二次函数y=a(xh)2的图象和性质 (左右平移) 课件
- 格式:ppt
- 大小:527.50 KB
- 文档页数:13
活动 四: 课堂 总结 反思【教学反思】 ①[授课流程反思]新课导入环节中, 引导学生在观察函数图象上下功夫, 同时给学生设置有悬念的问题, 使学生积极思考问题;在探究新知过程中, 让学生经历类比联想、归纳总结的过程, 应用由特殊到一般的思想, 增强学生的观察、分析、归纳和表达能力. ②[讲授效果反思] 引导学生注意三点: (1)明确记忆函数图象的开口方向、对称轴、顶点坐标;(2)函数图象的平移规律;(3)掌握函数的性质. ③[师生互动反思] 教学过程中, 教师对学生进行引导, 使他们能够积极投入到对数学知识的探索过程中来, 养成探索的好习惯. ④[习题反思]好题题号__________________________________________ 错题题号__________________________________________反思教学过程和教师表现, 进一步提升操作流程和自身素质. 一、知识回顾: 画出二次函数y =- (x +1)2, y =- (x -1)2的图象, 并考虑它们的开口方向、对称轴、顶点以及最值、函数值的变化情况.先列表:x … -4 -3 -2 -1 0 1 2 3 4 …y =-12(x +1)2… … y =-12(x -1)2……在坐标纸上描点并画图:(1)观察图象, 填开口方向顶点对称轴最值对称轴右侧的增(2)请在图上把抛物线y=-x2也画上去(草图).①抛物线y=- (x+1)2, y=- x2, y=- (x-1)2的形状大小________.②把抛物线y=- x2向______平移________个单位, 就得到抛物线y=- (x+1)2;把抛物线y=- x2向______平移________个单位, 就得到抛物线y=- (x-1)2.(2)对于抛物线y=a(x-h)2与y=ax2的图象, 形状________, 位置__________.当h>0时, 抛物线y=a(x-h)2的图象可由y=ax2的图象向________平移________个单位得到;当h<0时, 抛物线y=a(x-h)2的图象可由y=ax2的图象向________平移________个单位得到.小试牛刀:2.抛物线y =4(x -2)2与y 轴的交点坐标是________, 与x 轴的交点坐标为________.3. (1)把抛物线y =3x2向右平移4个单位后, 得到的抛物线的表达式为________. (2)把抛物线y =3x2向左平移6个单位后, 得到的抛物线的表达式为________.4.(1)将抛物线y =- (x -1)2向右平移2个单位后, 得到的抛物线表达式为__________. (2)将抛物线y =-13(x -4)2向________平移________个单位得到y =-13x 2.5. 写出一个顶点是(5, 0), 形状、开口方向与抛物线y =-2x2都相同的二次函数表达式__________.当堂巩固检测(1)二次函数y =2(x +5)2的图象是________, 开口________, 对称轴是________, 当x =____________时, y 有最________值, 是________.(2)二次函数y =-3(x -4)2的图象是由抛物线y =-3x2向________平移________个单位得到的;开口________, 对称轴是________, 当x =________时, y 有最__________值, 是__________.(3)将二次函数y =2x2的图象向右平移3个单位后得到函数________的图象, 其对称轴是________, 顶点是________, 当x________时, y 随x 的增大而增大;当x________时, y 随x 的增大而减小.(4)将二次函数y =-3(x -2)2的图象向左平移3个单位后得到函数____________的图象, 其顶点坐标是________, 对称轴是__________, 当x =________时, y 有最________值, 是________.(5)抛物线y =4(x -3)2的开口方向__________, 对称轴是__________, 顶点坐标是__________, 抛物线有最________点, 当x =__________时, y 有最________值, 其值为__________, 抛物线与x 轴的交点坐标为________, 与y 轴的交点坐标为________.三、课时小结1. 抛物线y =2(x +3)2的开口__________;顶点坐标为________;对称轴是________; 当x >-3时, y 随x 的增大而__________;当x =-3时, y 有最________值是________. 2.抛物线y =m(x +n)2向左平移2个单位后, 得到的函数表达式是y =-4(x -4)2, 则m =________, n =________.3.二次函数y =a(x +h)2(a ≠0)的图象由y = x2向右平移得到的, 且过点(1, 2), 试说明向右平移了几个单位?。