热力学与统计物理学第七章 量子统计
- 格式:ppt
- 大小:1.31 MB
- 文档页数:3
第七章 玻耳兹曼统计7.1试根据公式Va P Lll∂∂-=∑ε证明,对于非相对论粒子 ()222222212z y x n n n L m m P ++⎪⎭⎫ ⎝⎛== πε,( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为()22222,,2212z y x n n nn n n L m m P zy x ++⎪⎭⎫ ⎝⎛== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为32-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()22222)2(z y x n n n ma ++=π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
由(2)式可得VaV V l L εε323235-=-=∂∂----------------------(3) 代入压强公式,有VUa VV a P l ll L ll3232==∂∂-=∑∑εε----------------------(4) 式中 lll a U ε∑=是系统的内能。
上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
注:(4)式只适用于粒子仅有平移运动的情形。
如果粒子还有其他的自由度,式(4)中的U 仅指平动内能。
7.2根据公式Va P Lll∂∂-=∑ε证明,对于极端相对论粒子 ()212222zy x n n n Lc cp ++== πε, ,2,1,0,,±±=z y x n n n 有VUP 31=上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。
证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为()21222,,2z y x n nn n n n Lczy x++= πε, ,2,1,0,,±±=z y x n n n -------(1)为书写简便,我们将上式简记为31-=aVε-----------------------(2)其中V=L 3是系统的体积,常量()212222z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。
第七章玻⽿兹曼统计教案分析热⼒学与统计物理课程教案第七章玻⽿兹曼统计 7.1 热⼒学量的统计表达式⼀、定域系统的内能、⼴义⼒和熵统计表达式在§6.8说过,定域系统和满⾜经典极限条件的玻⾊系统都遵从玻⽿兹曼分布。
本章根据玻⽿兹曼分布讨论这两类系统的热⼒学性质。
本节⾸先推导热⼒学量的统计表达式。
内能是系统中粒⼦⽆规则运动总能量的统计平均值.所以 ∑∑--==lβεαl l ll l l e ωεεa U ①引⼊函数1Z :∑-=lβεl l e εZ 1 ②名为粒⼦配分函数。
由式∑--=lβεαl l e ωN ②,得:1Z e e ωe N αlβεl αl ---==∑ ③上式给出参量α与N 和1Z 的关系,可以利⽤它消去式①中的α。
经过简单的运算,可得:11ln Z βZ N e ωβe e ωεe U l βεl αl βεl l αll ???? ????-=???? ????-==∑∑---- ④式④是内能的统计表达式。
在热⼒学中讲过,系统在程中可以通过功和热量两种⽅法与外界交换能量。
在⽆穷⼩过程中,系统在过程前后内能的变化dU 等于在过程中外界对系统所作的功W d 及系统从外界吸收的热量Q d 之和:Q d W d dU +=。
如果过程是准静态的, W d 可以表达为Ydy 的形式,其中dy 是外参量的改变量,Y 是外参量y 相应的外界对系统的⼴义作⽤⼒。
粒⼦的能量是外参量的函数。
由于外参量的改变,外界施于处于能级l ε的⼀个粒⼦的⼒为yεl。
因此,外界对系统的⼴义作⽤⼒Y 为: 11ln 11Z y βN Z y βe e ωy βe e ωy εa y εY αl βεl αβεαl ll l ll l l ??-=-= -===-----∑∑∑⑤式⑤是⼴义作⽤⼒的统计表达式。
它的⼀个重要例⼦是:1ln Z VβN P ??=在⽆穷⼩的准静态过程中,当外参量有dy 的改变时,外界对系统所作的功是:l ll l llεd a a y εdy Ydy ∑∑=??= 将内能∑=ll l εa U 求全微分,有:l ll ll l da εεd a dU ∑∑+=上式指出,内能的改变可以分成两项,第⼀项是粒⼦分布不变时由于能级改变⽽引起的内能变化,第⼆项是粒⼦能级不变时由于粒⼦分布改变所引起的内能变化。
第七章 玻耳兹曼统计教学内容:1、玻尔兹曼统计中粒子配分函数的量子和经典表达式、热力学量的统计表达式;2、由玻尔兹曼统计求理想气体的物态方程;3、由玻尔兹曼分布推求麦克斯韦速度、速率分布律,碰壁数;4、爱因斯坦固体热容量理论的假设和结论。
教学目的:1、理解玻耳兹曼分布是近独立粒子孤立系统在统计平衡态下处于热力学几率最大的宏观分布时粒子数按能量分布的规律。
粒子的配分函数是由和外参量等决定的状态函数。
理解玻耳兹曼关系式。
理解经典的能量均分定理应用于固体和双原子分子理想气体系统求热容量严重偏离实验结果的原因,并由能量的量子化定性解释实验结果。
2、简单应用:由玻耳兹曼分布律求其它分布律,由配分函数求理想气体(单原子分子)系统的热力学函数。
3、综合运用:应用压强的微观实质思想计算分子的碰壁数,用量子玻耳兹曼分布律求理想固体(爱因斯坦模型)的热容量。
玻耳兹曼统计:假设系统由大量定域的全同近独立粒子组成,具有确定的粒子数N ,能量E ,体积V 。
N 个粒子的在各能级的分布可以描述如下: 能 级 12,,,,l εεε … 简 并 度 12,,,,l ωωω … 粒 子 数 12,,,,l a a a … 约束条件:l la N =∑,l l la E ε=∑定域系统和满足经典极限条件的玻色和费米系统都遵从玻耳兹曼分布:l l l a e αβεω--=。
其中系数α与β由l la N =∑与l l la E ε=∑确定。
总能量是系统在某平衡态下的全部能量,包括系统作整体运动时的宏观动 能,在重力场中的势能,以及与系统整体运动和重力场存在无关的内能,是系统内部分子无规则热运动的全部能量。
因此在这里我们所说的总能量E 即总的内能U 。
§7.1 热力学量的统计表达式在§6.8说过,定域系统以及满足经典极限条件的玻色系统和费米系统都遵从玻耳兹曼分布。
本章根据玻耳兹曼分布讨论这两类系统的热力学性质。
本节首先推导热力学量的统计表达式。