平方根、算术平方根、立方根的求法习题集
- 格式:doc
- 大小:504.50 KB
- 文档页数:7
完整版)平方根立方根提高练习题平方根和立方根的练一、选择题(共8小题)1.4的平方根是±2,那么9的平方根是(B)。
2.若2m-4与3m-1是同一个数的平方根,则m的值是(C)。
3.一个数的立方根是它本身,则这个数是(A)。
4.数n的平方根是x,则n+1的算术平方根是(C)。
5.如果y=6+2,那么xy的算术平方根是(D)。
6.若a-b=3,则xy的值为(B)。
7.已知:a-b=2,那么xy的算术平方根是(C)。
8.若a<b<c,化简3a-b+c的结果为(B)。
二、填空题(共8小题)9.已知a、b为两个连续的整数,且a>b,则a+b=a+b。
10.若a的一个平方根是b,那么它的另一个平方根是-b,若a的一个平方根是b,则a的平方根是±b。
11.已知:a+b=3,ab=2,则a和b的值分别为1和2.12.设等式(x-1)(y-2)(z-3)=0在实数范围内成立,其中m,x,y是互不相同的值,则z=m+x+y-6.13.如图是一个按某种规律排列的数阵:根据数阵的规律,___第一个数是n(n-1)+1.14.已知有理数a,满足|2016-a|+|2017-a|=1,则a的值为2016或2017.15.若两个连续整数x、y满足x<y,则x+y的值是2x+1.16.一组按规律排列的式子:1,3,7,13,…则第n个式子是n²-n+1.三、解答题(共9小题)17.(1)已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值。
解:由2a-1的平方根是±3可得2a-1=9或2a-1=-9,解得a=5或a=-4.由3a+b-1的算术平方根是4可得3a+b-1=16,解得a=5,b=4.因此,a+2b=13.2)已知m是x²的整数部分,n是x的小数部分,求m-n的值。
解:由题意可得x²≤m<(x+1)²,即x≤√m<x+1.又因为n=x-√m,所以x=n+√m。
数学初二上册平方根----b32417ec-6eb3-11ec-864c-7cb59b590d7d篇一:初二数学上册平方根与立方根专项练习题二年级数学第一册中平方根和立方根的特殊练习一、填空题:1.144的算术平方根为,2、的平方根是.21; 27? 64的立方根是3和7的平方根,4、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是;5.平方数是它自己的数;平方数是它的对数值6、当7、若x8.如果9、若4x?1有意义;当时,x?2有意义;?16,则;若3n?81,则n=;x?x,则;若x2??x,则x;x?1?|y?2|?0,则10如果X的算术平方根是4,那么X=;如果2x=1,则x=___;11.若(x?1)-9=0,则x=___;若27x+125=0,则x=___;12.当x时,代数公式2x+6的值没有平方根;13如果a的算术平方根和算术立方根相等,则a等于;143在整数和整数之间,5在整数和整数之间。
二.选择题11。
如果x?a、然后()a、x>0b、x≥0c、a>0d、a≥012.如果一个数字有两个不同的平方根,则两个平方根之和为()a、大于0b、等于0c、小于0d、不能确定13.如果正方形的边长是a,面积是B,那么()a、a是b的平方根b、a是b的的算术平方根c、a14.如果≥ 0,4a的算术平方根为()a、2ab、±2ac、2??bd、b?a2ad、|2a|15.如果正数a的算术平方根大于自身,则()a、0<a<1b、a>0c、a<1d、a>116.如果n是正整数,那么2n?1等于()a、-1b、1c、±1d、2n+117.如果a<0,a22a等于()a、12b、?11c、±22d、018.如果X-5能开启偶数电源,则X的取值范围为()a、x≥0b、x>5c、x≥5d、x≤5三、计算问题19、? 22? 220、?? 8.0.4921、24?45?200?222、?0.973?(?10)?2?39四、回答问题23、解方程:①(x?1)24、解答题1.知道a和B相遇2、已知一个正数的平方根是2a-1和a-5,求a的值。
初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
算术平方根、平方根与立方根练习题 姓名:‗‗‗‗‗‗‗‗‗1、一般地,如果一个正数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个正数x 叫做a 的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗,读作‗‗‗‗‗‗‗‗‗‗,a 叫做‗‗‗‗‗‗‗‗‗,如3²=9,则3是9的‗‗‗‗‗‗‗‗‗,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
0的算术平方根是‗‗‗‗‗‗;1的算术平方根是‗‗‗‗‗。
‗‗‗‗‗‗‗‗数没有算术平方根;被开方数是‗‗‗‗‗‗‗数;算术平方根是‗‗‗‗‗‗‗数。
2、算术平方根等于它本身的数是‗‗‗‗‗‗‗‗‗。
被开方数越大,对应的算术平方根也‗‗‗‗‗。
3、(-5)²的算术平方根是‗‗‗‗‗;0.49的算术平方根的相反数是‗‗‗‗‗‗。
4、81的算术平方根是‗‗‗‗‗。
16的算术平方根是‗‗‗‗‗。
5、求下列各数的算术平方根。
(1)0.0625; (2)0; (3)2)41(-; (4)16、计算(1)41.4 (2)25111(3)151722-7、已知35.14=3.788,x =378.8,则x=‗‗‗‗‗‗‗‗‗。
8、已知a ,b 为两个连续整数,且a <7<b ,则a+b=‗‗‗‗‗。
比较大小:215-‗‗‗21。
9、(1)(-3)²=‗‗‗‗‗;(2))3(2π-=‗‗‗‗‗‗‗‗‗‗;(3)若4-x =3,则x=‗‗‗‗‗。
10、若x ,y 为实数,且2+x +2-y =0,则)2016(y x 的值为‗‗‗‗‗‗‗‗。
平方根:1、一般地,如果一个数x 的平方等于a ,即‗‗‗‗‗‗‗‗‗‗,那么这个数x 叫做a 的‗‗‗‗‗‗‗‗‗或‗‗‗‗‗‗‗‗‗,数a 的平方根可记作‗‗‗‗‗‗,如)3(2±=9,所以‗‗‗‗‗是9的平方根,记为‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
正数有‗‗‗‗个平方根,它们‗‗‗‗‗‗‗‗‗,0的平方根是‗‗‗。
平方根和立方根的计算练习题在数学中,平方根和立方根是基本的运算,对于学习数学的人来说,熟练掌握计算平方根和立方根是非常重要的。
本文将给出一些平方根和立方根的计算练习题,帮助读者巩固和提高这两个运算的能力。
1. 计算以下数的平方根:a) 16b) 25c) 36d) 49e) 64f) 81g) 100解答:a) √16 = 4b) √25 = 5c) √36 = 6d) √49 = 7e) √64 = 8f) √81 = 9g) √100 = 102. 计算以下数的立方根:a) 8b) 27c) 64d) 125e) 216f) 343g) 512解答:a) ³√8 = 2b) ³√27 = 3c) ³√64 = 4d) ³√125 = 5e) ³√216 = 6f) ³√343 = 7g) ³√512 = 83. 计算以下数的平方根和立方根:a) 144c) 1296d) 4096e) 6561f) 10000解答:a) √144 = 12, ³√144 = 2b) √625 = 25, ³√625 = 5c) √1296 = 36, ³√1296 = 6d) √4096 = 64, ³√4096 = 8e) √6561 = 81, ³√6561 = 9f) √10000 = 100, ³√10000 = 104. 求以下数的平方根的近似值,取两位小数:a) 7b) 15c) 28d) 50e) 73f) 96a) √7 ≈ 2.65b) √15 ≈ 3.87c) √28 ≈ 5.29d) √50 ≈ 7.07e) √73 ≈ 8.54f) √96 ≈ 9.805. 求以下数的立方根的近似值,取两位小数:a) 9b) 20c) 37d) 64e) 91f) 125解答:a) ³√9 ≈ 2.08b) ³√20 ≈ 2.71c) ³√37 ≈ 3.30d) ³√64 ≈ 4.00e) ³√91 ≈ 4.50f) ³√125 ≈ 5.00通过以上练习题,我们可以加深对平方根和立方根的计算的理解。
平方根立方根的计算一、填空题1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4既 的平方根是 5.非负的平方根叫 平方根6.如果9=x ,那么x =________;如果92=x ,那么=x ________; 7.若一个实数的算术平方根等于它的立方根,则这个数是_________; 8.算术平方根等于它本身的数有________,立方根等于本身的数有________.9. x ==则 ,若,x x =-=则 。
10.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ; 11.当______m 时,m -3有意义;当______m 时,33-m 有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 13.21++a 的最小值是________,此时a 的取值是________.14_______;9的平方根是_______. 15.144的算术平方根是 ,16的平方根是 ; 16.327= , 64-的立方根是 ; 17.7的平方根为 ,21.1= ;18.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 19.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 20.当x= 时,13-x 有意义;当x= 时,325+x 有意义; 21.若164=x ,则x= ;若813=n,则n= ; 22.若3x x =,则x= ;若x x -=2,则x ; 23.若0|2|1=-++y x ,则x+y= ; 24.计算:381264273292531+-+= ;25.2)8(-= , 2)8(= 。
26.9的算术平方根是 ,16的算术平方根是 ;27.210-的算术平方根是 ,0)5(-的平方根是 ; 28.一个正数有 个平方根,0有 个平方根,负数 平方根. 29.一个数的平方等于49,则这个数是 30.16的算术平方根是 ,平方根是 31.一个负数的平方等于81,则这个负数是32.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 33.25的平方根是 ; (-4)2的平方根是 。
初中数学解立方根与平方根练习题及答案1. 求平方根a) √64 =b) √144 =c) √25 =d) √169 =答案:a) √64 = 8b) √144 = 12c) √25 = 5d) √169 = 132. 求平方根(化简根式)a) √12 =b) √18 =c) √27 =d) √48 =答案:a) √12 = 2√3c) √27 = 3√3d) √48 = 4√33. 求立方根a) ∛8 =b) ∛64 =c) ∛125 =d) ∛729 =答案:a) ∛8 = 2b) ∛64 = 4c) ∛125 = 5d) ∛729 = 94. 求立方根(化简根式)a) ∛27 =b) ∛54 =c) ∛128 =d) ∛216 =答案:b) ∛54 = 3∛2c) ∛128 = 2∛2d) ∛216 = 65. 综合练习:求平方根与立方根a) ∜256 =b) ∛512 =c) 2√3 + 3√2 =d) 4∛3 - ∛48 =答案:a) ∜256 = 4b) ∛512 = 8c) 2√3 + 3√2 = 5√2 + 2√3d) 4∛3 - ∛48 = 3∛2通过以上练习题,我们可以加深对于求平方根和立方根的理解。
求平方根就是找到一个数,它的平方等于被开方的数;而求立方根则是找到一个数,它的立方等于被开方的数。
在解决这些问题时,我们需要掌握一些基本的化简根式的方法。
例如,当根号下的数可以被平方数整除时,我们可以将其化简为一个整数乘以根号下的平方数。
希望通过这些练习题和答案的提供,能够帮助同学们更好地理解和掌握求解平方根和立方根的方法,提高数学解题的能力。
1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。
平方根、立方根综合练习题、填空题1 .如果x 9,那么x = ___________ 如果X 9,那么x ____________2 •如果x的一个平方根是7.12,那么另一个平方根是__________ .3 .一个正数的两个平方根的和是 ___________ .一个正数的两个平方根的商是4. ________________________________________________________ 若一个实数的算术平方根等于它的立方根,则这个数是 ______________________ ;5. _________________________________ 算术平方根等于它本身的数有___ 立方根等于本身的数有 ___________________ .6 .阿的平方根是__________ ,百的算术平方根是__________ , 10 2的算术平方根是_________ ; J16的平方根是_________ ;9的立方根是 _____ ; _______ 的平方根是H 037.若一个数的平方根是8,则这个数的立方根是___________ ;8 .当m ______ 时,、3 m有意义;当m _______ 时,Vm 3有意义;9. ___________________________________________ 若一个正数的平方根是2a 1和a 2,则a __________________________________ ,这个正数是________ ;11. _________________________ a 1 2的最小值是_________ 此时a的取值是;10.已知2a 1 (b 3)212. 2x 1的算术平方根是2,则x= __________ ;13. _______________________________ .5 2的相反数是_______________ ;绝对值是 __________________________________14. 在数轴上表示______________________ .3的点离原点的距离是o二、选择题1. 9的算术平方根是()A . -3B . 3C . ± 3D . 812 •下列计算不正确的是()A. -.4=± 2 B . , ( 9)2.81=9C. 3 0.064 =0.4 D . \ 216 =-63.下列说法中不正确的是( )A . 9的算术平方根是3B . . 16的平方根是土 2C . 27的立方根是土D .立方根等于-1的实数是-14 . 3 64的平方根是( A . ± 8 B . ± 4 5.-1的平方的立方根是81A . 4 B86 .下列说法错误的是(A. ,( 1)2 1B.313C.2的平方根是D.81的平方根是7 . ..( 3)2的值是(A. 38 .设x 、y 为实数,且y则x y 的值是(A. 1B. 9C. 49.下列各数没有平方根的是D. 5 ).10. 计算' 25 3 8的结果是()A.3B.7C.-3D.-711. 若a= \3 ,b=- I —. 2 I , c= VT2)3,则a、b、c的大小关系是()A.a >b>cB.c >a>bC.b >a>cD.c > b> a12 .如果3x 5有意义,则x可以取的最小整数为().A. 0 B . 1 C . 2 D . 313. 一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A. x+1 B . x2+1 C . X+1 D . x2114. 若2m-4与3m-1是同一个数的平方根,则m的值是()A . -3B . 1C . -3 或 1D . -115 .已知x, y是实数,且.3x 4 + (y-3 ) =0,则xy的值是()9 9A . 4B . -4C . —D .--4 416 .若一个数的平方根是2m-4与3m-1,则m的值是()A . -3 B.1C.3 D . -117 .已知x, y是实数,且3x 4 +(y-3) 2=0, 则xy的值是()A . 4 B.-4C9 D .--44三、计算、求值1 .求下列各数的平方根.9 15(1) 100; (2) 0; (3)旦;(4) 1; (5) 1竺;(6) 0 . 09 .25 49A . —( —2 )B .( 3)3C ..(_1)2D . 11.13、解方程(4)、(2x-1 ) 2-169=0;(5)、丄 2(x+3) 3=4.(6)、x 3 -10= 17(7) x 2 182(8) 2x3 5(9) - (x+3) 2=8.2四.比较大小,并说理由。
(完整版)平方根与立方根典型题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN平方根算术平方根立方根三说一、平方根、算术平方根、立方根知识点概要1. 平方根、算术平方根的概念与性质2=),那么这个数x就叫做a的平方根(或二如果一个数x的平方等于a(即x a=±,这里a是x的平方数,故a必是一个非负数即a≥0;例次方根),记作:x a如16的平方根是±4,从定义还可得出:一个正数有两个平方根,它们互为相反数;负数没有平方根;0的平方根只有一个0,即为它本身。
正数a的正的平方根叫做a的算术平方根,表示为()a a≥0,例如16的算术平方=,从定义中容易发现:算术平方根具有双重非负性:①a≥0;②根是164a≥0。
2. 平方根、算术平方根的区别与联系区别:①定义不同;②个数不同;③表示方法不同;④取值范围不同:平方根可以是正数、负数、零,而算术平方根只能取零及正数,即非负数。
联系:①它们之间具有包含关系;②它们赖以生存的条件相同,即均为非负数;③0的平方根以及算术平方根均为0。
3. 立方根的定义与性质3=),那么这个数x就叫做a的立方根(或三次如果一个数x的立方等于a(即x a=3。
方根),记作:x a立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数。
二、解题中常见的错误剖析例1.求()-32的平方根。
2错解:()-=39()∴-32的平方根是-32是一个正数,故它的剖析:一个正数有两个平方根,它们互为相反数,而()-=39平方根应有两个即±3。
例2. 求9的算术平方根。
2=错解: 39∴9的算术平方根是3剖析:本题是没有搞清题目表达的意义,错误的认为是求9的算术平方根,因而导致误解,事实上本题9就是表示的9的算术平方根,而整个题目的意义是让求9的算术平方根的算术平方根。
93=,而3的算术平方根为3,故9的算术平方根应为3。
平方根立方根的计算一、填空题1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是 或者4既 的平方根是 5.非负的平方根叫 平方根6.如果9=x ,那么x =________;如果92=x ,那么=x ________; 7.若一个实数的算术平方根等于它的立方根,则这个数是_________; 8.算术平方根等于它本身的数有________,立方根等于本身的数有________.9. x ==则 ,若,x x =-=则 。
10.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ; 11.当______m 时,m -3有意义;当______m 时,33-m 有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 13.21++a 的最小值是________,此时a 的取值是________.14_______;9的平方根是_______. 15.144的算术平方根是 ,16的平方根是 ; 16.327= , 64-的立方根是 ; 17.7的平方根为 ,21.1= ;18.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 19.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 20.当x= 时,13-x 有意义;当x= 时,325+x 有意义; 21.若164=x ,则x= ;若813=n,则n= ; 22.若3x x =,则x= ;若x x -=2,则x ;23.若0|2|1=-++y x ,则x+y= ; 24.计算:381264273292531+-+= ;25.2)8(-= , 2)8(= 。
26.9的算术平方根是 ,16的算术平方根是 ;27.210-的算术平方根是 ,0)5(-的平方根是 ; 28.一个正数有 个平方根,0有 个平方根,负数 平方根. 29.一个数的平方等于49,则这个数是 30.16的算术平方根是 ,平方根是 31.一个负数的平方等于81,则这个负数是32.如果一个数的算术平方根是5,则这个数是 ,它的平方根是 33.25的平方根是 ; (-4)2的平方根是 。
34.9的算术平方根是 ;3-2的算术平方根是 。
35.若a 的平方根是±5,则a = 。
36.如果a 的平方根等于2±,那么_____=a ; 37.若一正数的平方根是2a-1与-a+2,则a=38.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;39.满足x 是 的算术平方根是 ,16的平方根是 ; 41.327= , 64-的立方根是 ; 的平方根为 ,21.1= ;43.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 44、平方数是它本身的数是 ;平方数是它的相反数的数是 ; 45、当x= 时,13-x 有意义;当x= 时,325+x 有意义; 46、若164=x ,则x= ;若813=n,则n= ; 47、若3x x =,则x= ;若x x -=2,则x ;48、若0|2|1=-++y x ,则x+y= ; 49、计算:381264273292531+-+= ;二、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .81 2.下列计算正确的是( )A =±2B =636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3B 22 4. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .146.(05年南京市中考)9的算术平方根是( ) A .-3 B .3 C .±3 D .81 7.下列计算不正确的是( )A =±2B = 8.下列说法中不正确的是( )A .9的算术平方根是3B 2 9. 64的平方根是( )A .±8B .±4C .±2D 10. 4的平方的倒数的算术平方根是( ) A .4 B .18 C .-14 D .1411.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1 C +1 D 12.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-113.已知x ,y (y-3)2=0,则xy 的值是( )A .4B .-4C .94 D .-9414.一个自然数的算术平方根是x ,则它后面一个数的算术平方根是( )A .x+1B .x 2+1 C +1 D 15.若2m-4与3m-1是同一个数的平方根,则m 的值是( ) A .-3 B .1 C .-3或1 D .-116.已知x ,y (y-3)2=0,则xy 的值是( )A .4B .-4C .94 D .-9417.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根 18.下列说法正确的是( ) A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±19.下列叙述中正确的是( ) A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数20.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5± 21.下列各式中,正确的是( )A. 2)2(2-=-B. 9)3(2=- C. 39±=± D. 393-=-22.下列各式中正确的是( ) A .12)12(2-=- B .6218=⨯ C .12)12(2±=-D .12)12(2=-±23、下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-24.已知一个正方形的边长为a ,面积为S ,则( ) A.a S =B.S 的平方根是aC.a 是S 的算术平方根D.S a ±=25. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a26.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( ) A .aB .a -C .2a -D .3a27.22)4(+x 的算术平方根是( )A 、 42)4(+x B 、22)4(+x C 、42+x D 、42+x28.一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( ) A .()1+a B .()1+±a C .12+a D .12+±a29.3612892=x ,那么x 的值为( ) A .1917±=xB .1917=xC .1817=xD .1817±=x 30. 下列结论正确的是( )A 6)6(2-=--B 9)3(2=-C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--31.下列运算中,错误的是( )①1251144251=, ②4)4(2±=-, ③22222-=-=-,④2095141251161=+=+ (A) 1个 ( B) 2个 (C) 3个 (D) 4个32.若51=+m m ,则mm 1-的平方根是( ) (A) 2± (B) 1± (C) 1 (D) 233.若a 、b 为实数,且471122++-+-=a a ab ,则b a +的值为( )(A) 1± (B) 4 (C) 3或5 (D) 5 34、若9,422==b a ,且0<ab ,则b a -的值为 ( ) (A) 2- (B) 5± (C) 5 (D) 5-35、25的平方根是( )A 、5B 、5-C 、5±D 、5±36.36的平方根是( )A 、6B 、6±C 、 6D 、 6±37.当≥m 0时,m 表示( ) A .m 的平方根 B .一个有理数 C .m 的算术平方根 D .一个正数38.用数学式子表示“169的平方根是43±”应是( ) A .43169±= B .43169±=± C .43169= D .43169-=-39.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 40.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0± 41.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 42. 若规定误差小于1, 那么60的估算值为( ) A. 3 B. 7 C. 8 D. 7或843. )。
A~之间 B~之间 C~之间 D~之间 44、满足53<<-x 的整数x 是( )A 、3,2,1,0,1,2--B 、3,2,1,0,1-C 、3,2,1,0,1,2--D 、2,1,0,1- 45.下列各数有平方根的个数是( )(1)5;(2)(-4)2;(3)-22;(4)0;(5)-a 2;(6)π;(7)-a 2-1 A .3个B .4个C .5个D .6个46. 下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C. 2是2的平方根D. –3是2)3(-的平方根 47.下列命题正确的是( ) A .49.0的平方根是 B .是49.0的平方根 C .是49.0的算术平方根D .是49.0的运算结果48. 以下语句及写成式子正确的是( )A7是49的算术平方根,即749±= B7是2)7(-的平方根,即7)7(2=-C.7±是49的平方根,即749=±D.7±是49的平方根,即749±=49.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是350.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( ) A .3个 B .2个C .1个D .4个三计算题 75.计算:(1)(2(3(4 (5)49.0381003⨯-⨯ (6)18783333-+- (7)36662101010++ (8)914420045243⨯⨯⨯(10)83122)10(973.0123+--⨯- (11))131)(951()31(32--+-(13)49.0381003⨯-⨯ (14)914420045243⨯⨯⨯ 四、综合训练76.利用平方根、立方根来解下列方程.(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0; (3)274x 3-2=0; (4)12(x+3)3=4.(5)(2x-1)2-169=0; (6)4(3x+1)2-1=0;(7)0324)1(2=--x (8)x x 1225)32(2-=-(13)若12112--+-=x x y ,求x y 的值。