相互独立事件同时发生的概率典型例题
- 格式:doc
- 大小:74.50 KB
- 文档页数:5
相互独立事件同时发生的概率典型例题例1甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为和,求:(1)两个人都译出密码的概率;(2)两个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.分析:我们把“甲独立地译出密码”记为事件,把“乙独立地译出密码”记为事件,显然为相互独立事件,问题(1)两个都译出密码相当于事件、同时发生,即事件.问题(2)两人都译不出密码相当于事件.问题(3)恰有1个人译出密码可以分成两类:发生不发生,不发生发生,即恰有1个人译出密码相当于事件.问题(4)至多1个人译出密码的对立事件是两个人都未译出密码,即事件.由于、是独立事件,上述问题中,与,与,与是相互独立事件,可以用公式计算相关概率.解:记“甲独立地译出密码”为事件,“乙独立地译出密码”为事件,、为相互独立事件,且.(1)两个人都译出密码的概率为:.(2)两个人都译不出密码的概率为:(3)恰有1个人译出密码可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:(4)“至多1个人译出密码”的对立事件为“有两个人译出密码”,所以至多1个人译出密码的概率为:.(5)“至少有1个人译出密码”的对立事件为“两人未译出密码”,所以至少有1个人译出密码的概率为:.说明:如果需要提高能译出密码的可能性,就需要增加可能译出密码的人,现在可以提出这样的问题:若要达到译出密码的概率为99%,至少需要像乙这样的人多少个?我们可以假设有个像乙这样的人分别独立地破译密码,此问题相当于次独立重复试验,要译出密码相当于至少有1个译出密码,其对立事件为所有人都未译出密码,能译出密码的概率为,按要求,,故,可以计算出,即至少有像乙这样的人16名,才能使译出密码的概率达到99%.例2如图,开关电路中,某段时间内,开关开或关的概率均为,且是相互独立的,求这段时间内灯亮的概率.分析:我们把“开关合上”记为事件,“开关合上”记为事件,“开关合上”记为事件C,是相互独立事件且由已知,它们的概率都是,由物理学知识,要求灯亮,有两种可能性,一个是、两开关合上,即事件发生,另一个是开关合上,即事件发生,也就是灯亮相当于事件发生.解:分别记“开关合上”、“开关合上”、“开关合上”为事件,由已知,是相互独立事件且概率都是.开关、合上或开关合上时灯亮,所以这段时间内灯亮的概率为:说明:本题的解题过程中,灵活使用了概率中的一些符号,比如,表示事件与事件同时发生,表示事件与事件至少有一个发生,表示与至少有一个发生,所以分成了三个互斥事件:发生不发生,不发生发生,与都发生,而其中不发生发生即,又不发生即与至少有一个不发生,从而又分成了三个互斥事件:、、,符号语言的正确理解与使用,不仅是提高数学能力的需要,而且也使数学解题过程简便明了,一些数学结论表述更加方便.我们可以尝试理解并领会下列结论:,,.例3掷三颗骰子,试求:(1)没有一颗骰子出现1点或6点的概率;(2)恰好有一颗骰子出现1点或6点的概率.分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解.解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且.(1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为:.(2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或不发生发生不发生或不发生不发生发生,用符号表示为事件,所求概率为:说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少?我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件,所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是0.6,求同时发射一发炮弹,击中飞机的概率是多少?把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为.例4 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率.分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解.解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.所以所求概率为.(2)“一件不合格品能通过第i名检验员检验”记为事件,“一件不合格品能出厂”即不合格品通过两名检验员检验,事件发生,所求概率为:.例5某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:(1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?三种方案中,哪一种方案系队获胜的概率更大一些,哪一种方案对系队更有利.进行几场比赛相当于进行几次独立重复试验,可以用n次独立重复试验中某事件发生次的概率方式解题.解:记一场比赛系队获胜为事件,事件的对立事件为校队获胜,所以用方案(1),发生两次为系队胜,发生3次也为系队胜,所以系队胜的概率为:用方案(2),发生3、4、5次为系队胜.所以系队胜的概率为:用方案(3),发生4、5、6、7次为系队胜.所以系队胜的概率为:比较可以看出,双方各出3个人对系队更有利,获胜概率为0.352.实际上,对弱队而言,比赛场数越少,对弱队越有利,侥幸取胜的可能性越大.说明:在日常生活中,经常出现方案的比较问题,或者方案是否合理的论证问题,比如产品抽查,抽检几件比较合理,因为抽多了浪费人力,抽少了容易让不合格产品出厂.设备维修安排几位维修工较合理,安排人员过多造成浪费,安排人员过少设备不能及时维修,这些问题都可以用本题的思维方法,先设计一个独立重复试验,然后抓某个事件发生的概率,看概率是否较小.我们可以看例子:10台同样的设备,各自独立工作,设备发生故障的概率为0.01,现在安排1名维修工,试说明这种配备是否合理?10台设备各自独立工作,相当于10次独立重复试验,有1名维修工人,若两台以上机器发生故障则得不到及时维修,其对立事件为至多1台机器发生故障,我们可以得到多于1台机器发生故障的概率为:.从结果来看,得不到及时维修的概率很小,安排一人维修比较合理.习题精选一、选择题1.甲盒中有200个螺杆,其中有160个A型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A型的螺栓概率为().A.B.C.D.2.流星穿过大气层落在地面上的概率为0.002,则流星数量为10个的流星群穿过大气层有4个落在地面上的概率约为()A.B.C.D.3.有10门炮同时向目标各发射一发炮弹,如果每门炮的命中率都是0.1,则目标被击中的概率约为()A.0.45 B.0.55 C.0.65 D.0.754.某人参加一次考试,若五道题中解对四题则为及格,已知他的解题正确率为,则他及格的概率是().A.B.C.D.二、填空题5.从甲、乙、丙三种零件中各取1件组成某产品,所用三零件必须是正品,所得产品才是合格品.已知三种零件的次品率分别为2%,3%,5%,则产品的次品率是______.6.两台独立在两地工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,则有仅有1台雷达发现飞行目标的概率为___________.7.一袋中有8个白球,4个红球;另一袋中,有6个白球,6个红球.从每袋中任取一个球,则取得颜色相同的球的概率是_________.三、解答题8、对贮油器进行8次独立射击,若第一次命中只能使汽油流出而不燃烧,第二次命中才能使汽油燃烧起来.每次射击命中目标的概率为0.2,求汽油燃烧起来的概率.9.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,求灯亮的概率10.设有两架高射炮,每一架击中飞机的概率都是0.6,试求同时射击一发炮弹而命中飞机的概率是多少?又若一架敌机侵犯,要以0.99的概率击中它,问需要多少架高射炮?11.一个工人看管8部同一类型的机器,在一小时内四部机器需要工人照看的概率等于,求下列事件的概率.求(1)一小时内,8部机器中有4部需要工人照看;(2)一小时内,需要工人照看的机器不多于6部.参考答案一、选择题1.C; 2.B; 3.C; 4.D;二、填空题5.0.0969; 6.0.22; 7.;三、解答题8.解:使汽油燃起来至少需要在这8次射击中有2次命中,故其概率为:9.解:证A、B、C、D这4个开关闭合分别为事件A,B,C,D,记A与B至少有一个不闭合为事件E,则.亮灯的概率为P,则.10.解:两架高射炮同时射击一发炮弹而命中飞机,有两种情况:两发炮弹恰有一发命中或两发炮弹都命中,所以.设需要n架高射炮,同时发射一发炮弹命中飞机的概率为0.99.则所以.11.解:(1)因为在一小时内,每台机器需要工人照看的概率都是.一小时内,8部机器中有4部需要工人照看,即为在8次独立重复试验中这个事件恰好发生4次.所以.(2)一小时内,需要工人照看的机器不多于6部的对立事件为有7部机器或8部机器需要工人照看.所以。
相互独立事件同时发生的概率知识要点:1.对于事件A、B,如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,则称这样的两个事件为相互独立事件.2.相互独立事件的概率乘法公式:设事件A、B相互独立,把A、B同时发生的事件记为(A·B),则有P(A·B)=P(A)·P(B).上述公式可以推广如下:如果事件A1,A2,……,A n相互独立,那么这n个事件都发生的概率等于每个事件发生的概率的积.即P(A1·A2·……·A n)=P(A1)·P(A2)·……·P(A n).3.如果事件A在一次试验中发生的概率是P,那么它在n次独立重复试验中恰好发生k次的概率:P n(k)=P k(1-P)n-k.实际上,它就是二项展开式[(1-P)+P]n的第(k+1)项.要求:1.掌握相互独立事件的概率乘法公式,会用它计算一些事件的概率.2.掌握计算事件在n次独立重复试验中恰好发生k次的概率.典型题目例1.加工某种零件先后需经历三道工序,已知第一、二、三道工序的次品率分别为2%、3%、5%.假定各道工序互不影响,问加工出来的零件的次品率为多少?解:设A1、A2、A3分别表示三道工序得到次品的事件,由题设知,它们是相互独立的事件,而加工得到次品是指以上三个工序中至少有一个工序是次品,即次品事件A=.∴P(A)=0.02×0.97×0.95+0.98×0.03×0.95+0.98×0.97×0.05+0.02×0.03×0.95+0.02×0.97×0.05+0.98×0.03×0.05+0.02×0.03×0.05=0.09693.例2.某商人购进光盘甲、乙、丙三件,每件100盒,其中每件里面都有1盒盗版光盘.这个商人从这3件光盘里面各取出1盒光盘卖给了李四,求:(1)李四恰好买到1盒盗版光盘的概率;(2)李四至少买到1盒盗版光盘的概率.解:(1)记从甲、乙、丙三件光盘里面各取出1盒光盘,得到非盗版光盘的事件分别为A、B、C,则事件·B·C、A··C、A·B·是互斥的;事件、B、C,A 、、C,A、B、彼此之间又是相互独立的.所以P(·B·C+A··C+A·B·)=P(·B·C)+P(A··C)+P( A·B·)=P()·P(B)·P(C)+P(A)·P()·P(C)+P(A)·P(B)·P()=0.01×0.99×0.99+0.99×0.01×0.99+0.99×0.99×0.01≈0.03.(2)事件A、B、C的设法同第(1)小题.因为P(A·B·C)=P(A)·P(B)·P(C)=0.99×0.99×0.99=0.993,所以1-P(A·B·C)=1-0.993≈0.03.例3.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8. 计算:(1)两人都击中目标的概率;(2)其中恰有1人击中目标的概率;(3)至少有一人击中目标的概率.分析:此题有三问,要依层次来解.解:(1)记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.显然,“两人各射击一次,都击中目标”就是事件:A·B,又由于事件A与B相互独立,∴P(A·B)=P(A)·P(B)=0.8×0.8=0.64.(2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A·),另一种是甲未击中乙击中(即·B),根据题意这两种情况在各射击一次时不可能同时发生,即事件A·与·B是互斥的,所以所求概率为:P=P( A·)+P(·B)=P(A)·P()+P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32.(3)解法1:“两人各射击一次,至少有一人击中目标”的概率为:P=P(A·B)+[P(A·)+P(·B)]=0.64+0.32=0.96.解法2:“两人都未击中目标”的概率是:P(·)=P()·P()=(1-0.8)×(1-0.8)=0.2×0.2=0.04.∴至少有一人击中目标的概率为:P=1-P(·)=1-0.04=0.96.点评:由(3)可见,充分利用(1)、(2)两问的结果解题很简单.但是(3)的解法2也告诉我们,即使是不会求(1)、(2),也可独立来解(3).在考试中要特别注意这一点.例4.某种大炮击中目标的概率是0.3,最少以多少门这样的大炮同时射击一次,就可以使击中目标的概率超过95%?解:设需要n门大炮同时射击一次,才能使击中目标的概率超过95%,n门大炮都击不中目标的概率为×0.30×0.7n=0.7n.至少有一门大炮击中目标的概率为1-0.7n.根据题意,得1-0.7n>0.95,即0.7n<0.05, nlg0.7<lg0.05,n>≈8.4.答:最少以9门这样的大炮同时射击一次,就可使击中目标的概率超过95%.例5.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中都是废品的概率.分析:应先确定所应用的每一事件的概率,以便求解.解:依题意可知:显然,这两个机床的生产应当看作是相互独立的.设A=“从甲机床抽得的一件是废品”,B=“从乙机床抽得的一件是废品”.则P(A)=0.04, P()=0.96, P(B)=0.05, P()=0.95.由题意可知,A与B,与B,A与,与都是相互独立的.(1)“至少有一件废品”=A·B +·B+A·P(A·B +·B+A·)=1-P(·)=1-P()·P()=1-0.96×0.95=0.088.(2)“恰有一件废品”=·B+A·.P(·B+A·)=P(·B)+P(A·)=P()·P(B)+P(A)·P()=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)“至多有一件废品”=A·+·B+·P(A·+·B+·)=P(A·)+P(·B)+P(·)=P(A)·P()+P()·P(B)+P()·P()=0.04×0.95+0.96×0.05+0.96×0.95=0.998.另外的解法是:“至多有一件废品不发生”=“两件都是废品”=A·BP(A·+·B+·)=1-P(A·B)=1-P(A)·P(B)=1-0.04×0.05=0.998.(4)“其中无废品”=“两件都是成品”=·P(·)=P()·P()=0.96×0.95=0.912.(5)“其中全是废品”=A·BP(A·B)=P(A)·P(B)=0.04×0.05=0.002.点评:本例有很强的综合性,学习中要注意认真体会加以理解掌握之.例6.已知射手甲命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.问三人同时射击目标,目标被击中的概率是多少?解:设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A、B、C中至少有一个发生.但应注意,A、B、C这三个事件并不是互斥的,因为目标可能同时被两人或三人击中,因此,可视目标被击中的事件的对立事件是目标未被击中,即三人都未击中目标,它可以表示为,而三人射击结果相互独立.所以P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=(1-)(1-)(1-)=.所以,目标被击中的概率是1-P()=1-.。
课后作业1.在乒乓球团体比赛项目中,我们的中国女队夺冠的概率是0.9,中国男队夺冠的概率是0.7,那么男女两队双双夺冠的概率是多少?2.某商场推出两次开奖活动,凡购买一定价值的商品可以获得一张奖券。
奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动。
如果两次兑奖活动的中奖概率都为0.05,求两次抽奖中以下事件的概率:(1)“都抽到某一指定号码”;(2)“恰有一次抽到某一指定号码”;(3)“至少有一次抽到某一指定号码”。
3.天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:①甲乙两地都降雨的概率;②恰有一个地方降雨的概率;③甲乙两地都不降雨的概率;④其中至少一个地方降雨的概率。
4.课后思考:已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.5,老二为0.45,老三为0.4,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大?5.假使在即将到来的世乒赛上,我国乒乓球健儿克服规则上的种种困难,技术上不断开拓创新,在乒乓球团体比赛项目中,我们的中国女队夺冠的概率是0.9,中国男队夺冠的概率是0.7,那么(1)男女两队双双夺冠的概率是多少?(2)只有女队夺冠的概率有多大?(3)恰有一队夺冠的概率有多大?(4)至少有一队夺冠的概率有多大?6.一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个。
某人在自动取款机上取钱时,忘记了密码的最后一位数字。
求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率。
7.重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).8.某气象站天气预报的准确率为80%,计算(结果保留两个有效数字):(1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率9.某车间的5台机床在1小时内需要工人照管的概率都是14,求1小时内5台机床中至少2台需要工人照管的概率是多少?(结果保留两个有效数字)10.某人对一目标进行射击,每次命中率都是0.25,若使至少命中1次的概率不小于0.75,至少应射击几次?11.十层电梯从低层到顶层停不少于3次的概率是多少?停几次概率最大?12. (2008湖北文).明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是.13. 甲箱子里装3个白球,2个黑球,乙箱子里装2个白球,2个黑球。
典型例题
例1 掷三颗骰子,试求:
(1)没有一颗骰子出现1点或6点的概率;
(2)恰好有一颗骰子出现1点或6点的概率.
分析:我们把三颗骰子出现1点或6点分别记为事件,由已知,是相互独立事件.问题(1)没有1颗骰子出现1点或6点相当于,问题(2)恰有一颗骰子出现1点或6点可分为三类:,三个事件为互斥事件.问题(1)可以用相互独立事件的概率公式求解,问题(2)可以用互斥事件的概率公式求解.
解:记“第1颗骰子出现1点或6点”为事件,由已知是相互独立事件,且.
(1)没有1颗骰子出现1点或6点,也就是事件全不发生,即事件,所以所求概率为:
.
(2)恰好有1颗骰子出现1点或6点,即发生不发生不发生或
不发生发生不发生或不发生不发生发生,用符号表示为事件
,所求概率为:
说明:再加上问题:至少有1颗骰子出现1点或6点的概率是多少我们逆向思考,其对立事件为“没有一颗骰子出现1点或6点,即问题(1)中的事件,
所求概率为,在日常生活中,经常遇到几个独立事件,要求出至少有一个发生的概率,比如例1中的至少有1个人译出密码的概率,再比如:有两门高射炮,每一门炮击中飞机的概率都是,求同时发射一发炮弹,击中飞机的概率是多少把两门炮弹击中飞机分别记为事件A与B,击中飞机即 A与B至少有1个发生,所求概率为
.
例2 某工厂的产品要同时经过两名检验员检验合格方能出厂,但在检验时也可能出现差错,将合格产品不能通过检验或将不合格产品通过检验,对于两名检验员,合格品不能通过检验的概率分别为,不合格产品通过检验的概率分别为,两名检验员的工作独立.求:(1)一件合格品不能出厂的概率,(2)一件不合格产品能出厂的概率.
分析:记“一件合格品通过两名检验员检验”分别记为事件和事件,问题(1)一件合格品不能出厂相当于一件合格品至少不能通过一个检验员检验,逆向考虑,其对立事件为合格品通过两名检验,即发生,而的概率可以用相互独立事件的概率公式求解.我们把“一件不合格品通过两名检验员检验”分别记为事件和事件,则问题(2)一件不合格品能出厂相当于一件不合格品同时通过两名检验员检验,即事件发生,其概率可用相互独立事件概率公式求解.
解:(1)记“一件合格品通过第i名检验员检验”为事件,“一件合格品不能通过检验出厂”的对立事件为“一件合格品同时通过两名检验员检验”,即事件发生.
所以所求概率为
.
(2)“一件不合格品能通过第i名检验员检验”记为事件,“一件不合格品能出厂”即不合格品通过两名检验员检验,事件发生,所求概率为:
.
例3 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为.现在校、系双方商量对抗赛的方式,提出了三种方案:(1)双方各出3人;(2)双方各出5人;(3)双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利三种方案中,哪一种方案系队获胜的概率更大一些,哪一种方案对系队更有利.进行几场比赛相当于进行几次独立重复试验,可以用n次独立重复试验中某事件发生次的概率方式解题.
解:记一场比赛系队获胜为事件,事件的对立事件为校队获胜,所以
用方案(1),发生两次为系队胜,发生3次也为系队胜,所以系队胜的概率为:
用方案(2),发生3、4、5次为系队胜.
所以系队胜的概率为:
用方案(3),发生4、5、6、7次为系队胜.
所以系队胜的概率为:
比较可以看出,双方各出3个人对系队更有利,获胜概率为.
实际上,对弱队而言,比赛场数越少,对弱队越有利,侥幸取胜的可能性越大.
说明:在日常生活中,经常出现方案的比较问题,或者方案是否合理的论证问题,比如产品抽查,抽检几件比较合理,因为抽多了浪费人力,抽少了容易让不合格产品出厂.设备维修安排几位维修工较合理,安排人员过多造成浪费,安排人员过少设备不能及时维修,这些问题都可以用本题的思维方法,先设计一个独立重复试验,然后抓某个事件发生的概率,看概率是否较小.
我们可以看例子:10台同样的设备,各自独立工作,设备发生故障的概率为,现在安排1名维修工,试说明这种配备是否合理10台设备各自独立工作,相当于10次独立重复试验,有1名维修工人,若两台以上机器发生故障则得不到及时维修,其对立事件为至多1台机器发生故障,我们可以得到多于1台机器发生故障的概率为:
.
从结果来看,得不到及时维修的概率很小,安排一人维修比较合理.。