化工过程模拟与分析(第三章系统分解)
- 格式:ppt
- 大小:568.50 KB
- 文档页数:33
化工系统工程__化工过程系统稳态模拟与分析2 化工过程系统稳态模拟与分析概述通过对化工工艺流程系统进行稳态模拟与分析也就是对过程系统建立模型并对模型进行求解可以解决下述三方面的问题①过程系统的分析与模拟②过程系统设计③过程系统参数优化①过程系统的分析模拟对某个给定的过程系统模型进行模拟求解可得出该系统的全部状态变量从而可以对该过程系统进行工况分析如图21所示②过程系统设计当对某个或某些系统变量提出设计规定要求时通过调整某些决策变量使模拟结果满足设计规定要求如图22所示③过程系统参数优化过程系统模型与最优化模型联解得到一组使工况目标函数最佳的决策变量优化变量从而实施最佳工况如图所示 2 化工过程系统稳态模拟与分析相关的基本概念 1 系统为了某种目标由共同的物料流或信息流联系在一起的单元组合而形成的整体称为系统 2 子系统组成系统的系统下一层次的事物简单系统子系统就是某个单元复杂系统它的子系统又可能包含有子系统基本概念 3 系统的特性由两方面构成 1系统内各个单元的特性复杂系统则是各子系统的特性 2系统流程的结构特性树结构和再循环结构的概念 4 过程拓扑将过程流程图转换为信息流程图再把信息流程图转变为过程矩阵的过程称为过程拓扑过程流程→信息流程用有向线段表示信息流用方框表示设备或节点信息流程→过程矩阵将信息流程数字化使计算机可以识别根据信息流图可以得出过程矩阵 2.1 过程系统模拟的基本方法过程系统模拟计算量大且复杂手工计算难以完成计算机和计算技术的发展为过程系统的整体研究提供了技术手段各种类型的过程系统模拟软件不断出现但就其模拟计算求解方法而言可以归纳为三类序贯模块法 Sequentia1 Modular Method 面向方程法 Equation Oriented Method 联立方程法联立模块法 Stmultaneously Modular Method 2 11过程系统模拟的序贯模块法序贯模块法按照由各种单元模块组成的过程系统的结构序贯的对各单元模块进行计算从而完成该过程系统的模拟计算的方法序贯模块法对过程系统的模拟以单元模块的模拟计算为基础依据单元模块入口的物流信息以及足够的定义单元特性的信息计算出单元出口物流的信息序贯模块法的优点与实际过程的直观联系强模拟系统软件的建立维护和扩充都很方便易于通用化计算出错时易于诊断出错位置序贯模块法的主要缺点计算效率较低尤其是解决设计和优化问题时计算效率更低序贯模块法计算效率低的原因只能根据模块的输入物流信息计算输出物流信息在进行系统模拟的过程中对有再循环物流单元模块的计算需要考虑断裂物流收敛计算使问题复杂 2 12 过程系统模拟的面向方程法面向方程法将描述整个过程系统的数学方程式联立求解从而得出模拟计算结果的方法面向方程法又称联立方程法面向方程法的优点可以根据问题的要求灵活地确定输入输出变量而不受实际物流和流程结构的影响模型中所有的方程可同时计算和同步收敛面向方程法的问题形成通用软件比较困难不能利用现有大量丰富的单元模块缺乏与实际流程的直观联系计算失败之后难于诊断错误所在对初值的要求比较苛刻计算技术难度较大等 2 13 过程系统模拟的联立模块法联立模块法将过程系统的简化模型方程与单元模块严格模型交替求解又被称作双层法 2.2 过程系统模拟的序贯模块法 2.2.1序贯模块法的基本原理单元模块依据相应过程单元的数学模型和求解算法编制而成的子程序如图28 a 中的闪蒸单元可依据闪蒸单元模型和算法编制成闪蒸单元模块单元模块的单向性结定单元模块的输入物流变量及参数可计算出相应的输出物流变量但不能由检出变量计算输入变量也不能由输入输出变量计算模块参数序贯模块法的基本思想从系统入口物流开始经过对该物流变量进入的单元模块的计算得到输出物流变量这个输出物流变量就是下一个相邻单元的输入物流变量依次逐个的计算过程系统中的各个单元最终计算出系统的输出物流计算得出过程系统中所有的物流变量值即状态变量值 2.2.2 再循环物流的断裂当涉及的系统为无再循环流的树形结构时序贯模块法的模拟计算顺序可以按过程单元的排列顺序一一顺利完成用序贯模块法处理具有再循环物流系统的模拟计算时需要用到系统分解断裂 Tearing 和收敛 Convergence 等多项技术 Step1 假定断裂物流S4的变量值然后依次计算单元模块ABC得到物流S4的变量值 Step2利用收敛单元比较S4与S4的相应变量值若不等则改变S4为新的变量值重复Step1过程直到S4与S4两个变量值相等为止问题收敛单元设置在哪个物流处既如何选择断裂物流本问题中不仅可以是物流S4处也可以设置在物流S2或S3处对于复杂系统收敛单元设置的位置不同其效果也将不同究竟设置在何处为好这要通过断裂技术去解决如何得到新的S4变量值如何保证计算收敛如何加快收敛取决于收敛算法还与断裂物流变量的特性有关 2.2.2 再循环物流的断裂 1 断裂的基本概念首先考察方程组的断裂假设有一个由四个方程四个未知变量组成的方程组也可以由另外的方式进行求解例如假设x2的猜值则 f1解出x3 f2解出x4 f3解出x1 最后利用f4来检验最初没定的猜值x2 是否正确如果f4为零则可认为得到了方程组的解若此处的f4 不为零则需修正x2的值再重新进行迭代计算这样可将四维求解问题降阶成了四个一维问题通过迭代计算把高级方程组降阶为低级方程组的办法称为断裂考察过程系统中的不可分隔子系统如图211断裂物流可以选为S10当然也可以选为S11选择不同的断裂物流则其相应的迭代序列也不一样从表面上看上列的两种计算序列似乎没有什么很大的区别但由于系统中各物流及其变量特性的不同在收敛计算上常是有很大差异的如变量个数的多少方程求解的难易程度等如何选择断裂物流确定迭代序列是实施序贯模块法进行过程系统模拟计算过程中必须要解决的问题 2 断裂方法的研究早在20世纪60年代初就有人提出了断裂的思想此后随着流程模拟技术的不断发展有关研究断裂的文章不断出现他们提出判断最佳断裂的准则分为四类 1 断裂的物流数最少 2 断裂物流的变量数最少 3 断裂物流的权重因子之和最少 4 断裂回路的总次数最少另一种归纳 1断裂的流股数目最少 2断裂流股包含的变量数目最少 3对每一流股选定一个权因子该权因子数值反映了断裂该流股时迭代计算的困难程度应当使所有的断裂流股权因子数值总和最小4选择一组断裂流股使直接代入法具有最好的收敛特性四条准则是一般性的原则 3 回路矩阵过程系统中的简单回路可以用回路矩阵 1oop/stream Matrix 表示矩阵中的行代表回路列代表物流若某回路i中包括有物流J则相应的矩阵元素aij=1否则为空白或零不独立的列 f 1 与 f 值较大的列相比较若某列中的非零元素与 f 值较大列的非零元素同行则该列相对于 f 值大的列不独立如S2的f 值较大与其余小于它的列相比较会发现S2的非零元素为C行和A行而S1列C行非零 S3A行非零其余列中无与S2同行的非零的元素则判别出 S1 S3相对于S2不独立表示为 S1 S3 S2 S5 S6 S4 流股断裂方法一L - R 分解法 L – R分解法遵循的原则断裂流股数目最少且将所有循环路打开例现有一个为最大循环网的不可分割子系统其信息流图如下1 42 53 S4 S3 S2 S1 S6 S5 S7 S8 4流股断裂方法分析在这个信息流程图中有 8个流股S1S2 S8 五个节点12345构成了ABCD四个环路 1 4 2 5 3 S4 S3 S2 S1 S6 S5 S7 S8 A D C B在Lee – Rudd 法中首先分析信息流图再用环路矩阵表示出来 A B C D 环路S1 S2 S3 S4 S5 S6 S7 S8 01 1 0 0 0 0 0 0 00 0 0 0 1 1 1 1 01 0 0 0 0 0 0 0 11 1 1 0 流股 f R 1 42 53 S4 S3 S2 S1 S6 S5 S7 S8A C DB 矩阵做法Si 流股若在 A 环中出现则标 1若不出现则标 0例如 A 环由S2S3 两流股构成其余为零矩阵中还有加和行用f 表示它由每一列中的非零元素加和构成加和列R它将每一行非零元素加和构成 f 称为环路频率代表某流股出现在所有环路中的次数R 称为环路的秩代表某环路中包含的流股总数经运算可得出加和 f 和R值环路矩阵成为下面样子 A B C D S1 S2 S3 S4 S5 S6 S7 S8 0 1 1 00 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 1 1 1 10 R 2 2 3 4 f 1 2 1 2 1 1 2 1 不独立的列 A B C D S1 S2 S3 S4 S5S6 S7 S8 0 1 1 0 0 00 0 0 0 0 0 0 0 11 1 1 0 1 0 0 0 00 0 0 1 1 1 1 0 R 2 2 34 f 1 2 1 2 1 1 2 1 不独立的列基本概念工艺流程图过程流程过程拓扑举例信息流图-13 序贯模块法的基础是单元模块子程序通常单元模块与过程单元是一一对应的过程单元的输入物流变量即为单元模块的输入单元模块的输出即为过程单元的输出物流变量如 A B H G F E C D 系统分解对复杂系统将所有模型方程全部联立求解很困难直接用序贯法又存在相互影响这时可将该系统分成几个相对独立的部分各自联解再序贯求解将大的复杂系统分解为若干个小的子系统的过程称为大系统的分解目的是识别出不可分割子系统 AB H G F ECD 不可分割子系统不相关子系统 A B H G FE C D A B C A B CG F E D 流股断裂 Tearing 一般对于大系统分解得到的子系统已是不可分隔的如ABC构成的当这样的子系统仍很复杂时联立求解仍困难若断开某一个流股则可采用序贯法求解而断开的流股变量则作为迭代变量选择断裂流股是该技术的关键 A B H G F E C D 断裂物流迭代计算步骤如下该方程组可以通过联立求解得到它的解图210 描述了断裂的过程其中流股x2称为断裂流股该流股只有一个变量x2 称为迭代变量流股的收敛性指的就是其中变量x2 的收敛性能问题如果不选择流股x2是否可达到简化的目的。
化学工程中的化工过程模拟与优化第一章引言化学工程是一个综合性的学科,涵盖了化学、物理、数学等多个领域。
在化学工程的实践中,进行化工过程的模拟与优化是一项重要任务。
通过对化工过程进行模拟和优化,可以使其更加高效、安全和可持续。
第二章化工过程模拟2.1 概述化工过程模拟是指利用数学和物理模型,对化工过程的各项参数进行计算和模拟。
通过对化工过程的模拟,可以了解到不同操作条件下的反应物浓度、产品产率和副产物生成情况等,为进一步的优化提供依据。
2.2 模型建立化工过程模拟的第一步是建立数学和物理模型。
在建立模型时,需要考虑到反应动力学、热力学、传质和传热等因素,并根据实际情况选取合适的计算方法和数学模型。
2.3 模拟软件化工过程模拟通常借助化工流程模拟软件进行。
常用的化工流程模拟软件有Aspen Plus、CHEMCAD等。
这些软件具有强大的计算和模拟功能,能够对复杂的化工过程进行全面的分析。
第三章化工过程优化3.1 概述化工过程优化是指通过调整操作条件和工艺参数,使得化工过程达到最佳状态。
优化的目标可以是提高产率、降低能耗、减少废弃物排放等。
3.2 优化方法化工过程优化可以采用传统的试错法,也可以利用数学优化算法进行。
常见的数学优化算法有线性规划、整数规划、非线性规划等。
这些算法能够根据优化目标和约束条件,找到最优化的操作条件和工艺参数。
3.3 多目标优化在实际的化工过程中,常常存在多个相互矛盾的优化目标。
此时,需要采用多目标优化的方法,在多个目标之间寻找平衡点。
多目标优化可以采用权重法、向量法等方法进行。
第四章化工过程模拟与优化应用案例4.1 基于化工过程模拟的优化以乙烯裂解过程为例,通过对反应动力学和热力学参数进行建模和模拟,可以预测出不同操作条件下的产品产率和副产物生成情况。
在此基础上,通过优化操作条件和催化剂种类,可以提高乙烯的产率,降低副产物生成,实现该过程的优化。
4.2 基于化工过程优化的节能减排以石化企业的蒸汽系统为例,通过对蒸汽管网排水温度、锅炉燃烧控制等参数进行优化,可以实现蒸汽的节能和减排。
化工过程系统动态模拟与分析技术讲义首先,动态模拟和分析技术是通过建立化工过程的动态模型,模拟其
在不同条件下的运行过程,实现对系统的动态行为进行预测和分析。
这种
模型通常由一系列的微分方程组成,通过对关键参数的输入和改变,可以
模拟出系统在不同操作条件下的响应和效果。
动态模拟和分析技术的基本
原理是基于物质平衡、能量平衡和动量平衡等基本原理建立的。
动态模拟和分析技术在化工领域具有广泛的应用。
首先,它可以用来
优化工艺设计,通过模拟不同的工艺方案,找到最佳的操作条件,以降低
生产成本和提高产量。
其次,它可以用来解决工艺运行中的问题,比如控
制系统设计和故障诊断等。
此外,动态模拟和分析技术还可以用来评估化
工过程对环境的影响,帮助工程师们设计和选择更加可持续和环保的工艺。
随着计算机技术的不断发展,动态模拟和分析技术也在不断进步和完善。
在模型的建立和求解方面,现代动态模拟软件已经具备了更高的计算
速度和更精确的数值求解算法。
另外,数据的采集和处理技术的进步,也
为动态模拟和分析技术的应用提供了更多的可能性。
比如,数据驱动建模
和机器学习等方法,可以通过对历史数据的分析和挖掘,帮助工程师们更
好地理解和优化化工过程系统的运行。
总之,动态模拟和分析技术是化工过程优化和分析的重要工具。
它能
够帮助工程师们更好地理解和优化化工过程系统的运行,提高生产效率和
降低成本。
随着计算机技术和数据处理技术的不断进步,动态模拟和分析
技术将会得到更广泛的应用和发展。
第三章 多组分精馏主要教学目标:通过本章的学习,使学生正确理解设计变量,掌握装置的设计变量计算,以及多组分简单精馏塔的计算等。
教学方法及教学手段:采用板书和教学课件及多媒体课件相结合,课堂上师生互动,采用启发式和提问式的教学方式,并且课堂上学习的表现记入学生的平时成绩。
教学重点及难点:多组分简单精馏塔的计算,设计变量,单元的设计变量,装置的设计变量。
在化工原理课程中,对双组分精馏和单组分吸收等简单传质过程进行过较详尽的讨论。
然而,在化工生产实际中,遇到更多的是含有较多组分或复杂物系的分离与提纯问题。
在设计多组分多级分离问题时,必须用联立或迭代法严格地解数目较多的方程,这就是说必须规定足够多的设计变量,使得未知变量的数目正好等于独立方程数,因此在各种设计的分离过程中,首先就涉及过程条件或独立变量的规定问题。
多组分多级分离问题,由于组分数增多而增加了过程的复杂性。
解这类问题,严格的该用精确的计算机算法,但简捷计算常用于过程设计的初始阶段,是对操作进行粗略分析的常用算法。
第一节 分离系统的变量分析设计分离装置就是要求确定各个物理量的数值,但设计的第一步还不是选择变量的具体数值,而是要知道在设计时所需要指定的独立变量的数目,即设计变量。
一、设计变量1. 设计变量⎩⎨⎧-=:可调设计变量固定设计变量a x c v i N N N N N :v N :描述系统所需的独立变量总数。
c N :各独立变量之间可以列出的方程式数和给定的条件,为约束关系数。
要确定i N ,需正确确定v N 和c N ,一般采用郭慕孙发表在AIchE J (美国化学工程师学会),1956(2):240-248的方法,该法的特点是简单、方便,不易出错,因而一直沿用至今。
郭氏法的基本原则是将一个装置分解为若干进行简单过程的单元,由每一单元的独立变量数e v N 和约束数e c N 求出每一单元的设计变量数e i N ,然后再由单元的设计变量数计算出装置的设计变量数E i N 。