第六章 因子分析 (2)
- 格式:docx
- 大小:12.34 KB
- 文档页数:2
第六章因子分析第六章因子分析§6.1因子分析的基本原理与模型一、因子分析的基本思想基本思想:根据相关性的大小将变量分组,使得同组内变量间的相关性较高,不同组间的相关性较低。
每组变量代表一个基本结构,并用一个不可观测的综合变量形式表示,这个基本结构成为公共因子。
此时的原始变量就可以分解成两部分之和的形式,一部分是少数几个不可测的所谓公共因子的线性函数,另一部分是与公共因子无关的特殊因子。
目的:从一些有错综复杂的问题中找出几个主要因子,每个主要因子代表原始变量间相互依赖的一种作用。
二、因子分析的基本模型常用的因子分析模型:R型因子分析和Q 型因子分析(一)R型因子分析模型R型因子分析是对变量作因子分析。
R型因子分析中的公共因子是不可直接观测但又客观存在的共同影响因素,每一个变量都可以表示成公共因子的线性函数与特殊因子之和,即:其中:称为公共因子,称为的特殊因子矩阵表达式:且满足:(1)(2),即公共因子与特殊因子是不相关的(3),即各公共因子不相关且方差为1(4),即各个特殊因子不相关,方差不要求相等模型中称为因子载荷,是第个变量在第个因子上的负荷,如果把变量看成维空间中的一个点,则表示它在坐标轴上的投影,因此矩阵称为因子载荷矩阵。
(二)Q型因子分析Q型因子分析是对样品作因子分析。
模型同上注:主成分分析与因子分析的区别主成分分析的数学模型本质上是一种线性变换,是将原始坐标变换到变异程度大的方向上去,相当于从空间上转换观看数据的的角度,突出数据变异的方向,归纳重要信息。
因子分析与主成分分析一样都属降低变量维数的方法。
但因子分析的本质是从显在变量去“提炼”潜在因子的过程。
模型中应注意的问题:(1)变量的协方差阵的分解式为即(2)因子载荷不是唯一的。
三、因子载荷阵的统计意义(一)因子载荷的统计意义对于因子模型可知的协方差若对作标准化处理,的标准差为1,且的标准差为1则(相关系数)综上可知:对于标准化后的,是的相关系数,一方面表示的依赖程度,绝对值越大,密切程度越高;另一方面也反映了变量对公共因子的相对重要性。
第六讲因⼦分析第五讲因⼦分析在许多实际问题中,涉及的变量众多,各变量间还存在错综复杂的相关关系,这时最好能从中提取少数综合变量,这些综合变量彼此不相关,⽽且包含原变量提供的⼤部分信息。
因⼦分析就是为解决这⼀问题提供的统计分析⽅法。
以后,如⽆特别说明,都假定总体是⼀个p维变量:它的均值向量,协⽅差矩阵V=(ij)pp都存在。
第⼀节正交因⼦模型1.1 公共因⼦与特殊因⼦从总体中提取的综合变量:F1, F2, … , F m(m于是,我们有:变量X i的信息=公共因⼦可以表达部分公共因⼦不可表达部分这就是所谓因⼦模型。
⽬前,公共因⼦可以表达的部分由公共因⼦的线性组合表⽰。
即上⾯的因⼦模型可以写成以下的形式:1.2 正交因⼦模型设总体,均值向量,协⽅差矩阵。
因⼦模型有形式:其中m如果引⼊以下向量与矩阵:则因⼦模型的矩阵形式为:对于正交的因⼦模型,还要进⼀步要求:z1. 。
即有:公共因⼦是互相不相关的。
z2. 。
即:特殊因⼦和公共因⼦不相关。
1.3 因⼦载荷矩阵1.矩阵A称为因⼦载荷矩阵(component matrix),系数a ij称为变量X i在因⼦F j上的载荷(loading)。
由于特别,如果总体是标准化的,则有Var(X i)=1,从⽽有:于是:即变量X i在公共因⼦F j上的载荷a ij就是X i与F j的相关系数。
2.载荷矩阵的估计:主成分法。
主成分法是估计载荷矩阵的⼀种⽅法,由于其估计结果和变量的主成分仅相差⼀个常数倍,因此就冠以主成分法的名称。
在学到这⾥的时候,不要和主成分分析混为⼀谈。
主成分法是SPSS系统默认的⽅法,在⼀般情况下,这是⽐较好的⽅法。
以数据“应征⼈员”为例,按特征值⼤于1提取公共因⼦。
在⽤不同⽅法获得因⼦载荷时,公共因⼦对总体⽅差的贡献率以主成分法为最⾼:⽅法贡献率 %Principle components 81.476Maximum likelihood74.304Unweighted least squares74.485Principal axis factoring74.462Alpha factoring74.540Image factoring69.365关于主成分法的内容可参看任何⼀本多元统计分析书,例如:《应⽤多元统计分析》,⾼惠璇著,北京⼤学出版社,p301。
第五章主成分分析
clear
set more off
cd
"C:\Users\zhou\OneDrive\Lectures_ebook\multivariate_statistics\labora tory\03principal"
use data
*定义变量的标签
label var area "省份"
label var x1 "GDP(亿元)"
label var x2 "居民消费水平(元)"
label var x3 "固定资产投资(亿元)"
label var x4 "职工平均工资(元)"
label var x5 "货物周转量(亿吨公里)"
label var x6 "居民消费价格指数(上年100)"
label var x7 "商品零售价格指数(上年100)"
label var x8 "工业总产值(亿元)"
describe
sum
corr
//findit factortest
//ssc install factortest
//check the data
factortest x1-x8
pca x1-x8, correlation /*主成分估计*/
pca x1-x8, covariance component(3) /*主成分估计*/
//test
estat kmo /*KMO检验,越高越好*/
estat smc /*SMC检验,值越高越好*/
screeplot /* 碎石图(特征值等于1处的水平线标示保留主成分的分界点)*/ loadingplot , yline(0) xline(0)/*载荷图 */
loadingplot , combined factors(3) yline(0) xline(0)/*载荷图 */
predict f1 f2 f3 /*预测变量得分*/
scoreplot,mlabel(area) yline(0) xline(0) /*得分图*/
scoreplot,xtitle("经济社会总量") ytitle("人民生活水平") mlabel(area) yline(0) xline(0) /*得分图*/
scatter f2 f3,xtitle("人民生活水平") ytitle("物价水平") mlabel(area) yline(0) xline(0) /*得分图*/
scoreplot, factors(3) mlabel(area) /*得分图*/
scoreplot,combined factors(3) mlabel(area) yline(0) xline(0) /*得分图*/
//ranking by score
describe f1-f3
sort f1 //sorting
gen rank_nature=_n //ranking
browse area f1 rank_nature // show dat
gsort -f1 //generalized sorting
gen rank_nature1=_n //ranking
browse area f1 rank_nature rank_nature1 // show dat
cor x1-x8
matrix CM=r(C) //define covariance matrix
pcamat CM, comp(3) n(1000) names(a1 a2 a3 a4 a5 a6 a7 a8)
//rotate /*旋转*/。