1
ρ2
P2 P + Q2 2
P Ai + AiT P − ZiC − (ZiC)T + Q2 P 2 2 2 <0 2 P − ρ I 2
(2.13)
首先,由式(2.13)求得P和 i,然后由式(2.12) 2 L 求得 P 和 Ki 。 1
20
二、一类非线性系统的模糊控制方法 一类非线性系统的模糊控制方法 一类非线性系统的模糊控制
2 n1 3 4 n2
(2.1)
其中x , x ∈R , x , x ∈R (n = 2(n1 + n2 ))是系统的状态向量,状 态是可量测的, u∈ Rm 是控制输入向量,y∈Rm 是系 统的可量测输出向量,C ∈R , f 2 , f 4 是光滑非线性函 数,d2 , d4是外部扰动,x =[x1T , x2T , x3T , x4T ]T ∈Rn , m = n1 + n2 ,d =[0, d ,0, d ] .
9
二、一类非线性系统的模糊控制方法 一类非线性系统的模糊控制方法 一类非线性系统的模糊控制
1.一类非线性系统的模糊H∞控制问题 问题描述:考虑如下的非线性系统
& x1 = x2 & x2 = f 2 (x, u) + d2 & x3 = x4 x4 = f 4 (x, u) + d4 &
证明 选取
Lyapunov
5
一、模糊T-S控制简介 模糊T 模糊
从而提出了基于模糊T-S模型的松弛二次稳定控制方 案。Liu等人推广了文[65]的二次稳定充分条件,进 一步降低保守性,提出了一种二次稳定控制方案[66 -67]。Park借助T-S模糊模型,提出一种在线参数估 计方法[68]并研究了参数不确定非线性系统的稳定性 问题[69]。文[70]给出了一种积分模糊模型的系统设 计方案。T-S模糊模型还被用来研究非线性关联系统 的跟踪控制问题[71]、非线性奇异系统的稳定性问题 [72]和带有执行器饱和的非线性系统的鲁棒控制问题 [73]。文[74-75]提出了时延系统的模糊模型,并讨 论了非线性时延系统的分析和综合问题。文[76]给出 了不确定模糊时延系统的二次稳定控制方法。文[77]