项式-frac{3π x^2y}{5}的次数是()A. 1B. 2C. 3D. 47. 多项式3x^2-2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2,-2x,-1C. -3x^2,2x,1D. -3x^2,-2x,-18. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. 2x^2-x + 1C. -2x^2-x - 1D. 2x^2+x + 19. 一个两位数,个位数字是a,十位数字是b,这个两位数可表示为()A. abB. 10a + bC. 10b + aD. a + b10. 已知m - n = 1,则(m - n)^2-2m + 2n的值是()A. -1B. 1C. 2D. 3二、填空题(每题3分,共18分)11. 用代数式表示:比a的(2)/(3)大1的数是_(2)/(3)a + 1_。
12. 单项式-frac{2x^3y^2}{5}的系数是_-\frac{2}{5}_,次数是_5_。
13. 多项式2x^3-3x^2+4x - 1是_三_次_四_项式。
七年级上册第3章《代数式》单元测试卷满分120分姓名:___________班级:___________学号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列各式符合书写要求的是()A.B.n•2C.a÷b D.2πr22.下列式子中a,﹣xy2,,0,是单项式的有()个.A.2个B.3个C.4个D.5个3.下列运算结果是a2的是()A.a+a B.a+2C.a•2D.a•a4.下列合并同类项正确的是()A.a3+a2=a5B.3x﹣2x=1C.3x2+2x2=6x2D.x2y+yx2=2x2y5.对于3x2y﹣2x+3y﹣xy﹣1,小糊涂同学说了四句话,其中不正确的是()A.是一个整式B.由5个单项式组成C.次数是2D.常数项是﹣16.﹣(a2﹣b3+c4)去括号后为()A.﹣a2﹣b3+c4B.﹣a2+b3+c4C.﹣a2﹣b3﹣c4D.﹣a2+b3﹣c4 7.若a+2b=3,则代数式2a+4b的值为()A.3B.4C.5D.68.A和B都是三次多项式,则A+B一定是()A.三次多项式B.次数不高于3的整式C.次数不高于3的多项式D.次数不低于3的整式9.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较10.如图所示,在这个数据运算程序中,若开始输入的x的值为2,结果输出的是1,返回进行第二次运算则输出的是﹣4,…,则第2020次输出的结果是()A.﹣1B.3C.6D.8二.填空题(共6小题,满分24分,每小题4分)11.在x+y,0,2>1,2a﹣b,2x+1=0中,代数式有个.12.若练习本每本a元,铅笔每支b元,那么代数式8a+3b表示的意义是.13.单项式2x m y3与﹣3xy3n是同类项,则m+n=.14.去括号:﹣(a+b﹣c)=.15.一个多项式A与x2﹣2x+1的和是2x﹣7,则这个多项式A为.16.一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么5张桌子需配椅子把.三.解答题(共8小题,满分66分)17.(6分)请你用实例解释下列代数式的意义.(1)﹣4+3;(2)3a;(3)()3.18.(12分)合并同类项:(1)15x+4x﹣10x(2)﹣p2﹣p2﹣p2(3)3x2y﹣3xy2+2yx2﹣y2x(4)19.(6分)先化简,再求值:5xy+2(2xy﹣3x2)﹣(6xy﹣7x2),其中x=﹣1,y=﹣2.20.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为300米,宽为100米,圆形花坛的半径为20米,求广场空地的面积(π取3.14).21.(8分)已知代数式2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1的值与字母x的取值无关,且A=4a2﹣ab+4b2,B=3a2﹣ab+3b2.(1)求a,b的值;(2)先化简代数式:3A﹣[2(3A﹣2B)﹣3(4A﹣3B)],再求该代数式的值.22.(8分)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.23.(8分)某超市出售茶壶和茶杯,茶壶每只定价48元,茶杯每只定价6元,该超市制定了两种优惠方案:①买一只茶壶送一只茶杯;②按总价的90%付款.某顾客需买茶壶3只,茶杯x(x>3)只.(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)(3)讨论买15只茶杯时,按哪种方案购买较为合算?24.(10分)阅读下列材料:①=1﹣,=﹣,=…②③(1)写出①组中的第5个等式:,第n个等式:;(2)写出②组的第n个等式:;(3)利用由①②③组中你发现的等式规律计算:.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、中的带分数要写成假分数,故不符合书写要求;B、中的2应写在字母的前面且省略乘号,故不符合书写要求;C、应写成分数的形式,故不符合书写要求;D、符合书写要求.故选:D.2.解:式子中a,﹣xy2,,0,是单项式的有a,﹣xy2,0,一共3个.故选:B.3.解:a+a=2a,因此选项A不符合题意;a+2=a+2,因此选项B不符合题意;a•2=2a,因此选项C不符合题意;a•a=a2,因此选项D符合题意;故选:D.4.解:A、本选项不能合并,错误;B、3x﹣2x=x,本选项错误;C、3x2+2x2=5x2,本选项错误;D、x2y+yx2=2x2y,本选项正确.故选:D.5.解:式子3x2y﹣2x+3y﹣xy﹣1是一个整式,由五个单项式组成,其次数为3,常数项是﹣1.所以A、B、D正确,C错误.故选:C.6.解:原式=a2+b3﹣c4,故选:D.7.解:∵a+2b=3,∴原式=2(a+2b)=2×3=6,故选:D.8.解:A和B都是三次多项式,则A+B一定是次数不高于3的整式,故选:B.9.解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.10.解:把x=2代入得:×2=1,把x=1代入得:1﹣5=﹣4,把x=﹣4代入得:×(﹣4)=﹣2,把x=﹣2代入得:×(﹣2)=﹣1,把x=﹣1代入得:﹣1﹣5=﹣6,把x=﹣6代入得:×(﹣6)=﹣3,把x=﹣3代入得:﹣3﹣5=﹣8,把x=﹣8代入得:×(﹣8)=﹣4,以此类推,∵(2020﹣1)÷6=336…3,∴第2020次输出的结果为﹣1,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:代数式有x+y,0,2a﹣b,故答案为:312.解:8a+3b表示的意义是买8本练习本和3支铅笔需要的钱数,故答案为:买8本练习本和3支铅笔需要的钱数.13.解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.14.解:原式=﹣a﹣b+c,故答案为:﹣a﹣b+c.15.解:2x﹣7﹣(x2﹣2x+1)=2x﹣7﹣x2+2x﹣1=﹣x2+4x﹣8.故答案为:﹣x2+4x﹣8.16.解:设n张桌子需配椅子a n(n为正整数)把.观察图形,可知:a1=6=2×1+4,a2=8=2×2+4,a3=10=2×3+4,∴a n=2n+4,∴a5=2×5+4=14.故答案为:14.三.解答题(共8小题,满分66分)17.解:(1)﹣4+3表示气温从﹣4℃,上升3℃后的温度;(2)3a表示一辆车以akm/h的速度行驶3小时的路程;(3)()3表示棱长为的正方体的体积.18.解:(1)15x+4x﹣10x=(15+4﹣10)x=9x(2)﹣p2﹣p2﹣p2=﹣3p2(3)3x2y﹣3xy2+2yx2﹣y2x=5x2y﹣4xy2(4)=a2b=a2b.19.解:原式=5xy+4xy﹣6x2﹣6xy+7x2=x2+3xy当x=﹣1,y=﹣2时,原式=(﹣1)2+3×(﹣1)(﹣2)=1+6=720.解:(1)矩形的面积为ab,四分之一圆形的花坛的面积为πr2,则广场空地的面积为ab﹣4×πr2=ab﹣πr2,答:广场空地的面积为(ab﹣πr2)米2;(2)由题意得:a=300米,b=100米,r=20米,代入(1)的式子得:300×100﹣π×202=30000﹣400π=30000﹣400×3.14=28744(米2),答:广场空地的面积为28744米2.21.解:(1)原式=2x2+ax﹣y+6﹣bx2+3x﹣5y﹣1=(2﹣b)x2+(a+3)x﹣6y+5,由题意可知:,解得:;(2)原式=3A﹣[6A﹣4B﹣12A+9B]=3A﹣(﹣6A+5B)=3A+6A﹣5B=9A﹣5B,又∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴原式=9A﹣5B=9(4a2﹣ab+4b2)﹣5(3a2﹣ab+3b2)=36a2﹣9ab+36b2﹣15a2+5ab﹣15b2=21a2﹣4ab+21b2,当a=﹣3,b=2时,原式═21×(﹣3)2﹣4×(﹣3)×2+21×22=189+24+84=297.22.解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.23.解:(1)该客户按方案①购买,需付款:48×3+6(x﹣3)=6x+126答:该客户按方案①购买,需付款(6x+126)元.(2)该客户按方案②购买,需付款:(48×3+6x)×90%=5.4x+129.6答:该客户按方案②购买,需付款(5.4x+129.6)元.(3)当x=15时,6x+126=6×15+126=216(元)5.4x+129.6=5.4×15+129.6=210.6(元)因为216>210.6所以该客户按方案②购买较合算.答:该客户按方案②购买较合算.24.解:(1)①组中的第5个等式为:=﹣,第n个等式为:=﹣;故答案为:=﹣,=﹣;(2)②组的第n个等式为:=(﹣);故答案为:=(﹣);(3)原式=(1﹣)+(﹣)+…+(﹣)=×(1﹣)=.1、三人行,必有我师。
湘教新版七年级上册《第2章代数式》2019年单元测试卷一、选择题(每小题3分,共30分)1.代数式﹣x3+2x+24是( )A.多项式B.三次多项式C.三次三项式D.四次三项式2.下列代数式中单项式共有( )个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.53.将整式﹣[a﹣(b+c)]去括号,得( )A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c4.下面说法正确的是( )A.的系数是 B.的系数是C.﹣5x2的系数是5 D.3x2的系数是35.用代数式表示a与5的差的2倍是( )A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )元.A.4m+7n B.28mn C.7m+4n D.11mn7.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费( )A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2 B.17 C.3 D.1610.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是( )A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a二、填空题(每小题3分,共30分)11.0.4xy3的系数是__________,次数为__________.12.多项式次数为__________.13.写出﹣5x3y2的一个同类项__________.14.化简:a﹣(a+1)+(a﹣1)=__________.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是__________.16.三个连续奇数,中间的一个是n,则这三个数的和是__________.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是__________.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2=__________.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共__________人.20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:__________.三、解答题(共60分)21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.22.计算:(1)xy﹣3xy+6(2)﹣8a﹣a3﹣a2+4a3+a2+7a﹣6(3)7xy﹣xy3+4+6x+xy3﹣5xy﹣3(4)2(x2﹣xy)﹣3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y)].23.先化简,再求值:2x3+4x﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.24.若﹣0.3m x n3与m4n y是同类项,求下列式子的值(﹣5x2y﹣4y3﹣2xy2+3x3)﹣2(x3﹣xy2﹣y3﹣x2y).25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有__________盆花,图5中,应该有__________盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数__________.湘教新版七年级上册《第2章代数式》2019年单元测试卷一、选择题(每小题3分,共30分)1.代数式﹣x3+2x+24是( )A.多项式B.三次多项式C.三次三项式D.四次三项式【考点】多项式.【分析】多项式中的每个单项式叫做多项式的项,有几个单项式即是几项式,由此判定﹣x3+2x+24有三项,是三项式;一个多项式里次数最高项的次数,叫做这个多项式的次数,由于﹣x3是最高次项,由此得出﹣x3+2x+24的次数是3.【解答】解:代数式﹣x3+2x+24是﹣x3、2x、24这三项的和,其中﹣x3是最高次项,∴﹣x3+2x+24是三次三项式.故选C.【点评】本题考查了对多项式的项数和次数的掌握情况,难度不大.多项式的次数是多项式中最高次项的次数,多项式的项数为组成多项式的单项式的个数.2.下列代数式中单项式共有( )个.,﹣xy3,﹣0.5,,,ax2+bx+c,.A.2 B.3 C.4 D.5【考点】单项式.【分析】根据数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式.【解答】解:根据单项式的定义可以做出选择,代数﹣xy3,﹣0.5,,是单项式,共4个,故选:C.【点评】本题主要考查了单项式的定义,要准确掌握定义,较为简单.3.将整式﹣[a﹣(b+c)]去括号,得( )A.﹣a+b+c B.﹣a+b﹣c C.﹣a﹣b+c D.﹣a﹣b﹣c【考点】去括号与添括号.【分析】根据去括号法则,先去小括号,再去中括号,有时可简化计算.【解答】解:根据去括号法则:﹣[a﹣(b+c)]=﹣(a﹣b﹣c)=﹣a+b+c.故选A.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.4.下面说法正确的是( )A.的系数是 B.的系数是C.﹣5x2的系数是5 D.3x2的系数是3【考点】单项式.【分析】根据单项式系数的定义求解.【解答】解:A、的系数是π,故本选项错误;B、的系数是,故本选项错误;C、﹣5x2的系数是﹣5,故本选项错误;D、3x2的系数是3,故本选项正确.故选D.【点评】本题考查了单项式的系数,单项式中的数字因数叫做这个单项式的系数.5.用代数式表示a与5的差的2倍是( )A.a﹣(﹣5)×2 B.a+(﹣5)×2 C.2(a﹣5)D.2(a+5)【考点】列代数式.【分析】先求出a与5的差,然后乘以2即可得解.【解答】解:a与5的差为a﹣5,所以,a与5的差的2倍为2(a﹣5).故选C.【点评】本题考查了列代数式,读懂题意,先求出差,然后再求出2倍是解题的关键.6.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要( )元.A.4m+7n B.28mn C.7m+4n D.11mn【考点】列代数式.【专题】应用题.【分析】根据题意可知4个足球需4m元,7个篮球需7n元,故共需(4m+7n)元.【解答】解:∵一个足球需要m元,买一个篮球需要n元.∴买4个足球、7个篮球共需要(4m+7n)元.故选:A.【点评】注意代数式的正确书写:数字写在字母的前面,数字与字母之间的乘号要省略不写.7.原产量n吨,增产30%之后的产量应为( )A.(1﹣30%)n吨B.(1+30%)n吨 C.n+30%吨D.30%n吨【考点】列代数式.【专题】应用题.【分析】原产量n吨,增产30%之后的产量为n+n×30%,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n+n×30%=n(1+30%)吨.故选B.【点评】本题考查了根据实际问题列代数式,列代数式要分清语言叙述中关键词语的意义,理清它们之间的数量关系.8.某市出租车收费标准为:起步价4元,2千米后每千米a元,李老师乘车x(x>2)千米,应付费( )A.(4+ax)元B.(4+a)x元C.[4+a(x﹣2)]元D.(ax﹣4)元【考点】列代数式.【专题】整式.【分析】审题知:这是一道费用问题,我们只要用基本费用(起步价)+超出费用即可列式,超出费用等于超出2千米的路程乘以单价即可.【解答】解:由题意知:李老师超过2千米的路程为(x﹣2)千米,所以费用为a(x﹣2)所以李老师的总费用为[4+a(x﹣2)]元.故选C.【点评】此题主要考查了用代数式表示费用问题,准确把握题中数量关系是解题的关键,注意计费中不要重复计费,避免出现(4+ax)元的错误.9.若代数式2x2+3x+7的值是8,则代数式4x2+6x+15的值是( )A.2 B.17 C.3 D.16【考点】代数式求值.【专题】整体思想.【分析】由2x2+3x+7的值为8,可以求得2x2+3x的值,代入所求的式子即可求解.【解答】解:∵2x2+3x+7的值是8,∴2x2+3x=1,∴4x2+6x+15=2(2x2+3x)+15=2×1+15=17.故选B.【点评】考查了代数式求值,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式2x2+3x的值,然后利用“整体代入法”求代数式的值.10.有理数a、b在数轴上的位置如图所示,则化简|a|﹣|a﹣b|+|b﹣a|的结果是( )A.﹣3a+2b B.2b﹣a C.a﹣2b D.﹣a【考点】整式的加减;数轴;绝对值.【专题】探究型.【分析】根据数轴可以判断a,b,a﹣b,b﹣a的正负情况,从而可以把绝对值符号去掉,然后化简即可解答本题.【解答】解:根据题目中的数轴可得,a<0,b>0,∴a﹣b<0,b﹣a>0.∴|a|﹣|a﹣b|+|b﹣a|=﹣a﹣(b﹣a)+(b﹣a)=﹣a.故答案为:D.【点评】本题考查绝对值、数轴和整式的加减,解题的关键是去绝对值符号时,判断绝对值内式子的值的正负.二、填空题(每小题3分,共30分)11.0.4xy3的系数是0.4,次数为4.【考点】单项式.【分析】根据单项式系数及次数的定义进行解答即可.【解答】解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.【点评】本题考查的是单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.12.多项式次数为3.【考点】多项式.【专题】常规题型.【分析】根据多项式的次数的定义来求解,多项式的次数是多项式中最高次项的次数.【解答】解:根据题意得:多项式次数为3.故答案为:3.【点评】本题主要考查了多项式的次数的定义.多项式中未知数的次数总和的最大值即为多项式的次数.13.写出﹣5x3y2的一个同类项x3y2.【考点】同类项.【专题】开放型.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:答案不唯一,如x3y2.【点评】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关.14.化简:a﹣(a+1)+(a﹣1)=.【考点】整式的加减.【分析】根据去括号法则和合并同类项法则进行.【解答】解:原式=a﹣a﹣+a﹣=﹣.【点评】去括号的时候,特别注意括号前是负号,括号内的各项要变号.熟练运用合并同类项法则.15.把(x﹣1)当作一个整体,合并3(x﹣1)4﹣2(x﹣1)3﹣5(1﹣x)4+4(1﹣x)3的结果是﹣2(x﹣1)4﹣6(x﹣1)3.【考点】合并同类项.【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:原式=﹣2(x﹣1)4﹣6(x﹣1)3.故答案为:﹣2(x﹣1)4﹣6(x﹣1)3.【点评】本题考查了合并同类项,把(x﹣1)当作一个整体合并是解题关键.16.三个连续奇数,中间的一个是n,则这三个数的和是3n.【考点】整式的加减;列代数式.【分析】中间数为n,分别表示出其它两个数,求和即可.【解答】解:由题意得,其它两个数为:n﹣2,n+2,则三个数的和=n﹣2+n+n+2=3n.故答案为:3n.【点评】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.17.当2x﹣1与3互为相反数时,﹣3﹣7x的值是4.【考点】代数式求值;相反数.【分析】审题义:由互为相反数即两数相加和为0,得到2x﹣1+3=0,求解即可得到x的值,再代入所求代数式求值即可.【解答】解:由题意可得:2x﹣1+3=0,解得x=﹣1,把x=﹣1代入:﹣3﹣7x=﹣3﹣7×(﹣1)=4.故答案为:4.【点评】此题主要考查互为相反数的意义,根据相反数的意义列出方程并准确求解是解题的关键,在代入求值时一定要注意数的符号.18.若a、b互为相反数,c、d互为倒数,x的绝对值是2,则2a+2b﹣3cd+x2=1.【考点】代数式求值;相反数;绝对值;倒数.【分析】利用相反数,倒数,以及绝对值的意义求出a+b,cd,以及x的值,代入原式计算即可得到结果.【解答】解:∵a、b互为相反数,c、d互为倒数,x的绝对值是2,∴a+b=0,cd=1,x=2或﹣2,∴2a+2b﹣3cd+x2=2(a+b)﹣3cd+x2=0﹣3+4=1.故答案为:1.【点评】此题考查了代数式求值,相反数,倒数,以及绝对值,熟练掌握基本概念的意义是解决问题的关键.19.七年级(1)班同学参加数学课外活动小组的有x人,参加合唱队的有y人,而参加合唱队人数是参加篮球队人数的5倍,且每位同学至多只参加一项活动,则三个课外小组的人数共(x+y)人.【考点】列代数式.【分析】三个课外小组的人数=参加数学课外活动小组的人数+参加合唱队的人数+参加篮球队的人数.【解答】解:参加合唱队人数是参加篮球队人数的5倍.∴参加篮球队的人数为:.∴三个课外小组的人数共有x+y+=x+y(人).【点评】解决问题的关键是读懂题意,找到所求的量的等量关系.20.观察下列算式:12﹣02=1+0=1;22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;…若字母n表示自然数,请你观察到的规律用含n式子表示出来:(n+1)2﹣n2=2n+1.【考点】规律型:数字的变化类.【专题】规律型.【分析】根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…进而发现规律,用n表示可得答案.【解答】解:根据题意,分析可得:(0+1)2﹣02=1+2×0=1;(1+1)2﹣12=2×1+1=3;(1+2)2﹣22=2×2+1=5;…若字母n表示自然数,则有:n2﹣(n﹣1)2=2n﹣1;故答案为(n+1)2﹣n2=2n+1.【点评】本题要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题(共60分)21.用代数式表示:(1)m的倒数的3倍与m的平方差的50%;(2)x的与y的差的;(3)甲数a与乙数b的差除以甲、乙两数的积.【考点】列代数式.【分析】根据文字表示代数式的时候,一要注意运算顺序;二要注意代数式的正确书写.【解答】解:(1)50%(﹣m2);(2)(x﹣y);(3).【点评】注意代数式的正确书写:数字写在字母的前面,之间的乘号要省略不写;有除号的时候要写成分数的形式.22.计算:(1)xy﹣3xy+6(2)﹣8a﹣a3﹣a2+4a3+a2+7a﹣6(3)7xy﹣xy3+4+6x+xy3﹣5xy﹣3(4)2(x2﹣xy)﹣3(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy+y)].【考点】整式的加减.【分析】(1)直接合并同类项求解;(2)直接合并同类项求解;(3)直接合并同类项求解;(4)先去括号,然后合并同类项求解.【解答】解:(1)原式=﹣xy+6;(2)原式=﹣a+3a3﹣6;(3)原式=2xy﹣xy3+6x+1;(4)原式=2x2﹣2xy﹣6x2+9xy﹣2x2+4x2﹣2xy+2y=﹣2x2+5xy+2y.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.先化简,再求值:2x3+4x﹣x2﹣(x+3x2﹣2x3),其中x=﹣3.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2x3+4x﹣x2﹣x﹣3x2+2x3=4x3﹣x2+3x,当x=﹣3时,原式=﹣108﹣30﹣9=﹣147.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.若﹣0.3m x n3与m4n y是同类项,求下列式子的值(﹣5x2y﹣4y3﹣2xy2+3x3)﹣2(x3﹣xy2﹣y3﹣x2y).【考点】整式的加减—化简求值;同类项.【专题】计算题;整式.【分析】利用同类项定义求出x与y的值,原式去括号合并后代入计算即可求出值.【解答】解:∵﹣0.3m x n3与m4n y是同类项,∴x=4,y=3,则原式=﹣5x2y﹣4y3﹣2xy2+3x3﹣2x3+5xy2+3y3+2x2y=﹣3x2y﹣y3+3xy2+x3=﹣144﹣27+108+64=1.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.有四个数,第一个数是a2+b,第二个数比第一个数的2倍少3,第三个数是第一个数与第二个数的差,第四个数是第一个数加上﹣b,再减去﹣b2+2a2,当a=,b=﹣时,求这四个数的和.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】根据题意表示出四个数,求出之和,把a与b的值代入计算即可求出值.【解答】解:根据题意得:a2+b+2(a2+b)﹣3+a2+b﹣2(a2+b)+3+a2+b﹣b﹣(﹣b2+2a2)=a2+b+2a2+2b﹣3+a2+b﹣2a2﹣2b+3+a2+b﹣b+b2﹣2a2=a2+2b+b2,当a=,b=﹣时,原式=﹣+=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.26.学校组织羽毛球比赛,七(1)班准备购买羽毛球拍和羽毛球用于训练.询问两家商店后得知:球拍25元/副,球2元/个.甲店说:球拍和球都打9折销售.乙店说:买一副球拍送2个球.(1)准备花90元买2副球拍及若干个球,到哪家商店买更合算?(2)若必须买2副球拍,则在甲店再买多少个球时到两家商店买一样合算?【考点】一元一次方程的应用.【分析】(1)分别计算在甲、乙两店购买的物品数量,比较后得到在哪家商店购买合算;(2)设再买x个球,则可分别表示出甲商店需要的钱数及乙商店需要的钱数,列出方程解答即可.【解答】解:(1)在甲店能买球:(90﹣25×2×0.9)÷(2×0.9)=25(个),在乙店能买球:(90﹣25×2)÷2+2×2=24(个),所以,在甲店买合算.(2)设再买x个球,则0.9(25×2+2x)=2(x﹣2×2)+25×2,解得:x=15.故再买15个球时两家商店买一样合算.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有37盆花,图5中,应该有61盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数3n(n﹣1)+1.【考点】规律型:图形的变化类.【分析】(1)由题意可知:图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…由此得出第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;由此代入求得答案即可;(2)由(1)直接得出答案即可.【解答】解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.【点评】此题考查图形的变化规律,找出图形的摆放规律,得出数字之间的运算方法,利用计算规律解决问题.。
第四章代数式单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数2.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣3.已知﹣2m6n与5m2x n y是同类项,则()A.x=2,y=1 B.x=3,y=1 C.D.x=3,y=0 4.3x2y﹣5yx2=()A.不能运算B.﹣2 C.﹣2yx2D.﹣2xy5.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个6.代数式a+b2的意义是()A.a与b的和的平方B.a与b两数的平方和C.a与b的平方的和D.a与b的平方7.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b8.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.89.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A.104 B.108 C.24 D.2810.如果x﹣y=5,y﹣z=5,那么z﹣x的值是()A.5 B.10 C.﹣5 D.﹣10二.填空题(共10小题,满分30分,每小题3分)11.0.4xy3的系数是,次数为.12.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为;第n个单项式为.13.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=.14.已知关于x的多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,则这个多项式是次项式.15.已知2a x b n﹣1与同3a2b2m(m为正整数)是同类项,那么(2m﹣n)x=.16.若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=.17.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是平方米.18.若4x+3y+5=0,则3(8y﹣x)﹣5(x+6y﹣2)的值等于.19.已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为cm.20.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…猜想:(1)1+3+5+7…+99=;(2)1+3+5+7+…+(2n﹣1)=.结果用含n的式子表示,其中n=1,2,3,…).三.解答题(共6小题,满分40分)21.(6分)已知:M=3x2+2x﹣1,N=﹣x2﹣2+3x,求M﹣2N.22.(6分)若(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,试求a,b的值.23.(6分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.24.(6分)先化简再求值2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=2,b=﹣1.25.(8分)某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:时间(h)057x 甲车位置(km)190﹣10流动加油车位置(km)170270由上面表格中的数据,解决下列问题:(1)甲车开出7小时时的位置为km,流动加油车出发位置为km;(2)当两车同时开出x小时时,甲车位置为km,流动加油车位置为km (用x的代数式表示);(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.26.(8分)如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有盆花,图5中,应该有盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.2.解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.3.解:由同类项的定义可知2x=6,x=3;y=1.故选:B.4.解:3x2y﹣5yx2=﹣2yx2故选:C.5.解:根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.6.解:代数式a+b2的意义是a与b的平方的和.故选:C.7.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.8.解:第一次:3×449+5=1352,第二次:,根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.故选:D.9.解:设最小的代数式是x,则其它三个数分别是x+1,x+7,x+8,四数之和=x+x+1+x+7+x+8=4x+16.A、根据题意得4x+16=104,解得x=22,正确;B、根据题意得4x+16=108,解得x=23,而x+8=31,因为四月份只有30天,不合实际意义,故不正确;C、根据题意得4x+16=24,解得x=2,正确;D、根据题意得4x+16=28,解得x=3,正确.故选:B.10.解:∵x﹣y=5,y﹣z=5,∴(x﹣y)+(y﹣z)=x﹣z=10,∴z﹣x=﹣10.故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.12.解:由题意可知第n个单项式是(﹣1)n﹣12n﹣1x n,即(﹣2)n﹣1x n,第7个单项式为(﹣1)7﹣127﹣1x7,即64x7.故答案为:64x7;(﹣2)n﹣1x n.13.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.14.解:∵多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,∴﹣m=﹣2,m=2,把m=2代入多项式(m﹣2)x2﹣mx+3中,m﹣2=0,∴二次项系数为0,多项式为一次二项式.15.解:由同类项的定义可知x=2,2m=n﹣1,即2m﹣n=﹣1,所以(2m﹣n)x=(﹣1)2=1.16.解:∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得:m=3,n=1,∴m﹣n=3﹣1=;故答案为:.17.解:如图所示,将四块草坪平移到一块儿整体计算;草坪的面积S=(a﹣x)(b﹣x)=ab﹣(a+b)x+x2.18.解:3(8y﹣x)﹣5(x+6y﹣2)=24y﹣3x﹣5x﹣30y+10=﹣8x﹣6y+10=﹣2(4x+3y)+10=﹣2×(﹣5)+10=20.19.解:如图,当圆环为3个时,链长为3a+×2=2a+b(cm),∴当圆环为50个时,链长为50a+2×=49a+b(cm),故答案为(49a+b).20.解:通过找规律可知,每项的结果为等式左边项数的平方,即n2,而1+3+5+7…+99共有50项,所以结果是502=2500.三.解答题(共6小题,满分40分)21.解:M﹣2N=(3x2+2x﹣1)﹣2(﹣x2﹣2+3x)=3x2+2x﹣1+2x2+4﹣6x=5x2﹣4x+3.22.解:∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)=(2﹣2b)x2+(a+3)x﹣6y+b+1,又∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1.23.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.24.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=2,b=﹣1时,原式=2×(﹣1)2=2.25.解:(1)根据题意得:甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);故答案为:﹣90,﹣80;(2)根据题意得:当两车同时开出x小时时,甲车位置为:190﹣40x,流动加油车位置为:﹣80+50x;(3)当x=3时,甲车开出的位置是:190﹣40x=70(km),流动加油车的位置是:﹣80+50x=70(km),则甲车能立刻获得流动加油车的帮助.26.解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.。
代数式与方程单元测试卷
班级姓名
一、填空。
(除标出的题外,每空2分,共46分)
1.一种牛奶原来的单价是2元/盒,现在每盒涨价a元。
现在的单价是()元/盒,现在买5盒要()元。
2.一条路长x米,原计划n天完成,实际提前2天完成,实际
()天完成,实际平均每天修路()米。
3.一个三角形三边长分别为3a,4a和5a。
它的周长是()。
4. 练习本单价为m元/本。
东东买了5本,小西买了3本。
①两人买练习本一共花了()元。
②东东比小西多花()元。
5.鸡兔同笼,鸡a只,兔b只。
鸡兔头共()只,鸡兔脚共()只。
6. 化肥厂计划年产化肥m吨,实际每月比计划多生产n吨。
①m+12n表示()。
m+n表示()。
②
12
7.3月12日是植树节,四(1)班和四(2)班的同学都参加了植树活动。
(1)班种了a棵,(2)班种的比(1)的2倍少6棵。
两个班一共种了()棵。
两班相差()棵。
①如果(1)班种了22棵,(2)班种了()棵。
②如果(2)班种了22棵,(1)班种了()棵。
③如果两班一共种了42棵,(1)班种了()棵。
(1分)
8.明明一家开车自驾游。
上午从A地出发行了x千米。
下午从B 地出发,每小时行70km,行了2小时。
下午比上午多行40千米。
下午行驶的路程可以用代数式表示成()千米
或()千米。
(3分)
9.在某地,人们发现某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,再加上3,就近似地得到该地当时的温度(℃)。
①某次测得蟋蟀1分钟叫a次,当时的温度大约是()℃。
②蟋蟀1分钟叫154次,当时的温度大约是()℃。
③当气温达到30℃时,蟋蟀1分钟大约要叫()次。
(1分)10.小力摆小正方形。
(7
……
照这样一直摆下去,
①填表。
②摆15层,用了多少个小正方形?
③用120个小正方形可以摆几层?
二、解方程。
(每题4分,共24分)
3x+5=41 120-3x=105 36(x-3)=180 25x-17x=136 19x=17x+58 16x=12(x+6)
三、解决问题。
(前4题每题6分,后2题每题3分,共30分)1.甲、乙两个邮递员同时从邮局出发同向而行。
甲骑自行车,乙骑摩托车。
3分钟后,甲就落后于乙1800米。
已知甲的速度是200米/分。
求乙的速度。
(列方程求解)
2.爷爷比云云大64岁,今年爷爷的年龄恰好是云云的9倍。
爷爷今年几岁?(列方程求解)
3.王老师用500元为学校买办公用品。
他先买了20盒水笔,每盒15元。
又买了40本笔记本,正好把钱用完。
求笔记本的单价。
(列方程求解)
4.花圃里有铁树、君子兰和腊梅花共260盆。
君子兰的盆数是铁树的2倍,腊梅花比君子兰多26盆。
铁树有多少盆?
5.甲、乙两个车间加工同样多的服装。
甲车间的工作效率是100套/天,乙车间的工作效率是80套/天。
结果乙车间比甲车间多花2天时间完成任务。
甲、乙两个车间各加工服装多少套?
6.买6件毛衣比买5件衬衣贵900元。
1件毛衣比1件衬衣要贵130元。
求毛衣和衬衣的单价。