压力容器用钢的应变极限
- 格式:pdf
- 大小:354.26 KB
- 文档页数:4
压力容器常用(chánɡ yònɡ)材料(cáiliào)的基本(jīběn)知识(zhī shi)1、压力容器用钢板(gāngbǎn)选用时应考虑:①设计压力;②设计温度;③介质特性;④容器类别。
2、从材料力学性能来说,升温等效于升压,降温将导致钢材的脆性增加。
3、对同一种材料来说,随温度和板厚的增加,其许用应力则降低。
因而当容器壳体的名义厚度处于钢板许用应力变化的临界值时,应考虑此问题。
如处于16mm的Q235-B、Q235-C和16mm、36mm的Q345R都会发生许用应力跳档现象。
4、钢材的强度和塑性指标可通过拉伸试验和冷弯试验(室温下进行)获得。
5、板材供货时薄板以热轧状态供货,厚板以正火状态供货(因强度和韧性下降)。
6、压力容器用钢板当达到一定的厚度时,应在正火状态下使用,即使用正火板,如用于壳体厚度>30mm的Q345R钢板必须要求正火状态下供货和使用。
需注意:正火仅对板材而言,而非整体设备。
(热轧板呈铁红色,正火板呈铁青色)。
7、压力容器用钢与锅炉用钢类同,首先要保证足够的强度,还要有足够的塑性,质地均匀等。
因此,必须选用杂质(S、P)和有害气体含量较低的碳素钢和低合金钢,均为镇静钢。
且为保证受压元件材料的焊接性能,一般须控制材料的含碳量≤0.25%。
材料的含碳量升高,则其冲击韧性下降,脆性转变温度升高,在焊接时容易产生裂纹。
8、低合金钢的机械性能、耐腐蚀性、耐热性、耐磨性等均比碳素钢有所提高,其中最常用的是:Q345R。
它不仅S、P含量控制较严,更重要的是要求保证足够的冲击韧性,在材料验收方面也比较严格。
因此其使用压力不受限制,使用温度上限为475℃,下限为-20℃。
板厚为3~200mm。
是应用很广的材料。
9、Q345R(GB713-2008)代替原16MnR)的使用说明:①、Q345R的适用范围是:使用压力不限、使用温度为-20~475℃。
压力容器使用温度对材料的要求汇总总体要求1.碳素钢和碳锰钢钢材在高于425℃温度下长期使用时,应考虑钢中碳化物相的石墨化倾向。
2.奥氏体型钢材的使用温度高于525℃时,钢中含碳量应不小于0. 04%。
3.奥氏体型钢材的使用温度高于或等于-196℃时,可免做冲击试验。
低于-196℃~- 253℃,由设计文件规定冲击试验要求。
钢板1.碳素钢和低合金钢钢板(1).用于设计温度高于200℃的Q370R钢板,以及用于设计温度高于300℃的18MnMoNbR、13MnNiMoR和12Cr2M01VR钢板,应在设计文件中要求钢板按批进行设计温度下的高温拉伸试验。
(2).根据设计文件要求,对厚度大于36 mm的标准抗拉强度下限值大于或等于540 MPa 的钢板和用于设计温度低于- 40℃的钢板,可附加进行落锤试验。
试验按GB/T 6803进行,采用P-2型试样,无塑性转变(NDT)温度的合格指标在设计文件中规定。
(3).GB/T 3274-2007《碳素结构钢和低合金结构钢热轧厚钢板和钢带》中的Q235B和Q235C钢板使用规定如下:钢板的使用温度:Q235B钢板为20℃~300℃;Q235C钢板为0℃~300℃。
2.高合金钢钢板(1).使用温度下限:铁素体型钢板为0℃;奥氏体-铁素体型钢板为-20℃;(2).钛-钢复合板钛-钢复合板的使用温度下限按标准对基材的规定,使用温度上限为350℃;(3).铜-钢复合扳铜-钢复合板的使用温度下限按标准对基材的规定,使用温度上限为200℃;钢管1.碳素钢和低合金钢钢管(1).钢管的标准、使用状态及许用应力按下表的规定。
对壁厚大于30 mm的钢管和使用温度低于-20℃的钢管,表中的正火不允许用终轧温度符合正火温度的热轧来代替。
下表中用于设计温度低于-40℃的钢管用钢均应经炉外精炼。
(2).GB/T 8163中10、20钢和Q345D钢管的使用规定:10、20和Q345D钢管的使用温度下限相应为-10℃、0℃和-20℃;(3).GB 9948中各钢号钢管的使用规定如下:10和20钢管的使用温度下限分别为-20℃和0℃。
文件编号: 10-54-9A -A9-3E整理人 尼克压力容器常用钢材金属材料的基本知识1、有关材料力学(机械)性能名词1.1极限强度:材料抵抗外力破坏作用的最大能力,叫做极限强度;分:抗拉强度,抗压强度,抗弯强度,抗剪强度,单位是兆帕。
1.2屈服点,屈服强度,单位是兆帕。
1.3弹性极限:材料在受到外力到某一极限时,若除去此外力,则变形即恢复原状,材料抵抗这一外力的能力。
1.4延伸率:材料受拉力作用断裂时,伸长的长度与原有长度的比值。
1.5断面收缩率:材料受拉力作用断裂时,断面缩小的面积与原有断面面积的比值。
1.6硬度:材料抵抗硬的物体压入表面的能力。
一般是用一定负荷把一定直径的淬硬钢球压材料表面,保持规定时间后卸除载荷,测量材料表面的压痕,按公式用压痕面积除以负荷所得的商。
依据测量方法的不同,有布氏硬度HB,洛氏硬度HR,表面洛氏硬度,维氏硬度HV。
2、金属材料分类2.1 按组分分:纯金属和合金,2.2 按实用分:黑色金属(铁和铁合金),有色金属(指铜,锡,锰,铅,铝等)3、钢铁3.1钢的定义:是指碳含量低于2%的一种铁碳合金,当然,其中还含有一定量的硅、锰、磷、硫等元素。
铁的定义:是指碳含量高于2%的一种铁碳合金。
含碳量小于0.04%为工业纯铁。
3.2 钢的分类3.2.1按化学成分分:碳素钢(除铁外,含有少量的硅、锰、硫、磷);合金钢(钢中加入了一些如铬,镍、钼、钨、钒等元素)3.2.2按含碳量分:低碳钢(含碳量<0.25%);中碳钢(含碳量0.25~0.6%);高碳钢(含碳量>0.6%)。
3.2.3 按质量分:主要是控制钢中含硫、含磷量;普通钢(S不超过0.050%,P不超过0.045%),优质钢(S不超过0.035%,P不超过0.035%),高级优质钢(S不超过0.025%,P不超过0.030%),特级质量钢(S不超过0.015%,P不超过0.025%)。
3.2.4 按用途分:结构钢(建筑、机器零件),工具钢(工具、模具、量具),特殊用途(如不锈钢、耐酸钢、耐热钢、磁钢等),专业用钢(如汽车用钢,化工用钢,锅炉用钢,电工用钢,焊条用钢等)。
q345r的许用应力Q345R是一种常用的压力容器用钢,其机械性能和化学成分符合国家标准GB713-2008中的规定。
对于压力容器来说,其是负责承担压力载荷的,因此其中的应力和应变变化是至关重要的,下面将围绕Q345R的许用应力进行阐述。
第一步,Q345R的应力与应变在理解Q345R的许用应力之前,首先需要知道其在使用过程中的应力与应变状况。
由于压力容器中会存在各种压力载荷,因此会导致容器壁的应力状态不断变化,这个应力状态与材料的本身性质有关。
对于Q345R来说,其属于一种具有较高强度和塑性的结构钢,因此在承担压力时能够较好地保持强度和硬度,避免出现过多的变形和破坏。
第二步,Q345R的许用应力值在设计压力容器时,需要保证其满足强度、稳定性和安全性等要求,因此需要确定其许用应力值。
对于Q345R来说,其许用应力值是由产品规范和设计规范共同约定的,一般情况下其值是不会高于其屈服强度的。
根据国家标准GB713-2008中规定,Q345R的允许应力值为150MPa,在容器的使用过程中,应该尽量避免超过这个数值。
第三步,Q345R的应力分析在实际使用中,需要对压力容器进行应力分析,以确保其在承载压力时不会出现超载或超限的情况。
对于Q345R的应力分析,可以采用典型的有限元方法来进行,通过建立合适的模型和边界条件,可以对容器的应力状态进行预估和分析,从而找出可能存在的问题并进行相应的处理措施。
总而言之,Q345R的许用应力是指在设计和使用过程中,其允许承受的最大应力值,其值大小与容器的材料本身性质和应用环境等因素有关。
使用Q345R制造的压力容器需要进行相应的应力分析和设计,以保证其强度、安全性等要求。
GB150-1998《钢制压力容器》讲解一、概述1、标准适用的压力范围GB150-1998《钢制压力容器》设计压力P:0.1~35 MPa ;真空度:≥0.02 MPaJB4732-95《钢制压力容器-分析设计标准》设计压力P:0.1~100 MPa真空度:≥0.02 MPaJB/T4735-1997《钢制焊接常压容器》设计压力P:圆筒形容器:-0.02 MPa≤P≤0.1 MPa立式圆筒形储罐、圆筒形料仓 -500Pa≤P≤0.2000 Pa矩形容器:连通大气JB4710-2000《钢制塔式容器》设计压力P:0.1~35MPa(对工作压力<0.1MPa内压塔器,P取 0.1MPa)高度范围 h>10m 且h/D(直径)>52.设计时应考虑的载荷1) 内压、外压或最大压差;2) 液体静压力(≥5%P);需要时,还应考虑以下载荷3) 容器的自重(内件和填料),以及正常工作条件下或压力试验状态下内装物料的重力载荷;4) 附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷;5) 风载荷、地震力、雪载荷;6) 支座、座底圈、支耳及其他形式支撑件的反作用力;7) 连接管道和其他部件的作用力;8) 温度梯度或热膨胀量不同引起的作用力;9) 包括压力急剧波动的冲击载荷;10) 冲击反力,如流体冲击引起的反力等;11) 运输或吊装时的作用力。
3、设计单位的职责1) 设计单位应对设计文件的正确性和完整性负责。
2) 压力容器的设计文件至少应包括设计计算书和设计图样。
3) 压力容器的设计总图应盖有压力容器设计资格印章。
4.容器范围GB150管辖的容器范围是指壳体及其连为整体的受压零部件1) 容器与外部管道连接2) 接管、人孔、手孔等的承压封头、平盖及其紧固件3) 非受压元件与受压元件的焊接接头。
接头以外的元件,如加强圈、支座、裙座等4) 连接在容器上的仪表等附件。
直接连接在容器上的超压泄放装置。
压力容器检验标准一、无损检测标准(一)锅炉1.GB/T3323-1987钢熔化焊对接接头射线照相和质量分级2.JB1152-1981锅炉和钢制压力容器对接焊缝超声波探伤3.GB/T11345-1989钢焊缝手工超声波探伤方法和探伤结果分级4.SDJ67-1987电力建设施工及验收技术规范(管道焊缝超声波检验篇)5.JB/T3144-1982锅炉大口径管座角焊缝超声波探伤6.JB/T7602-1994卧式内燃锅炉T形接头超声波探伤2.压力容器1.JB4730-1994压力容器无损检测二、理化试验标准(一)通用标准1.GB/T2975-1998钢材力学及工艺性能试验取样规定2.GB/T228-1987金属拉伸试验方法3.GB/T232-1999金属弯曲试验方法4.GB/T229-1994金属夏比缺口冲击试验方法5.GB/T222-1984钢的化学分析用试样取样法及成品化学成分允许偏差6.GB/T223-1988钢铁及合金化学分析方法(二)锅炉1.GB/T4338-1995金属高温位伸试验方法2.GB/T4160-1982钢的应变时效敏感性试验方法夏比冲击法3.GB/T244-1982金属管弯曲试验方法4.GB/T242-1982金属管扩口试验方法5.GB/T246-1982金属管压扁试验方法(三)压力容器1.GB/T6397-1986金属拉伸试验试样2.GB/T13239-1991金属低温拉伸试验方法3.GB/T231-1984金属布氏硬度试验方法三、国外标准(一)锅炉1.美国ASME第Ⅰ卷动力锅炉建造规范2.英国标准BS2790焊接结构锅壳式锅炉规范3.英国标准BS1113水管蒸汽锅炉规范4.德国标准TRD蒸汽锅炉技术规程(二)压力容器1.美国标准ASME-Ⅷ第一册压力容器2.美国标准ASME-Ⅷ第二册压力容器建造另一规则3.美国标准TEMA美国管式换热器制造协会标准4.英国标准BS5500非直接受火压力容器5.德国规范TRD压力容器技术规程6.德国标准AD压力容器规范7.日本标准JISB8270压力容器(基础标准)8.日本标准JISB8271--B8285压力容器(单项标准)9.法国规范CODAP非直接受火压力容器建造规范。
压力容器金属材料力学介绍关键词:材料强度塑性金属材料力学性能概述金属材料的力学性能指标表征金属抵抗各种损伤作用的能力的大小。
它是判定金属力学性能的依据,是评定金属材料质量的判据,同时也是设计选材和进行强度计算的主要依据。
金属材料的力学性能包括常温下的强度、塑性、韧性,例如屈服点或屈服强度σs(σ0.2)、抗拉强度σb、伸长率δ、断面收缩率φ、冲击韧度ak、疲劳极限、断裂力学性能等。
金属力学性能试验是测定金属力学性能指标所进行的试验。
包括拉伸试验、弯曲试验、剪切试验、冲击试验、硬度试验、蠕变试验、应力松弛试验、疲劳试验、断裂韧度试验、磨损试验等。
一、金属材料强度指标1.屈服强度材料在拉伸过程中,当载荷达到某一值时,载荷不变而试样仍继续伸长的现象,称为屈服。
材料开始发生屈服时所对应的应力,称为屈服点、屈服强度或屈服极限,用σs表示。
我国规定σs取钢材的下屈服点值。
除退火或热轧的低碳钢和中碳钢等有屈服现象外,多数工程材料的屈服点不明显或没有屈服点,此时规定以产生0.2%残余伸长的应力作为屈服强度,用σ0.2表示。
2.抗拉强度试样拉伸时,在拉断前所承受的最大载荷与试样原始截面之比,称为强度极限或抗拉强度,用σb表示。
零件设计选材时,一般应以σs或σ0.2为主要依据。
但σb的测定比较方便精确,因此也有直接用σb作为设计依据的,从安全方面考虑,用σb作为设计依据采用较大的安全系数。
由于脆性材料无屈服现象,则必须以σb作为设计依据。
3.持久极限持久极限又称为持久强度,是指材料在规定温度下达到规定时间而不断裂的最大应力。
常用符号为σb带有一个或两个指数来表示。
例如σ700b/1000,表示在试验温度为700℃时,持久时间为1000h 的应力,即所谓高温持久极限。
4.蠕变极限蠕变极限又称蠕变强度,是在规定温度下,引起试样在一定时间内蠕变总伸长率或恒定蠕变速率不超过规定值的最大应力。
蠕变极限一般有两种表示方法:一种是在给定温度t下,使试样承受规定蠕变速度的应力值,以符号σtε表示,其中ε为蠕变速度,%/h。
环境对压⼒容器⽤钢性能的影响第三节环境对压⼒容器⽤钢性能的影响2.3.1温度不同⽤途的压⼒容器所在的⼯作温度不同。
钢材在低温、中温、⾼温下,性能不同。
⾼温下,钢材性能往往与作⽤时间有关。
介绍⼏种情况的影响:短期静载下温度对钢材⼒学性能的影响⾼温、长期静载下钢材⼒学性能⾼温下材料性能的劣化⼀、短期静载下温度对钢材⼒学性能的影响1、⾼温下在温度较⾼时,仅仅根据常温下材料抗拉强度和屈服点来决定许⽤应⼒是不够的,⼀般还应考虑设计温度下材料的屈服点。
3-3温度对低碳钢⼒学性能的影响2、低温下随着温度降低,碳素钢和低合⾦钢的强度提⾼,⽽韧性降低。
当温度低于20℃时,钢材可采⽤20℃时的许⽤应⼒。
韧脆性转变温度——(或脆性转变温度)当温度低于某⼀界限时,钢的冲击吸收功⼤幅度地下降,从韧性状态变为脆性状态。
这⼀温度常被称为韧脆性转变温度或脆性转变温度。
注意:韧脆性转变温度不是在⼀个特定的温度,⽽是在⼀个温度范围内。
低温变脆的⾦属:具有体⼼⽴⽅晶格的⾦属:如碳素钢和低合⾦钢低温仍有很⾼韧性的⾦属:⾯⼼⽴⽅晶格材料如铜、铝和奥⽒体不锈钢,冲击吸收功随温度的变化很⼩,在很低的温度下仍具有⾼的韧性。
注意:并不是所有⾦属都会低温变脆。
⼆、⾼温、长期静载下钢材⼒学性能蠕变现象:在⾼温和恒定载荷的作⽤下,⾦属材料会产⽣随时间⽽发展的塑性变形,这种现象被称为蠕变现象。
⼀定的应⼒作⽤在:碳素钢(>420℃)、合⾦钢(>400-500oC)上,发⽣蠕变蠕变的危害:蠕变的结果是使压⼒容器材料产⽣蠕变脆化、应⼒松弛、蠕变变形和蠕变断裂。
因此,⾼温压⼒容器设计时应采取措施防⽌蠕变破坏发⽣。
1、蠕变曲线蠕变曲线三阶段(⼀定温度和⼀定应⼒条件下):①减速蠕变;②恒速蠕变;③加速蠕变。
图3-5蠕变应变与时间的关系oa线段——试样加载后的瞬时应变。
a点以后的线段——从a点开始随时间增长⽽产⽣的应变才属于蠕变。
蠕变曲线上任⼀点的斜率表⽰该点的蠕变速率。
奥氏体不锈钢压力容器的应变强化技术发展绿色经济、低碳经济是我国政府对人民、对世界的庄严承诺。
科学技术是第一生产力,是发展绿色经济、低碳经济的必经之路。
承压设备关系石油、核电、煤化工等行业的长远发展,压力容器强化应变技术是承压设备核心技术之一。
奥式体不锈钢是一种具有奥氏体组织构造与性能的钢材,具有耐腐蚀、耐极端温度、综合机械性性能良好等特性,是制造适用于极端环境下压力容器的重要材料。
在能源危机日益凸显的当下,特种设备需要不断扩大,奥式体不锈钢压力容器应变强化技术仍具有巨大的应用前景,该技术一直是压力容器设备制造领域研究热点,本文就此进行概述。
1. 奥式体不锈钢压力容器应变强化原理奥式体不锈钢因其特殊的构造,应力应变行为不同于普通钢材,无屈服平台,屈服强度和强拉强度之间应变硬化段较长,室温延伸率》40%传统的压力容器是基于弹性设计准则设计的,通过限定危险截面应力范围,以增强容器可承压上限,常通过增加厚度、降低应力设计达到以上目的,需消耗大量的钢材,考虑到奥式体不锈钢昂贵的价格,传统压力容器设计原则显然无法满足需要[1] 。
为适应需求,设计人员常通过试加载、卸载,以永久性塑性变形奥式体不锈钢材料,使材料屈曲强度满足设计需求,制造容器后,再通过常温水处理强化,提高奥式体不锈钢屈服强度,一般采用此法设计,可减少20%- 50%勺钢材用量。
该技术许用应力公式为:,其中分母即为塑性变形过程[2] 。
2. 奥式体不锈钢压力容器应变强化技术模式该技术起源于瑞典Avesta Sheffield 公司,于1959 年成功推出第一个成品,被称为Avesta 模式,被纳入压力容器标准,并得到广泛推行,美国为发展航空工艺,逐渐建立了Ardeform 模式,但尚未被相关行业协会选作标准。
2.1 Avesta 模式Avesta 模式基本原理为,将奥氏体不锈钢压力容器于常温下行应变水压强化行塑性变形,最终提高材料屈服强度、抗拉强度,一般以液态氮、氧、氢为介质,可产生8%左右塑性变形,被广泛应用于民用。
一般钢结构应变范围钢结构是一种常见的建筑结构形式,具有高强度、刚度和稳定性等优点。
在使用过程中,钢结构的应变范围是一个重要的考虑因素。
应变是指物体在受力作用下发生的形变量,是衡量材料变形程度的物理量。
钢结构的应变范围通常是指材料在受力下能够承受的最大应变值和最小应变值之间的范围。
这个范围对于设计和施工来说都是至关重要的。
钢结构的应变范围需要在设计阶段确定。
设计师需要根据具体的使用要求、结构形式和材料性能等因素来确定合理的应变范围。
过大的应变范围会导致结构的变形过大,影响结构的安全性和使用性能;而过小的应变范围则可能引起结构的应力集中,导致结构的破坏。
因此,设计师需要综合考虑各种因素,确定合适的应变范围。
施工过程中需要控制钢结构的应变范围。
施工过程中,钢结构可能会受到温度变化、施工荷载和施工误差等因素的影响,从而引起结构的变形。
为了保证施工质量和结构的安全性,施工人员需要采取相应的措施来控制应变范围。
比如,在施工过程中要对结构进行严格的监控和控制,及时发现和修复结构的变形问题;同时,要合理安排施工工序,减少对结构的影响。
钢结构的应变范围还与结构的使用环境和使用要求有关。
不同的使用环境和使用要求对钢结构的应变范围有不同的要求。
比如,在地震区域,结构需要具有较大的应变能力,以保证在地震作用下能够安全运行;而在高温环境下,结构需要具有较小的应变范围,以防止结构的变形。
钢结构的应变范围是一个重要的考虑因素。
设计师和施工人员需要综合考虑各种因素,确定合理的应变范围,并采取相应的措施来控制应变范围,以保证结构的安全性和使用性能。
同时,钢结构的应变范围还需要根据具体的使用环境和使用要求来确定。
只有合理控制应变范围,才能保证钢结构的稳定性和耐久性。
一、钢材的机械性能材料在外力作用下表现出来的特性叫作材料的机械性能,也称为力学性能。
钢材的重要机械性能指标有:1.强度—物体在外力作用下,抵抗产生塑性变形和断裂的特性。
常用的特性指标有屈服极限(CT s)和强度极限(ab),系由拉伸试验获得。
(1)屈服极限材料承受载荷时,当载荷不再增加而仍继续发生塑性变形的现象叫做“屈服”。
开始发生屈服现象’(即开始出现塑性变形)时的应力叫做“屈服极限”或“屈服点”。
工程上取试样发生0.2 %残余变形时的应力值作为条件屈服极限,通常称为屈服强度(Uo.z).在拉伸试验中,屈服强度是试样在拉伸过程中标距部分残余伸长达到原标距长度的0.2帕时的负荷除以原横截面积的商,单位为MPa.一般说来,材料是不允许在超过其Idl服点的载荷条件下工作的。
(2)强度极限材料抵抗外力破坏作用的最大能力称为强度极限。
钢材的强度极限是试样在拉断前所承受的最大应力即抗拉强度(Sb),单位为IvIPa,工程上希望金属材料不仅具有较高的。
,而且具有一定的屈强比(a S(Q b ) o屈强比愈小,结构零件的可靠性愈高。
但屈强比太小,则材料的有效利用率太低。
因此,一般希望屈强比高一些,碳素钢为0.6左右,低合金高强度钢为0.65~0.75,合金结构钢为。
.85左右。
2.塑性—指材料在外力作用一下产生塑性变形而不破坏的能力,用延伸率(6)及断面收缩率(冲)来表示,其数值由拉伸试验获得。
延伸率以试样拉断后的总伸长与原始长度的比值百分率来度量,其数值与试样尺寸有关.为了便于比较,必须采用标准试样,规定试样的原始长度与原始直径的比例关系。
8。
或6,。
表示试样计算长度为其直径的5或10倍时的延伸率(b,。
小于Ss)。
断面收缩率以试样拉断后断面积的缩小量与原始截面积之比值的百分率来度量。
塑性良好的材料可以顺利地进行某些成型工艺,如冷冲压、冷弯曲等。
其次,良好的塑性可使零件在使用过程中万一超载也不致突然断裂。
压力容器的主要零部件都是承压的,无论从制造工艺或安全使用来说,都希望有良好的塑性。
各种材料的屈服极限钢材的屈服强度Q345是一种钢材的材质。
它是低合金钢(C0.2%),广泛应用于建筑,桥梁、车辆、船舶、压力容器等。
Q代表的是这种材质的屈服强度,后面的345,就是指这种材质的屈服值,在345 MPa左右。
并会随着材质的厚度的增加而使其屈服值减小。
Q235的屈服强度就是235MPa,也就是抗拉强度标准值,/1.087就是抗拉强度设计值(拉、压、弯都是一个),规范取为215。
Q345是 345/1.111=310。
见钢结构设计规范GB 50017?2003 条文说明。
需要注意:还有一个抗拉强度fu,这时是指极限抗拉的能力,对钢材讲是指其最小值,Q345的fu=470MPa,1.36fy=1.52f。
篇二:各种塑料的材质性能参数注:所有项目为原材料进货时根据质保书对材料进行核查,带*号的项目为材料进货时对其性能进行的复检注:所有项目为原材料进货时根据质保书对材料进行核查,带*号的项目为材料进货时对其性能进行的复检篇三:材料力学性能符号及含义材料力学性能符号及意义1:比例极限σP: 材料在不偏离应力与应变正比关系(虎克定律)条件下所能承受的最大应力。
2:弹性极限σe :材料在受载过程中未产生塑性变形的最大应力。
3:拉伸弹性模量E: 拉伸实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。
4:剪切弹性模量G: 扭转实验时,材料在弹性变形阶段内,正应力和对应的正应变的比值。
5:屈服强度σ0.2:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度.6:抗拉强度σb:材料在拉伸断裂前所能够承受的最大拉应力。
7:疲劳极限σ-1:在疲劳试验中,应力交变循环大至无限次而试样仍不破损时的最大应力叫疲劳极限。
8:疲劳强度σN:在规定的循环应力幅值和大量重复次数下,材料所能承受的最大交变应力9:伸长率δ5:指金属材料受外力(拉力)作用断裂时,试棒伸长的长度与原来长度的百分比,伸长率按试棒长度的不同分为:短试棒求得的伸长率,代号为δ5,试棒的标距等于5倍直径长试棒求得的伸长率10:断面收缩率ψ:材料受拉力断裂时断面缩小,断面缩小的面积与原面积之比值叫断面收缩率,以ψ表示。
第十章压力容器的焊接技术随着工程焊接技术的迅速发展,现代压力容器也已发展成典型的全焊结构。
压力容器的焊接成为压力容器制造过程中最重要最关键的一个环节,焊接质量直接影响压力容器的质量。
第一节碳钢、低合金高强钢压力容器的焊接一、压力容器用碳钢的焊接碳钢以铁为基础,以碳为合金元素,含量一般不超过1.0%。
此外,含锰量不超过1.2%,含硅量不超过0.5%,Si、Mn皆不作为合金元素。
而其他元素,如Ni、Cr、Cu等,控制在残余量限度内,更不是合金元素。
S、P、O、N等作为杂质元素,根据钢材品种和等级,也都有严格限制。
碳钢根据含碳量的不同,分为低碳钢(C≤0.30%)、中碳钢(C= 0.30%~ 0.60%)、高碳钢(C≥0.60%)。
压力容器主要受压元件用碳钢,主要限于低碳钢。
在《容规》中规定:“用于焊接结构压力容器主要受压元件的碳素钢和低合金钢,其含碳量不应大于0.25%。
在特殊条件下,如选用含碳量超过0.25%的钢材,应限定碳当量不大于0.45%,由制造单位征得用户同意,并经制造单位压力容器技术总负责人批准,并按相关规定办理批准手续”。
常用的压力容器用碳钢牌号有Q235-B、Q235-C、10、20、20R等。
(一)低碳钢焊接特点低碳钢含碳量低,锰、硅含量少,在通常情况下不会因焊接而引起严重组织硬化或出现淬火组织。
这种钢的塑性和冲击韧性优良,其焊接接头的塑性、韧性也极其良好。
焊接时一般不需预热和后热,不需采取特殊的工艺措施,即可获得质量满意的焊接接头,故低碳钢钢具有优良的焊接性能,是所有钢材中焊接性能最好的钢种。
(二)低碳钢焊接要点(1)埋弧焊时若焊接线能量过大,会使热影响区粗晶区的晶粒过于粗大,甚至会产生魏氏组织,从而使该区的冲击韧性和弯曲性能降低,导致冲击韧性和弯曲性能不合格。
故在使用埋弧焊焊接,尤其是焊接厚板时,应严格按经焊接工艺评定合格的焊接线能量施焊。
(2)在现场低温条件下焊接、焊接厚度或刚性较大的焊缝时,由于焊接接头冷却速度较快,冷裂纹的倾向增大。