湿陷性黄土地基处理共27页
- 格式:ppt
- 大小:4.26 MB
- 文档页数:27
湿陷性黄土地基处理方法本文简要介绍湿陷性黄土特性、地基处理原则和处理方法,以供相关人员参考。
由于湿陷性黄土内含有一定成分的可溶盐,经过与雨水或者地表水的作用,会使小土颗粒移滑向大孔缝隙中,导致地面沉陷,如果在黄土地区进行工程建设,需要对湿陷性黄土地基进行特殊的处理办法。
根据实际的不同结构物和不同土质来选用不用的处理方法,保证地基承载力。
标签:湿陷性黄土;地基处理方法1、湿陷性黄土地的特征湿陷性黄土是一种结构不稳定的非饱和欠压土质,具有大孔和垂直节理的特性,土中含有石英、高岭土等成分,主要分布在我国气候干旱等地区,在天然条件下能用肉眼看见孔隙,土质干燥,压缩性较低,承載能力较高。
但是其吸水透水性较强,经过水的侵蚀后其结构很快崩解,引起湿陷变性,承载能力也大幅度降低。
这种土质的特性会给建筑带来极大的安全隐患,使地基沉降、折裂,影响地基的正常使用,湿陷性黄土地基处理方法与其他土质相比,施工过程更为复杂,进度慢、耗时长,有很大的施工难度。
2、湿陷性黄土地基处理的原则对于湿陷性黄土地基的处理要求大致有两点:第一,消除全部黄土的湿陷量,采用一定方法使处理后的地基土壤变为非湿陷性黄土,或者使基桩穿透全部湿陷性黄土层,使建筑荷载通过基桩转移到非湿陷性土层上,防止地基湿陷。
第二,消除部分黄土湿陷量,采用一定方法处理地基总湿陷量,使未处理的湿陷性黄土的湿陷量在规定量的数值内。
不同类型的建筑对湿陷量的要求有所不同,甲类建筑对地基处理要求较为严格,规范规定不允许出现任何的的破坏性形变而影响建筑的正常使用,所以要求全部消除湿陷性黄土的湿陷量。
乙类和丙类建筑的占地面积一般较大,只需要根据要求消除地基部分湿陷量即可,然后根据具体的地基处理情况采取相应的防水措施和结构措施来防止地基湿陷,保证建筑的稳定性和安全性。
3、湿陷性黄土地基处理方法3.1 强夯法强夯法是将重锤利用起重设备吊起在使重锤自由落体,对黄土地基进行强力夯击,以消除湿陷性黄土的湿陷量,降低压缩变形程度,提高地基承载力。
湿陷性黄土地基处理摘要:我国幅员辽阔,涉及多种地理类型,因此在各类基础设施工程建设中,面临的地基现状也大不相同。
在目前的实际开发过程中,折叠黄土地基是一种常见的地基类型。
湿陷性黄土地基目前正在施工,对工程施工质量和安全影响较大。
本文简要分析了当前湿陷性黄土地基的治理现状,希望能为我国湿陷性黄土地基治理技术的发展提供参考。
关键词:折叠黄土地基;处理技术;施工安全;工程质量引言基础设施工程在施工过程中,对地基的现状有一定的要求,如其结构稳定性、富水性、成分等,这些都对工程的施工质量有一定的影响。
目前,在实际开发中,不利的地质状况是导致地基沉降不良和结构变形、裂缝的主要原因。
因此,在实际施工中对不良地质的治理也是工程建设中的主要施工内容之一。
一、湿陷性黄土地基概念分析湿陷性黄土目前在实际开发中,具体情况是在当前干旱条件下,土壤中水分大量蒸发,水分蒸发导致土壤中盐分沉淀,粘性物质在土壤中堆积,导致结构在正常压力下稳定。
但由于土壤内部水分不足,盐分固化,最终形成松散的稳定结构状态。
后期,当降雨或浇水时,土壤吸水粘性物质的粘性力会消散,最终造成土壤沉降现状。
这种土体物理现象一般称为褶皱黄土地基。
目前,在我国北方基础设施项目的开发中,存在很多此类湿陷性黄土地基的现状。
二、湿陷性黄土地基的危害及特点湿陷性黄土地基在基础设施建设中存在诸多不利条件,对工程的稳定施工和后续应用的安全性具有重大影响。
因此,在实际发展过程中,处理湿陷性黄土地基也是工程施工人员常见的一种技术处理状况。
在目前的实际开发过程中,湿陷性黄土地基的主要危害和特点是:承压能力低、结构稳定性差、湿陷性差、施工项目布置不当、施工结构裂缝渗漏等。
2.1低压承载能力湿陷性黄土地基承载力低是一个共同特点。
具体来说,如果不进行特殊处理,直接进行工程施工,会出现很多地基土体剥落、塌陷现象,严重影响工程施工的安全稳定。
并且在后续的施工过程中,对工程的施工安全也有一定的影响。
For personal use only in study and research; not for commercial use湿陷性黄土及地基处理前言:一、湿陷性黄土及地基处理课程的重要性及意义1.湿陷性黄土的概念:由于黄土颗粒表面含有可溶盐,同时其结构具有肉眼可见的近乎铅直的小管孔、在雨水及地表水的浸湿下可溶盐溶解,从而使小土颗粒向大孔隙中滑移,导致地面沉陷,具有这种性质的土称为湿陷性黄土;2.湿陷性黄土对工程的影响:建筑物开裂、突然下陷、突然失稳等;1)建筑工程的安全和使用要求;强度(C、 )、变形(下沉过大);2)地基处理的重要性:增加强度、减少变形。
二、学习本课程的目的通过该课程的学习使同学们掌握湿陷性黄土的设计与施工基本知识及地基处理的方法、技巧等三、本课程的学习方法1.课堂教学:采用多媒体教学与板面教学相结合的方法进行;2.参读关于湿陷性黄土及地基处理、软弱土地基处理等方面的资料;第一章:黄土的分布、成因、分类第一节:黄土的分布一、分布范围世界各大洲均有黄土分布,各大洲黄土覆盖面积占其总面积的比例分别为:欧洲7%、北美5%、南美10%、亚洲3%。
中国黄土主要分布在黄河流域,比较集中的是黄河中游,如山西西部,陕西及甘肃大部分地区内黄土最为发育,地层齐全,厚度大,分布广而连续,除这一区域外,在河北、山东、内蒙、辽宁、吉林、青海、新疆、宁夏南部也有黄土分布,但发育程度均显次之。
二、中国黄土分布的特点1、黄土基本分布在我国北方各省及自治区,南部大致以昆仑山、祁连山、秦岭为界,向东延至泰山和鲁山以北地区。
2、黄土分布地区气侯干燥,降水量少,蒸发量大,属于干旱和半干旱地区,与世界上其它黄土地区的气侯条件相似。
黄土分布地区年降水量多为250~500mm,年降水量小于250mm的地区,则黄土较少,而代之的是沙漠和戈壁;年降水量大于750mm的地区基本上没有黄土分布。
3、黄土的分布地区的北面与沙漠和戈壁相连,自北而南,戈壁-沙漠-黄土三者逐渐过渡,东西向呈条带状排列。
湿陷性黄土的地基处理我国湿陷性黄土的分布面积约占我国黄土总面积的60%,大部分分布在黄河中游地区,土层厚度从几米到十几米,最后达30多米。
本文主要阐述了黄土湿陷性的判定、湿陷性黄土地基湿陷等级的评定以及常用的湿陷性黄土地基的处理措施。
针对不同湿陷性黄土地基的特性,采取相应的地基处理措施。
标签:湿陷性黄土;判定;湿陷等级;地基处理措施1、黄土地基湿陷性原因及分类1.1原因分析黄土在我国一般分布于中部、西部和西北部,属于干旱、半干旱氣候条件下长期作用产生的特殊性质的土。
黄土中粉粒分布概率达到六成以上,富含大量的硫酸盐、碳酸盐等物质,具有孔隙率高的特点,可保持直立的边坡状态。
黄土形成期间,受降雨条件的影响,导致松散的颗粒大量集聚在一起,长期干旱气候导致颗粒内部水分大量蒸发,最终结果是少量水分连接内部盐分,形成了粗颗粒接触连接的形式,即为沉淀类别的胶结物。
随着时间延长,含水量进一步降低,土体颗粒之间的距离变小,内部引力、结合力、毛细作用下的连接力增大,引起土颗粒之间的抵抗作用增加,降低了土粒之间的密实度,形成多孔隙形式的粗粉土颗粒。
大量的工程实践与研究表明,黄土结构、物质特性是湿陷的主要原因,水分子之间的作用力、浸润效果是产生湿陷的次要原因,也是外部的主要影响因素。
黄土在受水浸润状况下,土体之间的可溶性盐发生软化、水解状况,导致聚集物支撑骨架的强度下降,土体受自身重力、外界压力的影响致使结构破坏,进而发生土颗粒滑移现象,导致大量的附加作用产生沉陷结果,称为湿陷性黄土。
1.2黄土地基湿陷性的分类理论上,对湿陷系数<0.015的黄土定义为非湿陷性黄土,湿陷系数≥0.015的黄土称为湿陷性黄土,可分为自重湿陷和非自重湿陷两大类。
黄土受外部水浸湿的影响产生沉陷的为自重湿陷,受自身重力与外界压力共同影响产生湿陷的为非自重湿陷。
针对上述两种类型的黄土,需要进行室内浸水(饱和)压缩试验,以保证对其理论湿陷系数的精确定量化分析。
1、概述湿陷性黄土地基处理主要取决于湿陷性黄土的特殊性质,湿陷性黄土地基的变形包括压缩和湿陷性两种,当基底压力不超过地基土的容许承载力时,地基的压缩变形很小,大都在其上部结构的容许变形值范围以内,不会影响建筑物的安全和正常使用.湿陷变形是由于地基被水浸湿引起的一种附加变形,往往是局部和突然发生,且不均匀,对建筑物破坏性大,危害严重,因此对湿陷性黄土地区的建筑物不论地基承载力是否达到容许承载力,都应对地基进行处理,前者以消除湿陷为目的,后者以提高承载力为主,同时应消除黄土的湿陷性。
我国湿陷性黄土分布很广,各地区黄土的差别很大,地基处理时应区别对待,并结合以下特点:1)湿陷性黄土的地区差别,如湿陷性和湿陷敏感性的强弱,承载能力及压缩性的大小和不均匀性的程度等;2)建筑物的使用特点,如用水量大小,地基浸水的可能性;3)建筑物的重要性和其使用上对限制不均匀下沉的严格程度,结构对不均匀下沉的适应性;4)材料及施工条件,以及当地的施工经验.湿陷性黄土的地基处理措施是采用机械手段对基础的湿陷性黄土进行加固处理,或更换另一种材料改变其物理性质,达到消除湿陷性、减少压缩和提高承载能力的目的,其中大多以第一个目的即消除湿陷为主。
湿陷性黄土的地基处理,在处理深度和处理范围上区分:1)浅处理,即消除建筑物地基的部分湿陷量;2)深基础处理,即消除建筑物地基的全部湿陷量,这种方法包括采用桩基础或深基础穿透全部的湿陷性黄土层.在湿陷性黄土地区设计措施,主要有地基处理措施、防水措施和结构措施三种.地基处理的常用方法有垫层、重锤夯实、强夯、土(或灰土)桩挤密和深层孔内夯扩等,可以完全或部分消除地基的湿陷性,或采用桩基础或深基础穿透湿陷性黄土层,使建筑物基础坐落在密实的非湿性土层上,保证建筑物的安全和正常使用.防水措施使用以防止大气降水、生产和生活用水以及浸入地基,其中包括场地排水、地面的防水、排水沟和管道的排水、防水等,是湿陷性黄土地区建筑物设计中不可缺少的措施.结构措施的作用是使建筑物适应或减少不均匀沉降所造成的危害.在湿陷性黄土地区,国内外使用较多的地基处理方法:重锤表层夯实、强夯、垫层、挤密桩复合地基、垫处理、预浸水、爆扩桩、化学加固和桩基础等。
湿陷性黄土地基处理6地基处理6.1一般规定6.1.1甲类建筑地基的湿陷变形和压缩变形不能满足设计要求时,应采取地基处理措施或将基础设置在非湿陷性土层或岩层上,或采用桩基础穿透全部湿陷性黄土层。
采取地基处理措施时应符合下列规定:1非自重湿陷性黄土场地,应将基础底面以下附加压力与上覆土的饱和自重压力之和大于湿陷起始压力的所有土层进行处理,或处理至地基压缩层的深度;2自重湿陷性黄土场地,对一般湿陷性黄土地基,应将基础底面以下湿陷性黄土层全部处理。
6.1.2大厚度湿陷性黄土地基上的甲类建筑,采取地基处理措施时应符合下列规定:1基础底面以下具自重湿陷性的黄土层应全部处理,且应将附加压力与上覆土饱和自重压力之和大于湿陷起始压力的非自重湿陷性黄土层一并处理;2地下水位无上升可能,或上升对建筑物不产生有害影响,且按本条第1款规定计算的地基处理厚度大于25m时,处理厚度可适当减小,但不得小于25m,且应在原防水措施基础上提高等级或采取加强措施。
6.1.3乙类、丙类建筑应采取地基处理措施消除地基的部分湿陷量。
当基础下湿陷性黄土层厚度较薄,经技术经济比较合理时,也可消除地基的全部湿陷量或将基础设置在非湿陷性土层或岩层上,或采用桩基础穿透全部湿陷性黄土层。
6.1.4乙类建筑采用消除地基部分湿陷量的措施时,应符合下列规定:1非自重湿陷性黄土场地,处理深度不应小于地基压缩层深度的2/3,且下部未处理湿陷性黄土层的湿陷起始压力值不应小于100kPa;2自重湿陷性黄土场地,处理深度不应小于基底下湿陷性土层的2/3,且下部未处理湿陷性黄土层的剩余湿陷量不应大于150mm;3大厚度湿陷性黄土地基,基础底面以下具自重湿陷性的黄土层应全部处理,且应将附加压力与上覆土饱和自重压力之和大于湿陷起始压力的非自重湿陷性黄土层的2/3一并处理;处理厚度大于20m时,可适当减小,但不得小于20m,并应在原防水措施基础上提高等级或采取加强措施。
6.1.5丙类建筑消除地基部分湿陷量的最小处理厚度,应符合表6.1.5的规定。
处理湿陷性黄土地基的方法
湿陷性黄土地基的处理措施有浸水处理、土垫层法、强夯法、压浆法、素土桩挤密法和复层地基法等,具体措施应根据地基条件和建筑要求选择,以改善地基的性质和结构。
1、换填土:挖出一定深度的湿陷性黄土,用合格的土或灰土分层填筑,分层夯实。
2、强夯法:用数十吨重锤从高处落下,反复夯实,强力夯实基础,使浅层和深层得到不同程度的加固。
强夯法振动大,对附近建筑物有影响。
因此,要注意施工附近建筑物的安全。
强夯法用于湿陷性黄土区路基处理,土壤含水量应比塑限含水量低1%~3%。
3、预浸法:钻孔注水,使其预先湿陷。
可用于湿陷性土层厚度大于10m,自重湿陷性不小于50cm的地段。
4、挤密法:用冲击、振动或爆炸形成孔洞,然后用石灰或石灰土填充,分层捣实。
5、化学加固法:将硅酸钠溶液通过多孔注入管压入土壤中,与土壤中的水溶性盐类相互作用,生成硅胶,使土壤胶结。
浅述湿陷性黄土地基处理措施1湿陷性黄土湿陷机理粗粉粒和砂粒在黄土结构中起骨架作用,由于在湿陷性黄土中砂粒含量很少,而且大部分砂粒不能直接接触,能直接接触的大多为粗粉粒。
细粉粒通常依附在较大颗粒表面,特别是集聚在较大颗粒的接触点处与胶体物质一起作为填充材料。
粘粒以及土体中所含的各种化学物质如铝、铁物质和一些无定型的盐类等,多集聚在较大颗粒的接触点起胶结和半胶结作用,作为黄土骨架的砂粒和粗粉粒,在天然状态下,由于上述胶结物的凝聚结晶作用被牢固的粘结着,故使湿陷性黄土具有较高的强度,而遇水时,水对各种胶结物的软化作用,土的强度突然下降便产生湿陷。
2影响黄土湿陷性的因素(1)粒间的组成对湿陷性的影响试验说明,粘粒含量越少,湿陷性越强。
粘粒在黄土的结构中主要起胶结作用,尤其是小于0. 002 mm的细粘粒,它所起的胶结作用更加明显。
粘粒含量少时,黄土骨架的胶结形式主要是薄膜式,所以这种胶结强度教低,容易破坏,从而湿陷性强;粘粒含量高时,黄土骨架的胶结形式多为镶嵌式,故这种胶结强度高,不容易破坏,从而湿陷性弱。
一般来说,黄土中的粘粒含量超过30%时,湿陷性就会基本消失。
(2)可溶盐含量对湿陷性的影响可溶盐包括易溶盐,中溶盐和难溶盐三种。
由于可溶盐在固态时对土粒起胶结作用,但是,溶解后即呈离子状态时就会与土粒表面吸附的阳离了发生置换,所以影响到黄土的湿陷性。
一般认为易溶盐(NaCL、KCL、Na2S03、Na2CO3)含量高时黄土的湿陷性强;中溶盐(CaSO4)含量多时湿陷性也越大;难溶盐(CaC03)在黄土中既起骨架的作用又起胶结的作用,即难溶盐的含量越多,湿陷性就越弱。
(3)含水率对湿陷性的影响天然含水率比较低的黄土湿陷性较强,而天然含水率高的黄土湿陷性就比较弱。
所以,当天然含水率大于25%时,或者处于地下水位以下时,黄土就没有湿陷性了。
(4)干重度对湿陷性的影响黄土的干重度越小,孔隙比就越大,湿陷系数也就越大。