船舶预测数学建模 模型
- 格式:doc
- 大小:1.47 MB
- 文档页数:28
舰船运动的拓扑预测模型随着人类社会和科学技术的日益发展,航海船舶在经济和军事领域中扮演着越来越重要的角色。
在现代化的海上交通中,保证舰船航行的安全性和效率性成为了一个关键问题。
而船舶的运动状态是影响其安全性和效率性的重要因素之一。
舰船的运动可以通过运动规律和运动模式来描述。
而在复杂多变的海洋环境中,预测舰船的运动状态成为了一个难点问题。
然而,近年来的研究表明,应用拓扑预测模型可以有效地预测舰船的运动状态。
在拓扑预测模型中,将舰船将其看作是一个时变动力系统,其运动可以通过演化方程进行描述,如下所示:x(t+1) = F(x(t),u(t))其中,x(t)和u(t)分别表示舰船在时刻t的状态变量和输入变量。
F是演化方程,用于描述舰船状态的下一个时刻的状态变量。
拓扑预测模型使用动态符号学 (DS) 技术,将动态系统的时间序列数据映射到符号序列上,从而描述系统的运动特性。
在使用拓扑预测模型预测舰船运动的过程中,首先需要对运动数据进行采集和处理,并将其变换为符号序列。
然后,通过基于模型的时间序列分析方法,可以获得动态系统的拓扑特性,如相空间结构和流形结构等。
通过对舰船运动的拓扑特性进行分析和研究,可以有效地预测舰船的运动状态。
根据预测结果,可以采取相应的措施,如调整船速、航向或航线等,从而确保舰船的安全和效率。
除了舰船运动预测外,拓扑预测模型在其他领域的预测中也有广泛的应用。
例如,可以预测气象、流体力学、金融市场等动态系统的运动状态。
总之,舰船运动的拓扑预测模型具有实际应用价值,对于提高海上交通的安全性和效率性有着重要的作用。
在未来,航海科技将会越来越发达,拓扑预测模型也将有更广泛的应用前景。
船舶避碰决策数学模型的研究随着全球贸易和海洋运输业的发展,船舶交通流量不断增加,船舶碰撞事故也随之增多。
为了避免船舶碰撞,船舶驾驶人员需要具备良好的避碰决策能力。
然而,人工决策易受多种因素干扰,导致判断失误。
因此,研究船舶避碰决策数学模型对提高船舶交通安全性具有重要意义。
船舶避碰决策受到多种因素影响,包括船舶大小、速度、航向、距离、水文气象等。
通过对这些因素进行分析,可以建立相应的数学模型,以辅助船舶驾驶人员做出更准确的避碰决策。
常见的船舶避碰决策数学模型有基于规则的模型、基于知识的模型和基于人工智能的模型等。
为了验证船舶避碰决策数学模型的可行性和优越性,我们设计了一系列实验。
实验中,我们选取不同类型、不同规模的船舶进行模拟航行,并通过数据采集系统获取船舶的各项参数。
然后将这些数据输入到数学模型中,得出相应的避碰决策方案。
对实验数据和模型输出结果进行对比分析,评估模型的准确性和鲁棒性。
实验结果表明,基于人工智能的船舶避碰决策数学模型在准确性和鲁棒性方面均表现出色。
与传统的基于规则和基于知识的模型相比,基于人工智能的模型在处理复杂和未知环境下的避碰决策时,具有更强的自适应能力和更高的预测精度。
同时,该模型还能根据航行环境的实时变化,动态调整避碰决策方案,从而有效降低船舶碰撞风险。
然而,研究中也暴露出一些问题。
实验中使用的船舶参数有限,可能无法涵盖实际航行中的所有情况。
人工智能模型对数据质量和训练时间的要求较高,需要不断优化和改进模型以提高其性能。
如何将该模型与其他船舶控制系统集成,实现实时避碰决策也是未来的研究方向之一。
针对现有研究的不足,未来研究方向可以从以下几个方面展开:扩大实验数据集:通过增加更多的船舶类型、尺度、速度、航向等参数,完善实验数据库,以便更好地评估模型的性能和适用范围。
深化模型理解:对船舶避碰决策的内在机制进行深入研究,明确各影响因素之间的相互作用关系,为模型的优化提供理论支持。
基于数学模型与优化算法的船舶航线规划技术研究随着全球海运业的发展,航线规划技术越来越成为船舶航行中不可缺少的一项技术。
船舶航线规划技术是指根据船舶运行的需求和航道环境,设计出一条最优船舶航线,使得船只可以高效稳定地航行。
为了实现最优航线的设计,数学模型与优化算法已经成为了航线规划技术的主要研究手段。
数学模型是指建立起数学模型来描述船舶在不同的航线上运行时的运行特性和相互作用,以求得最优的航线。
最常用的数学模型是高斯-马尔可夫(Gauss-Markov)模型和蒙特卡罗(Monte-Carlo)模型。
高斯-马尔可夫模型是一种线性模型,它可以描述船舶在运行过程中的确定性因素,包括船速、船长等因素。
蒙特卡罗模型则是一种基于随机模拟的模型,可以描述船舶在未知状态下的运行情况,例如海况变化、船舶故障等因素。
基于以上数学模型,航线规划技术还需要应用优化算法,以求得最优航线。
优化算法是指利用现代优化理论和方法来确定最优的航线方案,最常用的优化算法包括遗传算法、蚁群算法、神经网络算法等。
这些方法可以在多个航线之间进行评估和选择,以求得最优的航线方案。
例如,遗传算法可以模拟自然进化算法,通过不断的遗传变异和选择,最终找到最优的航线方案。
蚁群算法则是模拟蚂蚁自发聚集形成路径的行为,通过相互合作和信息交流,找到最优航线方案。
神经网络算法则是模拟人脑神经元的思维方式,通过不断的学习和演化,找到最优的航线方案。
除了数学模型和优化算法,航线规划技术还需要考虑实际航行情况和船舶的特殊需求。
例如,航行期间需要考虑风向、海流等因素对船舶的影响,以避免出现不必要的风险。
此外,船舶在规划航线时还需要考虑非标准条件下的海域和漩涡、暗礁等地形结构,以确保船只安全运行。
同时,如果需要进行海洋调查、数据采集等工作,可能需要单独计算航线,以保证航行期间数据的准确性。
总的来说,船舶航线规划技术是一项复杂的技术体系,需要综合考虑多种因素,才能达到最优航线的设计。
摘要船舶运动数学模型是船舶运动仿真与控制问题的核心。
目前,船舶运动数学模型建模中主要有两大流派:以Abkowite为代表的整体型结构模型和日本拖曳水池委员会(JTTC)提出的分离型结构模型,简称MMG模型。
本文主要是对于船舶的回转运动进行研究,采用的是MMG模型。
根据13000T散货船的主要参数,通过计算求出所需的相关量,建立了船舶的线性响应型模型。
在此模型的基础上,利用MATLAB中的Simulink模块将此数学模型在该软件中建立一个仿真模型。
在Simulink中对建立的仿真模型进行运行得到船舶运动参数。
通过Simulink的外部模式将仿真结果变成实时输出数据,利用RS232发送并接受数据,用Visual C++连接数据库和RS232的数据提取,再利用Visual C++与SQL的接口读取数据,并通过OSG进行实现船舶回转运动的可视化虚拟仿真。
关键词:船舶回转运动;数学模型;Simulink;视觉仿真;OSGAbstractThe ship motion mathematical model is the problem’s core about the ship motion simulation and control. Currently, there are two major schools in the ship motion mathematical model’s modeling: the overall structure model represented by Abkowite and the separation of structure model referred to as the MMG model proposed by the Japan Towing Tank Committe e (JTTC). This article mainly research on the rotary movement of the ship, using the MMG model. Based on the 13000T bulk carrier’s main parameters, we obtain the required relevant amount by calculating. Then we establish the linear response model of the ship. On the basis of this model, we transfer this mathematical model into a simulation model with the Simulink module of MATLAB. In Simulink, we get the ship motion parameters through running the simulation model. Through Simulink’s external mode, we converse the simulation results into real-time output data, using a standard serial port RS232 to send and receive data. Then we use Visual C++ to connect the database with RS232 data extraction. Using Visual C++ interface with SQL to read database, and conducted by OSG to enable visualization of the ship turning motion of the virtual simulation.Keywords: ship turning motion;mathematical model;Simulink;visual simulation;OSG目录第一章绪论 (1)1.1 课题研究现状 (1)1.2 本课题的意义 (2)第二章响应型船舶运动数学模型的建立 (4)2.1 线性响应模型 (4)2.1.1 线性船舶运动数学模型的建立 (4)2.1.2 线性响应模型 (11)2.2 船舶运动的风、流干扰力数学模型 (12)2.2.1 风的干扰力数学模型 (13)2.2.2 水流的干扰力数学模型 (14)2.2.3 风和流共同作用下船舶的操纵模型 (15)2.3 模型参数的计算 (15)2.3.1 船舶质量与转动惯量的计算 (16)2.3.2 流体动力及流体动力导数的计算 (16)2.3.3 K、T、C的计算 (19)2.3.4 风、流模型中的参数计算 (19)第三章基于Simulink的船舶运动模型的建立与仿真 (21)3.1 Simulink的简介 (21)3.2 线性响应型船舶运动模型的建立 (22)3.2.1 流体动力模型的建立 (23)3.2.2 操纵性指数K、T模型的建立 (29)3.2.3 线性响应型船舶运动模型的建立 (30)3.3 风、流模型的建立 (31)3.3.1 风力模型的建立 (31)3.3.2 流力模型的建立 (34)3.3.3 附加舵角δ∆模型的建立 (34)3.4 模型的整合 (35)3.4.1 压缩子系统 (35)3.4.2 模型的组合 (36)3.5 仿真试验 (38)3.5.1 回转试验 (38)3.5.2 风对船舶运动影响 (40)3.5.3流对船舶运动的影响 (41)3.5.4 结论 (42)第四章Simulink与数据库的连接及视觉仿真的实现 (43)4.1 Simulink模型仿真结果的实时输出 (43)4.2 利用VC++连接数据库与RS232的数据提取 (44)4.3 利用0SG实现视觉仿真 (47)第五章结论 (51)5.1 存在的问题及解决方案 (51)5.2 发展前景 (51)致谢 (52)参考文献 (53)附录I (54)第一章绪论1.1 课题研究现状船舶运动控制以其重要性和复杂性仍然是国内外研究的热点领域。
不同潮流时段船舶靠泊作业风险贝叶斯决策模型不同潮流时段船舶靠泊作业风险贝叶斯决策模型是一种用于评估船舶靠泊作业风险的统计模型。
本文将详细介绍该模型的基本原理和应用。
船舶靠泊作业是指船舶在码头、港口等地停靠并进行装卸货物、补充燃料和维修保养等活动。
由于潮汐的影响,船舶的靠泊作业在不同的潮汐时段可能面临不同的风险。
准确评估不同潮流时段的靠泊作业风险对于保障船舶安全和提高作业效率非常重要。
贝叶斯决策模型是一种基于贝叶斯定理的数学模型,可以根据已有的信息和先验知识,对未知事件进行推断和预测。
在船舶靠泊作业风险评估中,我们可以使用贝叶斯决策模型来预测不同潮流时段的风险水平,并根据预测结果制定相应的决策。
贝叶斯决策模型的基本原理是将未知的参数(即不同潮流时段的风险水平)视为随机变量,并利用先验分布和观测数据来更新参数的概率分布。
具体而言,在船舶靠泊作业风险评估中,我们可以定义一个参数θ表示不同潮流时段的风险水平,假设θ服从某个先验分布,然后利用观测数据来更新θ的概率分布,从而得到不同潮流时段的风险水平的后验概率分布。
具体实施该模型时,首先需要确定潮流时段的风险评估指标。
常用的指标包括船舶靠泊作业的能见度、浪高、风速等。
然后,我们可以利用历史数据和专家知识来构建先验分布。
可以使用过去一段时间内不同潮流时段的风险数据来估计先验分布的参数,或者利用专家提供的主观判断来构建先验分布。
接下来,我们需要收集实际观测数据,并利用观测数据更新参数的概率分布。
当有新的观测数据时,我们可以使用贝叶斯公式将先验分布与观测数据相结合,得到参数的后验概率分布。
具体而言,贝叶斯公式可以表示为:P(θ|X) = P(X|θ) * P(θ) / P(X)P(θ|X)表示参数θ的后验概率分布,P(X|θ)表示观测数据X在给定参数θ下的概率,P(θ)表示参数θ的先验概率分布,P(X)表示观测数据X的概率。
在船舶靠泊作业风险评估中,观测数据X即为不同潮流时段的风险评估指标的实际观测值。
编程语言计算船舶nomoto模型船舶的Nomoto模型是一种经典的数学模型,用于描述船舶的运动特性。
它通常由三个一阶微分方程组成,分别描述船舶在横向、纵向和转向方向上的运动。
编程语言可以用来模拟和计算这个模型,以便分析船舶在不同条件下的运动行为。
在编程语言中计算船舶的Nomoto模型时,可以采用数值积分的方法来求解微分方程。
常见的编程语言如Python、Matlab、C++等都可以用来实现这个模型。
下面我将从不同角度介绍如何使用Python来计算船舶的Nomoto模型。
首先,我们需要建立三个一阶微分方程,分别描述船舶在横向、纵向和转向方向上的运动。
然后,我们可以利用Python中的数值积分库,比如scipy中的odeint函数,来对这个微分方程组进行数值求解。
通过给定船舶的初始状态和外部环境条件,我们可以得到船舶在不同时间下的位置、速度和姿态等信息。
另外,我们也可以利用Python中的数据可视化库,比如matplotlib,来对模拟结果进行可视化展示。
这样可以更直观地观察船舶在不同条件下的运动特性,比如横摇、纵摇、航向变化等。
除了Python,其他编程语言也可以实现类似的计算。
比如在Matlab中,可以使用ode45函数来进行数值积分求解微分方程。
在C++中,可以利用数值积分库,比如GSL,来实现类似的计算过程。
总之,通过编程语言可以很方便地计算船舶的Nomoto模型,从而帮助工程师和研究人员分析船舶的运动特性,优化船舶设计和控制方案。
希望这个回答能够从多个角度全面地介绍了如何使用编程语言计算船舶的Nomoto模型。
船队规划数学建模与算法研究一、本文概述Overview of this article随着全球化和贸易自由化的发展,海上运输作为国际贸易的主要方式之一,其重要性日益凸显。
船队规划作为海上运输的关键环节,其合理性和效率直接关系到企业的运营成本、服务质量和市场竞争力。
因此,如何构建高效、环保、经济的船队,成为当前航运界亟待解决的问题。
With the development of globalization and trade liberalization, the importance of maritime transportation as one of the main modes of international trade is becoming increasingly prominent. Fleet planning, as a key link in maritime transportation, its rationality and efficiency are directly related to the operating costs, service quality, and market competitiveness of enterprises. Therefore, how to build an efficient, environmentally friendly, and economical fleet has become an urgent problem to be solved in the current shipping industry.本文旨在通过数学建模与算法研究,探讨船队规划的最优策略。
我们将对船队规划问题进行定义和分类,明确研究目标和范围。
接着,我们将建立船队规划的数学模型,包括船舶类型选择、航线规划、船舶调度等多个方面,以便对船队运营过程进行定量分析和优化。
船舶航行行为分类预测模型船舶作为海上运输的主要工具,目前在全球各个重要港口均得到广泛使用,航线也越来越多样化和复杂化。
在这样的背景下,预测船舶航行行为变得越来越重要,可以帮助船舶避免事故和碰撞,提高海上交通效率,保障安全。
本文将介绍一种基于机器学习的船舶航行行为分类预测模型,并讲解其应用与优势。
一、背景介绍船舶的自主导航行为主要包括:行驶、停泊、锚泊、卸货、装货、转向等。
船舶在不同的航行行为中的行驶特点存在显著的差异。
预测船舶航行行为可帮助海事管理部门和船舶业主更好地了解船舶的行驶状态,提高海运的效益和安全性。
二、方法介绍模型的主要流程:3. 特征选择:根据特征的相关性和重要性,对提取出的特征进行筛选,选择具有代表性和区分度的特征;4. 训练模型:将特征向量输入到分类器中进行训练,得到训练好的模型;5. 测试模型:使用测试集对训练好的模型进行测试,得到模型的准确率和性能;三、应用场景本模型可以应用于多种船舶航行行为的预测,例如识别船只是否停靠在码头上,是否转弯或掉头等等。
适用于以下情景:1. 船舶交通管制:可以帮助海事部门对船舶的行驶路径和行为进行监控和管理,减少交通事故发生的风险和交通堵塞的情况;2. 货运物流监管:可以帮助企业对货物运输的安全进行监管,保证货物的安全性和时效性;3. 智能航行导航:可以为船舶提供准确的导航和路径规划,优化航行路线,提高海上交通的效率。
四、优势分析本模型采用了机器学习技术,具有以下优势:1. 更高的预测准确率:使用机器学习算法可以有效降低人工判断时的误差率,提高预测准确率;2. 更好的智能化:机器学习算法可以通过不断学习和反馈来不断改进自己的性能,具有更好的智能化特性;3. 更高的应用灵活性:机器学习算法可以应用于多个领域和场景,具有更高的应用灵活性。
五、总结本文介绍了一种基于机器学习的船舶航行行为分类预测模型,以及其应用场景和优势分析。
随着船舶行业的不断发展,预测船舶航行行为将成为船舶领域的一个重要研究方向。
船舶预测数学建模-模型武汉理工大学第十一届大学生数学建模竞赛承诺书我们仔细阅读了《武汉理工大学第十一届大学生数学建模竞赛的选手须知》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们的竞赛编号为: C 10我们的选择题号为: B参赛队员:队员1:刘晓辉队员2:刘春华队员3:黎燕燕评阅编号:现代船舶是为交通运输、港口建设、渔业生产和科研勘测等服务的,随着工业的发展,船舶服务面的扩大,船舶也日趋专业化。
不同的部门对船舶有不同的要求,使用权船舶的航行区域、航行状态、推进方式、动力装置、造船材料和用途等到方面也各不同,因而船舶种类繁多,而这些船舶在船型上、构造上、运用性能上和设备上又各有特点。
目前主要分类方式及特点1、船舶的航行区域:船舶按航行区域可分为海洋船反作用、港湾船舶和内河船舶三种。
航行内湖泊上的船舶一般也归入内河船舶类。
2、船舶航行的状态:船舶按航行状态可归纳为浮行、滑行、腾空航行三种。
浮行是指船舶在航行时,船体的重量和排水量相等而瓢浮在水面航行的船舶(又叫做排水量船)。
水下潜航的船舶也属于浮行。
滑行船舶是指高速状态下航行时,船体的大部分被水的动力作用抬起,在水面滑行。
滑行时船的排水量小于静止时的排水量,同时减小了湿表面积,水阻力大大减小,使船的速度加快。
如快艇、水翼艇。
腾空航行船舶是船身在完全脱离水面的状态下航行的。
如气垫船和冲翼艇。
3、推进方式:船舶按进方式可分为原始的撑篙、拉绎、划桨、摇橹等人力推进的船舶和风力推进的帆船;机械推进的明轮船,喷水船、螺旋桨船、以及空气推进船等。
模型-船舶预测数学建模.武汉理工大学第十一届大学生数学建模竞赛承诺书我们仔细阅读了《武汉理工大学第十一届大学生数学建模竞赛的选手须知》。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们的竞赛编号为: C 10我们的选择题号为: B参赛队员:队员1:刘晓辉队员2 :刘春华:黎燕燕3队员评阅编号:现代船舶是为交通运输、港口建设、渔业生产和科研勘测等服务的,随着工业的发展,船舶服务面的扩大,船舶也日趋专业化。
不同的部门对船舶有不同的要求,使用权船舶的航行区域、航行状态、推进方式、动力装置、造船材料和用途等到方面也各不同,因而船舶种类繁多,而这些船舶在船型上、构造上、运用性能上和设备上又各有特点。
目前主要分类方式及特点1、船舶的航行区域:船舶按航行区域可分为海洋船反作用、港湾船舶和内河船舶三种。
航行内湖泊上的船舶一般也归入内河船舶类。
2、船舶航行的状态:船舶按航行状态可归纳为浮行、滑行、腾空航行三种。
浮行是指船舶在航行时,船体的重量和排水量相等而瓢浮在水面航行的船舶(又叫做排水量船)。
水下潜航的船舶也属于浮行。
滑行船舶是指高速状态下航行时,船体的大部分被水的动力作用抬起,在水面滑行。
滑行时船的排水量小于静止时的排水量,同时减小了湿表面积,水阻力大大减小,使船的速度加快。
如快艇、水翼艇。
腾空航行船舶是船身在完全脱离水面的状态下航行的。
如气垫船和冲翼艇。
3、推进方式:船舶按进方式可分为原始的撑篙、拉绎、划桨、摇橹等人力推进的船舶和风力推进的帆船;机械推进的明轮船,喷水船、螺旋桨船、以及空气推进船等。
明轮是船舶以机器作为动力以来,最古老的一种推进器。
以后又出现把推进哭装在船的艉部水面以下部分的螺旋桨推进器,后来,对少数殊要求的船舶有的在艉部螺旋桨上加上导管,也有在艏部加装辅助的螺旋桨。
大多数船舶螺旋桨的叶片是固定的,对经常驻要求改变工况的船,采用可调螺距的螺旋桨。
浅水航道中的船舶还有喷水推进的。
全浮式气垫船和腾空艇上则用空气螺旋桨推进。
4、动力装置:船舶按动力装置的种类可分为蒸汽机船、内燃机船,。
电力推进船和核动力装置船。
早期使用的蒸汽往复机目前已被淘汰。
汽轮机(有蒸汽轮机和燃汽轮机)在一些高速客船和军舰上使用。
现在各类船舶应用最广的是柴油机动力装置。
小艇1为动力的。
电动推进船是以内燃机或蒸汽机驱动发电机(上也有用汽油机作或直接用蓄电池)发电,再带动与螺旋桨联成一体的电动机来推进船舶。
这种动力装置的螺旋桨转速可任意调节,且操作简单、操纵方便,为有特殊要求的船舶采用,如潜艇、破冰船厂、科学考察船、火车渡船等。
核动力装置是当前世界上较先进的动力装置,它以核反应堆通过原子核的反应,产生蒸汽热能来驱动汽轮机运转。
用途场合分类及特点民用船舶的分类:运输船——客船、客货船、货船(杂货船、散货船、集装箱船、滚装船、载驳船、油船、液化气体船、冷藏船等)、渡船、驳船等。
工程船——挖泥船、起重船、浮船坞、救捞船、布设船(布缆船、敷管船等)、打桩船。
渔业船——网类渔船(拖网渔船、围网渔船、刺网渔船等)、钓类鱼船、捕鲸船、渔业加工船、渔业调查船、冷藏运输船等。
港务船——破冰船、引航船、消防船、供应船、交通船、工作船(测量船船、航标船等)、浮油回收船等。
海洋开发船——海洋调查船,、深潜器(艇)、钻井船、钻井平台等。
拖船和推船——海洋拖船、港作拖船、,内河拖船、海洋拖船、内河拖船等。
、灯标发展中的高速船艇——水翼艇(划水式水翼艇、全浸式水翼艇)、气垫船(全浮式气垫船、侧壁式气垫船)、冲翼艇、半潜式小水面艇、穿浪船等。
军用舰艇的分类:水面战斗舰艇——航空母舰、直升机母舰、战列舰、巡洋舰,驱逐舰、护卫舰、导弹艇、鱼雷艇、猎潜艇、护卫艇等。
水中战斗舰艇——攻击型潜艇(柴油机动力、电动机动力)、战略导弹潜艇(常规动力、核动力)。
特种战斗舰船——两栖舰艇(两栖指挥舰、两栖攻击舰、船坞登陆舰、两栖船坞运输舰、坦克登陆舰、两栖货船、车辆人员登陆艇、通用登陆艇)、布雷舰艇、扫雷舰艇、猎雷艇。
辅助舰艇——后支援船(运输船、舰队补给船、供应维修船、卫生勤务船、捞雷船)、海上救助船(近岸救助船、远洋救助船、潜艇救助船、破冰船)、情报支援船(海洋调查船、侦察船、通讯船、测量船)、试验训练船(导弹靶船、导弹测量船、兵器试验船、海军训练船),港务支援船(港口建设船、港口作业船、港口勤务船等,这类船同民用船如勘探船、打桩船、起重船、驳船、拖船、挖泥船、交通船、引水船、供水船、航标船、灯船、消防船、浮船坞等)。
当今世界订单比例占量比较大的船及特点:1、油船(oil tanker)(油槽船(Tanker)是主要用来装运液体货物的船舶。
油槽船根据所装货物种类不同,又可分为油轮和液化天然气船)指运载石油及石油产品(柴油、汽油和重油等)的船舶。
为了防火防爆,甲板上不允许用带电拖动设备,通常用蒸汽机。
结构上也不设双层底,尾机型,干舷很小,船型丰满,船速不高,为13-17kn。
油船的特点是机舱都设在船尾,船壳衣身被分隔成数个贮油舱,有油管贯通各油舱。
油舱大多采用纵向式结构,并设有纵向舱壁,在未装满货时也能保持船舶的平稳性。
为取得较大的经济效益,二战以后油轮的载重吨位不断地增加,目前世界上最大的油轮载重吨位已达到60多万吨。
油轮以散装原油为主要承运对象,目前,世界上最大的油轮可装载55万吨原油,习惯上把载重量在20万吨以上,30万吨以下的油轮称为大型油轮(VLCC-Very LargeCrude Carrier),把30万吨以上的称为超大型油轮(ULCC-Ultra Large Crude Carrier),油轮装卸一般靠带泵的管道系统完成。
2、散货船的类型灵便型散货船:指载重量在2-5万吨左右的散货船,其中超过4万吨的船舶又被称为大灵便型散货船。
众所周知,干散货是海运的大宗货物,这些吨位相对较小的船舶具有较强的对航道、运河及港口的适应性,载重吨量适中,且多配有起卸货设备,营运方便灵活,因而被称之为“灵便型”。
巴拿马型散货船:顾名思义,该型船是指在满载情况下可以通过巴拿马运河的最大型散货船,即主要满足船舶总长不超过274.32米,型宽不超过32.30米的运河通航有关规定。
根据需要,调整船舶的尺度、船型及结构来改变载重量,该型船载重量一般在6-7.5万吨之间。
好望角型散货船:指载重量在15万吨左右的散货船,该船型以运输铁矿石为主,由于尺度限制不可能通过巴拿马运河和苏伊士运河,需绕行好望角和合恩角,台湾省称之为“海岬”型。
由于近年苏伊士运河当局已放宽通过运河船舶的吃水限制,该型船多可满载通过该运河。
1大湖型散货船(Lake bulk carrier):是指经由圣劳伦斯水道航行于美国、加拿大交界处五大湖区的散货船,以承运煤炭、铁矿石和粮食为主。
该型船尺度上要满足圣劳伦斯水道通航要求,船舶总长不超过222.50米,型宽不超过23.16米,且桥楼任何部分不得伸出船体外,吃水不得超过各大水域最大允许吃水,桅杆顶端距水面高度不得超过35.66米,该型船一般在3万吨左右,大多配有起卸货设备。
3、集装箱船(container ship)是指以装运集装箱货物为主的船舶。
货舱多为单层甲板,双船壳,可堆放3-9层集装箱。
经济航速为19-24kn,集装箱规格:40ft(40×8×8ft)和20ft(20×8×8ft)两种。
事先将货物装入集装箱内,再把集装箱装上船。
这种运输方式的优点是装卸效率高、降低劳动强度、减少货损货差和便于开展多式联运。
目前,集装箱运输发展很快,已成为件杂货的主运输方式。
集装箱船基本上可以分为全集装箱船和半集装箱船两大类。
全集装箱船的货舱和甲板均能装载集装箱。
货舱内设有格栅式货架,以利货箱的固定。
其甲板和货舱盖是平直的,上面可以装2~4层集装箱。
通常船上不设起货设备,而利用码头上的专用设备装卸。
半集装箱船则而在部分货舱装运集装箱,其他货舱装运杂货或散货。
集装箱船的货舱舱口很大,为了保证船体强度,采用双层船壳。
其不仅装卸效率高,船速也较快,多在20k n 以上。
目前,已建造第六代集装箱船,可装载8000个集装箱。
集装箱船可分为部分集装箱船、全集装箱船和可变换集装箱船三种:(1).部分集装箱船(Partial container ship)。
仅以船的中央部位作为集装箱的专用舱位,其他舱位仍装普通杂货。
(2).全集装箱船(Full Container Ship)。
指专门用以装运集装箱的船舶。
它与一般杂货船不同,其货舱内有格栅式货架,装有垂直导轨,便于集装箱沿导轨放下,四角有格栅制约,可防倾倒。
集装箱船的舱内可堆放三至九层集装箱,甲板上还可堆放三至四层。
(3).可变换集装箱船(Convertible Container Ship)。
其货舱内装载集装箱的结构为可拆装式的。
因此,它既可装运集装箱,必要时也可装运普通杂货。
集装箱船航速较快,大多数船舶本身没有起吊设备,需要依靠码头上的起吊设备进行装卸。
这种集装箱船也称为吊上吊下船。
4、液货船(liquid cargo vessel)液化天然气船(liquefied natural gas carrier 缩写LNG carrier):液化天然气主要是甲烷,在常压下极低温(-165℃)冷冻才能使天然气液化,液化后的体积只有气态时的1/600,因而便于运输。
液舱有严格的隔热结构,形状有球场形和矩形。
液化石油气船(liquefied petroleum gas carrier 缩写LPG carrier):液化石油气船分为全加压式液化石油气船;全冷冻式液化石油气船和半加压半冷冻式液化石油气船三种。
液体化学品船(liquid chemical tanker):液体化学品多数是有毒、易燃、腐蚀性强,且品种多。
因此,船舶多为双层底,货舱多且小。
三.未来三年中国造船业发展趋势预测1.基本假设短时间内不会再次出现大影响力的经济危机国内政府对船舶业的扶植不会出现剧烈变化世界市场基本稳定2船舶主要生产类型及用途短时间内不变国内三家主要船舶公司不会出现大的生产问题2.问题分析造船公司主要经过资料查看,影响国内船舶业发展的主要因素可归结为:结构业务变化、国内GDP变化、国内船舶投资及股市、日韩国家的竞争、世界船舶市场需求及世界造船三大指标的影响。