9实验九 果蝇的三点测交
- 格式:ppt
- 大小:1.12 MB
- 文档页数:12
果蝇的三点测交试验
果蝇的三点测交试验是一种经典遗传学实验,用于研究性状的遗传方式和遗传规律。
该实验利用果蝇容易繁殖、生命周期短、遗传稳定等特点,通过人工控制交配,可以确定
基因型和表型的关系,从而深入了解遗传现象。
实验步骤:
1.饲养果蝇:首先需培育出足够数量、健康的果蝇,确保其基因型和表型的稳定性。
采用人工饲养的方式,果蝇的饲养环境需控制恒温、恒湿、恒光、无杂质。
2.选取实验材料:选择具有稳定性状的果蝇为实验材料。
例如,选取表现为黑色眼睛、有翅膀、灰色体色的果蝇为正常型(wild type),选取表现为白色眼睛、无翅膀、黄色体色的果蝇为突变型(mutant type)。
3.实验设计:设计交配方案,进行杂交。
将正常型的雌性与突变型的雄性交配,产生
F1代。
将F1代的雌性与F1代的雄性进行三点测交试验。
4.观察表型:观察F1代和F2代的表型。
例如,如果F1代的全部表现为正常型,说明突变型的性状为隐性遗传;如果F1代和F2代都表现为正常型和突变型的混合,则说明突
变型的性状为隐性遗传;如果F1代表现为正常型,F2代表现为正常型和突变型比例为3:1,则说明突变型的性状为显性遗传。
5.计算遗传比例:根据后代表型推断基因型,利用遗传学计算方法计算各基因型在后
代中分布的比例。
三点测交试验是一种重要的遗传学方法,通过该方法可以深入了解不同性状的遗传方式,对基因表达和遗传变异进行研究,为进一步揭示生命现象的本质提供了重要的方法和
思路。
竭诚为您提供优质文档/双击可除果蝇三点测交实验报告篇一:果蝇三点测交实验实验报告20XX年11月2日—20XX年11月27器编号___摘要:本实验通过白眼、小翅、焦刚毛三隐性雌果蝇与野生型雄果蝇杂交,得到F1代后使其自交,统计F2代各类果蝇数目,进行连锁分析并验证连锁互换定律。
引言:生殖细胞形成过程中,位于同一染色体上的基因是连锁在一起,作为一个单位进行传递,称为连锁律。
在生殖细胞形成时,一对同源染色体上的不同对等位基因之间可以发生交换,称为交换律或互换律。
连锁和互换是生物界的普遍现象,也是造成生物多样性的重要原因之一。
一般而言,两对等位基因相距越远,发生交换的机会越大,即交换率越高;反之,相距越近,交换率越低。
因此,交换率可用来反映同一染色体上两个基因之间的相对距离。
以基因重组率为1%时两个基因间的距离记作1厘摩(centimorgan,cm)。
基因座位很近,只发生一次交换,重组值=交换率基因座位较远,可发生两次交换,重组值<交换率基因图距就是通过重组值的测定而得到的。
如果基因座位相距很近,重祖率与交换率的值相等,可以直接根据重组率的大小作为有关基因间的相对距离,把基因顺序地排列在染色体上,绘制出基因图。
如果基因间相距较远,两个基因往往发生两次以上的交换,这是如果简单的把重组率看作交换率,那么交换率就会被低估,图距就会偏小。
这时需要利用试验数据进行校正,以便正确估计图距。
基因在染色体上的相对位置的确定除进行两个基因间的测交外,更常用的是三点测交法,三点测交法就是研究三个基因在染色体上的位置。
如a、b、c三个基因是连锁的,要测定三个基因的相对位置可以用野生型果蝇(+++,表示三个相应的野生型基因)与三隐性果蝇(abc,三个突变型基因)杂交,制成三因子杂种abc/+++,再用三隐性个体对雌性三因子杂种进行测交,以测出三因子杂种在减数分裂中产生的配子类型和相应数目。
由于基因间的交换,除产生亲本类型的两种配子外,还有六种重组型配子,因而在测交后代中有8种不同表型的果蝇出现,这样经过数据的统计和处理,一次试验就可以测出三个连锁基因的距离和顺序,这种方法,就叫三点测交或三点试验。
果蝇三点测交实验生93 沈睿2009012372 同组:敖佳明一.实验目的1.理解和验证基因的连锁和交换定律。
2.通过实验计算在同一染色体上控制三对性状的基因的相对位置和图距。
3.深入了解果蝇生活史、世代周期。
二.实验原理1.三点测交通过一次杂交和一次测交,同时确定三对等位基因的排列顺序和它们之间的图距。
首先用野生型果蝇和带有三个隐性性状的果蝇杂交,获得三个基因均为杂合的子代(F1),再使F1与三隐个体测交,得到的后代中多数个体与亲本个体相同,也存在少量与亲本不同的个体,即重组型。
通过对测交后代表型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定三个基因在同一染色体上的顺序和距离,并能计算出并发率。
2.完全连锁现象雄性果蝇具有较为罕见的基因完全连锁现象,所以在做测交实验时,需挑出杂交F1代处女蝇与三隐雄蝇进行杂交,如果性别反转,则结果会严重偏离实验目的,得不到三对性状的基因的相对位置和图距。
三.实验器材野生型(wt)果蝇一瓶、三隐(白眼w、小翅m、焦刚毛sn,相关基因均在第三号染色体上)果蝇一瓶、双筒解剖镜、广口瓶、麻醉瓶、毛笔、解剖针、乙醚、果蝇培养基、25℃培养箱。
四.实验步骤1.配制培养基培养基成分如下表所示:成分名量成分名量玉米粉180 g 糖稀80 g大豆粉20 g 麦芽糊精80 g琼脂15 g 对羟基苯甲酸甲酯溶液(防腐剂)2.5 g粉末溶于16 ml 95%的乙醇啤酒酵母37 g表1 果蝇培养基成分表先将1.5 L水烧开,然后将玉米粉在烧杯中溶于额外500 ml水,慢慢搅拌并混匀,再慢慢倒入(边加边搅动,防止结块)已煮沸的1.5 L水中,混匀,煮沸后,保温并调节温度至50度,保持3-4小时。
大约保温3小时左右。
将称量好的大豆粉、琼脂、啤酒酵母、麦芽糊精混合搅匀,一块加入保温的玉米糊中,边加边搅拌至混合均匀,提高温度煮沸。
煮沸后先换成小火,再加入称量好的糖稀,慢加快搅,务必防止糖稀粘锅煮糊。
遗传学实验实验报告果蝇的三点测交杂交实验姓名:刘乐乐班级:生计11.3 学号:201100140084 时间:11月18日一、实验目的:1、学习果蝇三点杂交实验的原理和方法。
2、通过三点测交,验证基因的连锁与交换规律,确定基因在染色体上的位置。
3、掌握果蝇的杂交技术,并学会记录交配结果和数据统计处理的方法。
二、实验原理1、基因的连锁与交换位于同一条染色体上的基因是连锁的,而同源染色体上的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型。
重组型出现的多少反映出基因间发生交换的频率的高低。
而根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正,来求出基因图距。
2、三点测交用野生型纯合体与三隐性个体杂交,获得三因子杂种(F1),再使F1与三隐性基因纯合体测交,通过对测交后(Ft)代表现型及其数目的分析,分别计算三个连锁基因之间的交换值,从而确定这三个基因在同一染色体上的顺序和距离。
通过一次三点测验可以同时确定三个连锁基因的位置,即相当于进行三次两点测验,而且能在试验中检测到所发生的双交换。
如果两个基因间的单交换并不影响邻近两个基因的单交换,那么预期的双交换频率应当等于两个单交换频率的乘积,但实际上观察到的双交换值往往低于预期值,因为每一次发生单交换,它邻近也发生一次交换的机会就减少,这叫干涉。
一般用并发率表示干涉的大小。
3、实验材料♀6(wmsn白眼小翅卷刚毛)×18♂三、实验材料、仪器和用品1、黑腹果蝇(Drosophila melanogaster)18和6品系;2、解剖镜、恒温培养箱、培养瓶、麻醉瓶、毛笔、滤纸、培养皿;3、乙醚等。
四、实验步骤第一周:1、选择2只6号雌果蝇和2只18号雄果蝇放入新的培养管中,并贴上标签,写上杂交组合、实验时间、实验者的姓名等内容。
遗传学实验报告果蝇双因子杂交、伴性遗传杂交和三点测交实验目的:学习果蝇杂交方法、遗传学数据统计处理方法;实验验证自由组合规律、伴性遗传规律;通过三点测交学习遗传作图。
实验原理: 1. 双因子杂交本实验使用18号野生型果蝇和14号纯合黑檀体、残翅果蝇进行杂交,其中黑檀体对灰体为隐性,残翅对长翅为隐性,两对基因位于非同源染色体上。
正交 反交18♀×14♂ 14♀ × 18♂双因子杂交遗传图解 2. 伴性遗传杂交本实验使用18号野生型果蝇与纯合白眼果蝇杂交,其中白眼相对于红眼是隐性性状,白眼基因位于X 染色体上。
正交 反交18♀ × w ♂ w ♀ × 18♂伴性遗传图解F 1⊗F 2: 灰长:灰残:黑长:黑残=9:3:3:1P灰长黑残F1⊗ F 2: 灰长:灰残:黑长:黑残=9:3:3:1 灰长P 黑残P X +X + X w YP X w X w X+YF 1: X +X w X +YF 1: X +X w Xw Y⊗ ⊗F 2: X + X + X +X + Y X w Y ♀红眼 ♀红眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1 F 2: X +X w X w X X + Y X w Y ♀红眼 ♀白眼 ♂红眼 ♂白眼 1 : 1 : 1 : 1♀红眼♂白眼 ♂白眼♀红眼3. 三点测交本实验使用6号纯合白眼、卷刚毛、小翅果蝇与18号野生型果蝇杂交,获得F 1代后再自由交配即可获得具有8种表型的测交F 2代。
白眼、卷刚毛、小翅均为X 染色体上的隐性性状。
P 6号♀(wsnm/wsnm ) × 18号♂(+++/Y)白卷小红直实验材料:18号野生型果蝇 ,14号纯合黑檀体、残翅果蝇,白眼果蝇,6号纯合白眼、卷刚毛、小翅果蝇;麻醉瓶、酒精灯、玻璃板、毛笔、培养管、酒精棉球、乙醚、解剖镜 实验步骤:1. 杂交前提前将装有不同表型果蝇培养管中的成年果蝇全部放出,确保8-10小时后培养管中的雌果蝇都是刚刚孵化的处女蝇。
遗传学实验果蝇的三点侧交一、实验原理三点测交把三个基因包括在同一次交配中,即用三杂合体abc/+++或ab+/++c跟三隐性个体abc/abc测交。
进行这种试验,一次就等于三次“两点试验”,而且带有另外两个优点。
一次三点测验得到的三个重组值是在同一基因型背景、同一环境条件下得到的,而三次“两点试验”就不一定这样。
重组值既受基因型背景的影响,也受各种环境条件的影响,所以,只有从三点试验所得到的三个重组值才是严格地可以互相比较的。
通过三点测交试验,可以得到三次两点试验所不能得到的资料,即双交换的资料。
果蝇的白眼、小翅、卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛雌蝇(wmsn/wmsn)与野生型雄蝇交配(+++/Y),F1雌蝇全部为野生型,雄蝇则全部表现为三隐性突变型,让F1互交,在F2中,不管雌雄性别,除了出现双亲类型外,还会出现新的表型种类,这是由于F1雌蝇中两个染色体之间发生了互换的结果,根据基因在染色体线性排列的遗传理论,对F2进行分析即可知不同基因间的连锁距离。
因为这三个基因位于性染色体上,所以这个试验也可用来作为伴性遗传试验。
当基因位于X或Y染色体上时,一般不含相对的等位基因,产生伴性遗传,在正交和反交试验中产生不同的结果。
二、实验材料1 、用具显微镜,麻醉瓶,白色硬纸板,小毛笔或解剖针,培养瓶,标签、恒温培养箱、解剖镜2、材料野生型果蝇原种、白眼突变型果蝇原种3、药品乙醚,乙醇,培养基三、试验步骤1、选三隐性雌性处女蝇(wmsn/wmsn )和野生型雄蝇(+++/Y 5~6对置于新鲜培养瓶中作正交,同时选野生型雌性处女蝇(+++/+++)和三隐性雄蝇(wmsn/Y)同置于新鲜培养瓶中,作为反交,贴上标签,注明亲本类型,实验日期,组别及姓名。
2、一周后,在实验室倒去亲本果蝇,一定要倒干净,一只也不能留。
(此时瓶壁上应有黑色蛹)3、二周后,F1蝇长出,实验室内观察F1雌蝇和F1雄蝇的各个性状,并观察正反交不同组合的结果如何。
遗传学实验报告果蝇三点测交实验2009012337 生92 盛心磊同组组员:李骜飞、张延庆、刘昱、郭泽华、薛静雯、王静楠、周央中一、实验目的1.根据给定的果蝇性状设计出合理的实验方案,并按照预定实验方案设计三点测交试验,进行果蝇麻醉,处女蝇挑选,果蝇转移和杂交等操作,并按时观察和记录果蝇的状态、生理特征等信息。
2.学会运用统计学的方法分析实验结果,判定结果的可信程度,了解统计学的重要意义。
3.熟练运用解剖镜,了解果蝇培养的条件和基本的实验方法。
4. 学会计算图距,并学会绘制基因图谱5. 更好地理解基因重组率和图距的概念,进行基因定位,了解X2检验的应用二、实验原理1. 果蝇生活史普通果蝇(Drosophila melanogaster)是双翅目的昆虫,它的生活史从受精卵开始,精力幼虫、蛹和成虫阶段,是一个完全变态的过程。
果蝇繁殖力强,在适宜的温度下(20°-25°,30°以上不育)每只受精的雌蝇能够产卵400个左右,每两个星期完成一个世代。
成熟的雌蝇在交尾后(2-3d)产卵在培养基的表层,经过一天孵化成幼虫,4-5d之后开始化蛹,附在瓶壁上,最后羽化出成虫。
成虫在羽化出8-12h后开始交配,25°下果蝇的寿命是37d。
2. 果蝇性状特征及判定标准雌蝇雄蝇体型较大体型较小腹部椭圆形末端稍尖腹部末端钝圆腹部背面5条黑纹腹部背面3条黑纹最后一条延伸至腹面成一黑斑无性梳第一对足第一跗节有性梳表1 雌雄果蝇主要差异比较(注:性梳为最可靠的鉴别特征,但观察起来稍费时间。
一般在进行大量计数时,选择观察腹部形状以及条纹数进行判定。
)3. 三点测交为确定三个连锁基因在染色体上的顺序和相对距离所作的一次杂交和一次测交。
染色体上两连锁基因距离越远,在它们之间非姊妹染色单体互换的机会就越多,反之就越少,因此可用这两基因间的互换百分数(一般可用它们之间的重组百分数)的大小来表示它们之间距离的远近,而以1%的互换(或重组)定为一个图距,作为连锁基因的距离单位。
果蝇X染色体上基因相对顺序和距离的测定宋蕊(同组者:张月)200900140103 生科四班摘要本实验用表型为白眼、小翅、焦刚毛(w sn3 m/w sn3 m)雌蝇与红眼、长翅、直刚毛(+++/Y)雄蝇纯合体杂交,产生雌蝇(w sn3 m/+++)和雄蝇(w sn3 m/Y),F1兄妹交即测交,通过统计F2代中各表型的个体数,估算这些基因间的交换值,确定其在X染色体上的相对位置,绘制出连锁遗传图。
1 引言1903年,Sutton 根据减数分裂中染色体的行为与Mendel假设的因子的行为平行,推断基因位于染色体上。
同时认为,一条染色体上必然有多个基因,这些基因在配子形成时不能自由组合而是相互连锁。
Morgan等人实验证实了这个推论,并发现连锁的基因可以通过交换产生重组,连锁强度与染色体上连锁基因的直线距离有关。
1913年,Sturtevant 按上述思路,以重组频率作为基因间的距离尺度。
确定了果蝇X 染色体上几个基因的相对顺序和距离。
绘制了遗传史上第一张遗传学图,并提出了基因在染色体上线性排列的观点。
位于同一条染色体上的基因是连锁的,同源染色体的基因之间会发生一定频率的交换,使子代中出现一定数量的重组型。
重组型出现的多少,即重组值反映基因间发生交换的频率的高低。
根据基因在染色体上直线排列的原理,基因交换频率的高低与基因间的距离有一定的对应关系。
基因图距就是通过基因间重组值的测定而得到的。
如果基因座位相距很近,重组率与交换率的值相等,直接将重组值作为基因图距;如果基因间相距较远,两个基因间往往发生两次以上的交换,必须进行校正。
两个基因间的单交换往往影响邻近两个基因的单交换,使实际观察到的双交换值低于预期值(两个单交换频率的乘积),因为每发生单交换,邻近发生交换的机会减少,这叫干涉。
一般用符合系数表示干涉的程度。
符合系数=观察到的双交换频率/两个单交换频率的乘积研究重组值问题,最容易想到的方法就是研究几个相互连锁的基因间的重组值之间的关系。
果蝇的三点测交实验李国卫131140075一、实验目的验证遗传第三定律——连锁定律掌握连锁分析与计算基因作图的原理和方法了解伴性与非伴性遗传的方式和特点二、实验原理1、三点测交就是把三个基因包括在同一次交配中,那就是用三杂合体abc/+++或者ab+/++c跟三隐性个体abc/abc测交,进行这种试验,一次实验就等于三次“两点实验”,而且带有以下两个优点:1、一次三点测交中得到的三个重组值是在同一基因型背景同一环境条件下得到的,而三次“两点测交实验”就不一定这样,重组值既受基因型背景的影响,也受各种环境条件的影响,所以只有从三点实验所得到的三个重组值才是严格的可以相互比较的。
2、通过三点实验,还可以得到三次两点实验所不能得到的资料,即双交换的资料。
果蝇的白眼,小翅,卷刚毛为X-连锁基因,全部隐性于各自的野生型基因(红眼、长翅、直刚毛),把白眼、小翅、卷刚毛(wmsn/wmsn)与野生型雄果蝇交配(+++/y)。
F1雌果蝇全部为野生型(理论上),雄果蝇则全部表现为三隐突变性,让F1雌雄果蝇互交,在F2中,不管雌雄性别,除了出现双亲类型以为,还会出现新的表形种类,这是由于F1雌果蝇中的两个染色体之间发生了互换的结果,根据基因在染色体上线性排列的遗传理论,对F2进行分析可知不同基因间的连锁距离。
因为这三个基因位于染色体上,所以这个实验也可以用来作为伴性遗传实验,当基因位于性染色体上时,它与性别相联系的遗传现象,跟常染色体上的基因的遗传现象有所不同,这种遗传称为伴性遗传,在果蝇中,性染色体是XY型,就是说,在雌果蝇上有一对染色体XX,在雄果蝇上有一条X染色体一条Y染色体,当基因位于X染色体而Y染色体一般不含有相对的基因就产生伴性遗传,在伴性遗传中,正交和反交产生不同的结果,例如,在本实验中:正交:三隐雌果蝇X野生雄果蝇反交:三隐雄果蝇X野生雌果蝇 x—m—sn/ x—m—sn X +++/Y x—m—sn/Y X +++/+++x—m—sn/Y +++/ x—m—sn +++/Y +++/ x—m—sn 三隐雄野生雌野生雄野生雌2、 1903年,Sutton根据减数分裂中的染色体行为与孟德尔的遗传假设因子行为平行,推测基因位于染色体上。