模态分析基本理论
- 格式:ppt
- 大小:1.30 MB
- 文档页数:12
模态分析的基础理论模态分析是一种研究系统中不同模式的分布、生成和演化规律的方法。
在这个理论中,模态是指系统中不同状态或形式的存在形式,例如质量分数、温度、湿度等。
模态分析的基础理论包括概率论、统计学和模态分析技术等。
概率论是模态分析的基础之一、它研究随机事件的发生概率和规律。
在模态分析中,我们可以利用概率论来描述不同模态出现的概率分布,并通过分析系统中的模式,得出不同模态的生成规律。
通过概率论的方法,我们可以预测不同模态的变化趋势,从而指导系统的优化设计和运行管理。
统计学也是模态分析的基础理论之一、统计学研究如何收集、处理、分析和解释数据,通过对大量数据的统计分析,揭示数据背后的规律和趋势。
模态分析中,统计学的方法可以用于分析模态数据的分布情况,寻找模态之间的相关性和影响因素,并建立相应的模型来预测和优化系统的运行情况。
在模态分析技术方面,主要包括聚类分析、主成分分析和模态分析方法等。
聚类分析是一种将相似的对象分组的方法,通过对模态数据进行聚类分析,我们可以将相似的模态归为一类,从而描述系统中的不同模态分布情况。
主成分分析是一种降维技术,它可以将高维的模态数据降低到低维,并保留大部分信息。
这可以帮助我们更好地理解系统模态之间的关系和重要性。
模态分析方法包括有限元模态分析、频响函数法和模态参数识别等。
通过这些方法,我们可以对系统的模态进行分析,包括振型、频率和阻尼等,并找出模态的摄动源和分布规律。
模态分析的基础理论对于理解和优化系统具有重要意义。
通过对模态的分析和研究,我们可以了解系统的特性和不同模态之间的关系,从而指导系统的设计和运行。
同时,模态分析也可以帮助我们发现和解决系统中存在的问题,提高系统的稳定性和可靠性。
因此,深入理解和应用模态分析的基础理论对于各个领域的研究和实践具有重要价值。
模态叠加法一.思想要点是在积分运动方程以前,利用系统自由振动的固有振型将方程组转换为n 个相互不耦合的方程,对这种方程可以解析或数值地进行积分。
对于每个方程可以采用各自不同的时间步长,即对于低阶振型可采用较大的时间步长。
当实际分析的时间历程较长,同时又只需要少数较低阶振型的结果时,采用振型叠加法将是十分有利的。
求解步骤:1.求解系统的固有频率和振型2.求解系统的动力响应二.求解固有频率与振型(求解不考虑阻尼影响的振动方程) ..()(){0}M a t Ka t += 解可假设为:0sin ()a t t φω=-φ是n 阶向量,ω是向量φ的振动频率,t 是时间变量,0t 是由初始条件确定的时间常数。
代入振动方程,得到一个广义特征值问题:20K M φωφ-=求解可得n 个特征解221122(,),(,),ωφωφ···2,(,)n n ωφ120ωω≤<<···n ω< 特征向量12,,φφ···,n φ代表系统的n 个固有振型,幅度可按以下要求规定T i i M φφ=1(i=1,2,···,n ),这样规定的固有振型又称正则振型。
将22(,)(,)i i j j ωφωφ代回特征方程,得:2i i i K M φωφ= 2j j j K M φωφ=前式两边前乘以j φT,后式两边前乘以i φT ,得:2j i i j i K M φφωφφTT = 2i j i i jK M φφωφφT T = 由()TTj i j i i j K K K φφφφφφT T==得:22i j i j i j M K ωφφωφφT T =,推出22()0i j j i M ωωφφT-=当i j ωω≠时,有0j i M φφT =这表明固有振型对于矩阵M 是正交的,可表示为:1 ()0 ()i j i j M i j φφT=⎧=⎨≠⎩得:2 ()0 ()i i j i j K i j ωφφT ⎧==⎨≠⎩如果定义123n [ ]φφφφΦ=K21222 0 0 n ωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎢⎥⎣⎦O则特征解的性质可表示成:M K T T ΦΦ=I ΦΦ=Ω原特征值问题可表示为:K M Φ=ΦΩ三.求解动力响应1.位移基向量的变换引入变换()()1ni i i a t x t x φ==Φ=∑其中()[]12 n x t x x x =L代入运动方程,并两边前乘以T Φ,可得:()()()()()...x t C x t x t Q t R t T T +ΦΦ+Ω=Φ= 初始条件相应地转换成:..0000 x x Ma M a T T =Φ=Φ 阻尼为振型阻尼,则:()()2 i=j 0 i j i i ij C ωξφφT ⎧⎪=⎨≠⎪⎩ 或11222 0 2 0 2n n C ωξωξωξT ⎡⎤⎢⎥⎢⎥ΦΦ=⎢⎥⎢⎥⎣⎦O 其中i ξ(i=1,2,···,n )是第i 阶振型阻尼比,可得n 个相互不耦合的二阶常微分方程()()()()...22i i i i i i i x t x t x t r t ωξω++= (i=1,2,···,n )若C 是Rayleigh 阻尼,即C M K αβ=+根据试验或相近似结构的资料已知两个振型的阻尼比i ξ和j ξ,可得22222()()2()()i j j i i j j i j j i i j i ξωξωαωωωωξωξωβωω-=--=-2.求解单自由度系统振动方程在振动分析中常常采用杜哈美(Duhamel )积分,又称叠加积分,其基本思想是将任意激振力()i r t 分解为一系列微冲量的连续作用,分别求出系统对每个微冲量的响应,然后根据线性系统的叠加原理,将它们叠加起来,得到系统对任意激振的响应。
实验模态分析第三章:实验模态分析的基本理论振动系统的特性可以用模态来描述:固有频率、固有振型(主振型)、模态质量、模态刚度和模态阻尼等。
建立用模态参数表示的振动系统的运动方程并确定其模态参数的过程使称为模态分析。
—种理解可以认为,振动系统的物理模型、物理参数和以物理参数表示的运动方程都是已知的,引入模态参数、建立模态方程的目的是为了简化计算,解除方程耦合,缩减自由度。
另一种理解可以认为,通过对实际结构的振动测试,识别振动系统的模态参数,从而建立起系统的以模态参数表示的运动方程,供各种工程计算应用。
试验模态分析指的是后一种过程,即通过振动测试(称模态试验),识别模态参数,建立以模态参数表示的运动方程这样一个过程。
1 多自由度系统振动基础回顾&&&++=M x C x K x f t []{}[]{}[]{}{()} 2实模态理论一个n 自由度线性定常振动系统,其运动方程可以如下表示:现对两端作付氏变换得:[]{}[]{}[]{}{()}M x C xK x f t ++=&&&2([][][]){()}{()}M j C K X F ωωωω−++=式中和分别是x(t)和F(t)的付氏变换,并有()X ω()F ω()()j t X x t e dt ωω+∞−−∞=∫()()j t F f t e dtωω+∞−−∞=∫(){()}{()}Z X F ωωω=111212122212()()()()()()()()()()n n n n nn Z Z Z Z Z Z Z Z Z Z ωωωωωωωωωω⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦L L L L L L L 1()[()]{()}{()}{()}X Z F H F ωωωωω−==2[][][]K M j C ωω=−+阻抗矩阵中各元素值无法在实际振动测试中获得,因为人们不可能在实际结构上固定其它坐标,令其不动,仪留下J坐标,待其作出响应;也不可能仅使某个坐标运动,在其余坐标上测量力。
什么是模态分析,模态分析有什么用什么是模态分析模态分析有什么用结构劢力学分析中,最基础、也是最重要的一种分析类型就是“结构模态分析”。
模态分析主要用亍计算结构的振劢频率和振劢形态,因此,又可以叫做频率分析戒者是振型分析。
劢力学分析可分为时域分析不频域分析,模态分析是劢力学频域分析的基础分析类型。
基础理论劢力学控制方程可表示为微分方程:其中,[ M ] 为结构质量矩阵,[ C ] 为结构阷尼矩阵,[ K ] 为结构刚度矩阵,{ F } 为随时间变化的外力载荷函数,{ u } 为节点位移矢量,为节点速度矢量,{ ü } 为节点加速度矢量。
在结构模态分析中丌需要考虑外力的影响,因此,模态分析的劢力学控制方程可表示为:理想情况下,结构在振劢过程中,丌考虑阷尼效应,也就是所谓的自由振劢情况,模态分析又可描述为:对上迚一步分析,假设此时的自由振劢为谐响应运劢,也就是说u = u 0 sin( ωt ),上又可迚一步描述为:对上式求解,可得方程的根是ω i²,即特征值,其中i 的范围是从1 到结构自由度个数N (有限元分析中,自由度个数N 一般丌超过分析模型网格节点数的三倍)。
特征值开平方根是ω i ,即固有圆周频率,这样,结构振劢频率(结构固有频率)f i就可通过公式f i = ω i /2 π 得到。
有限元模态分析可以得到f i 戒者ω i ,都可以用来描述结构的振劢频率。
特征值对应的特性矢量为{ u } i 。
特征矢量{ u } i表示结构在以固有频率f i振劢时所具有的振劢形状(振型)。
模态分析中的矩阵1. 模态分析微分方程组包含六个矩阵:[ K ] 代表刚度矩阵。
可参考“结构静力学”中的解释说明。
{ u } 代表位移矢量。
主要用来描述模态分析的振型。
可参考“结构静力学”中的解释说明,但一定要注意,模态分析中得到的位移矢量不静力学分析中位移矢量代表变形丌同。
[ C ] 代表阷尼矩阵。