ABAQUS后处理中各应力解释个人收集
- 格式:docx
- 大小:10.25 KB
- 文档页数:3
abaqus 复合层后处理的应力
在Abaqus中进行复合材料层后处理时,我们通常关注应力分布。
复合材料的应力分析涉及多个方面,包括层间剪切应力、法向应力、张热应力等。
在后处理中,我们可以通过Abaqus提供的可视化工具
和输出结果来分析这些应力。
首先,我们可以使用Abaqus的后处理模块来查看复合材料层的
应力分布。
在Abaqus/CAE中,我们可以选择合适的后处理模块,如XY数据、Contour Plot等,来查看不同位置的应力情况。
通过设置
合适的筛选条件和参数,我们可以获取层间剪切应力、法向应力等
数据,并进行可视化展示。
其次,Abaqus还提供了丰富的输出结果,如ODB文件,我们可
以通过Abaqus Viewer来打开这些文件,并查看复合材料层的应力
情况。
在Viewer中,我们可以选择不同的输出变量,如S11、S22、S12等,来查看不同方向上的应力分布情况。
此外,还可以通过Abaqus提供的Python脚本来自定义输出结果,实现更灵活的后处
理分析。
除了Abaqus自带的后处理工具,我们还可以通过其他工具对复
合材料层的应力进行分析。
比如,我们可以将Abaqus的输出结果导入到MATLAB或者Python等工具中,利用其强大的数据处理和可视化能力来进行更深入的分析。
总的来说,在Abaqus中进行复合材料层后处理的应力分析,我们可以通过Abaqus自带的后处理模块和输出结果来获取层间剪切应力、法向应力等数据,并通过可视化工具进行直观展示。
同时,还可以借助其他工具进行更深入的分析,以全面了解复合材料层的应力情况。
ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。
因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。
S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。
注意:塑性材料第一行中的塑性应变必须为0,其含义为:在屈服点处的塑性应变为0。
4、定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的应力和应变值。
5、对于塑性损伤模型,其应力应变曲线中部能有负斜率。
a b a q u s中应力的理解 This model paper was revised by the Standardization Office on December 10, 2020
在ABAQUS中对应力的部分理解
关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。
简单地理解,
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力,负值为压应力;
S22就是Y轴向的应力,正值为拉应力,负值为压应力;
S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21,S13=S31,S23=S32
Mises应力是即第四强度理论,根据能量守恒原理,用于判断材料是否屈服的应力准则,即Mises准则,一般使用于判断延性比较好的材料,对于脆性材料,一般采用第一强度理论。
ABAQUS中应力、应变详解
真实应力、名义应力、真实应变、名义应变的关系
名义应变,又称相对应变或工程应变、适用于小应变分析。
名义应变又可分线应变和切应变。
真实应变,又称对数应变;假设物体内两质点相距为L0, 经变形后距离为 Ln, 则相对线应变为
ε = (Ln-L0)/L0 ,这种相对线应变一般用于小应变情况。
而在实际变形过程中,长度L0系经过无穷多个中间的数值变成L, 如L0,L1,L2,L3 …… Ln-1,Ln, 其中相邻两长度相差均极微小,由 L0-Ln 的总的变形程度,可以近似地看作是各个阶段相对应变之和,
大多数实验数据常常是用名义应力和名义应变值给出的,所以我们应将其转换为真实应力和真实应变。
其转换公式如下:
塑性分析中的注意问题:对于大应变,真实应变和名义应变之间的差值就会很大,所以在给abaqus提供应力-应变数据时,一定要注意正确的给予赋值,在小应变的情况下,真实应变和名义应变之间的差别很小,不是很重要。
几何非线性开关打开时,ABAQUS中可输出LE(真实应变)、EE (弹性应变)、NE(名义应变)等
几何非线性开关关闭时,ABAQUS中可输出E(真实应变)、EE (弹性应变)等。
abaqus 应力参数解读
在ABAQUS中,应力参数的解读主要涉及以下几个方面:
1.最大应力值:在应力云图中,最红色箭头的长度代表结构中的最大应
力值。
这个值可以用来评估结构的稳定性以及是否需要进行改进。
2.应力分布:通过观察整个ABAQUS应力云图,可以了解结构中应力
的分布情况。
不同颜色代表的应力大小,可以让我们了解哪些部位的应力值偏大,哪些部位应力较小。
3.应力集中:云图中的一些局部区域可能会出现颜色变化明显的地方,
这代表着应力集中。
这种集中可能会导致结构的损坏,需要加强这些区域的支撑。
在ABAQUS应力云图中,颜色的深浅表明不同的应力值大小,深色表示高应力区域,浅色则表示低应力区域。
图表上的数字则表示应力云图中点的应力大小,通常是以Pa(帕斯卡)为单位的应力值。
这些数字通常以阈值的形式显示,用户可以设定不同的阈值,仅显示应力值大于某个数值的点。
ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11S22代表壳单元面内的应力。
因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。
S11 S22 S33实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。
LE----真应变(或对数应变)LEij---真应变...应变分量;PE---塑性应变分量;PEEQ---等效塑性应变ABAQUS Field Output StressesStrainForce/Reactions RF reaction forces and moments反应力和力矩RT reactionforces反应力1、弹塑性分析中并不一定总要考虑几何非线性。
“几何非线性”的含义是位移的大小对结构的响应发生影响,例如大位移、大转动、初始应力、几何刚性化和突然翻转等。
2、等效塑性应变PEEQ与塑性应变量PEMAG,这两个量的区别在于,PEMAG描述的是变形过程中某一时刻的塑性应变,与加载历史无关;而PEEQ 是整个变形过程中塑性应变的累积结果。
等效塑性应变PEEQ大于0表明材料发生了屈服。
在工程结构中,等效塑性应变大凡不应超过材料的破坏应变(failurestrain)。
3、在定义塑性材料时应严格按下表原则输入对应的真实应力与塑性应变:真实应力<</FONT>屈服点处的真实应力><</FONT>真实应力>……塑性应变0<</FONT>塑性应变>……注意:塑性材料第一行中的塑性应变必须为0,其含义为:在屈服点处的塑性应变为0。
4、定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的应力和应变值。
5、对于塑性损伤模型,其应力应变曲线中部能有负斜率。
abaqus中的有效应力和总应力在Abaqus中,有效应力(Equivalent Stress)和总应力(Total Stress)是两个非常重要的概念。
有效应力是指在材料内部的应力状态,它是根据von Mises屈服准则计算得出的一个标量。
有效应力表示了材料的应力状态,能够更好地预测材料的破坏行为。
在Abaqus中,有效应力可以通过后处理模块进行计算和输出。
总应力是指在材料中所有应力分量的总和。
总应力包括正应力和剪应力。
在Abaqus中,总应力可以通过Abaqus分析的结果输出进行计算和查看。
需要注意的是,在一些情况下,有效应力和总应力可能是相等的,比如在没有外力加载的情况下,或者在完全塑性的情况下。
但在大多数情况下,材料中的有效应力和总应力是有区别的,并且有效应力比总应力更能够反映材料的应力状态。
a b a q u s中应力的理解 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
在A B A Q U S中对应力的部分理解关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。
简单地理解,
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力,负值为压应力;
S22就是Y轴向的应力,正值为拉应力,负值为压应力;
S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21,S13=S31,S23=S32
Mises应力是即第四强度理论,根据能量守恒原理,用于判断材料是否屈服的应力准则,即Mises准则,一般使用于判断延性比较好的材料,对于脆性材料,一般采用第一强度理论。
在ABAQUS中对应力的部分理解
关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。
简单地理解,
在ABAQUS中,一般是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就是X轴向的应力,正值为拉应力,负值为压应力;
S22就是Y轴向的应力,正值为拉应力,负值为压应力;
S33就是Z轴向的应力,正值为拉应力,负值为压应力;
S12就是在YZ平面上,沿Y向的剪力;
S13就是在YZ平面上,沿Z向的剪力;
S23就是在XZ平面上,沿Z向的剪力;
由于剪力的对称性:S12=S21,S13=S31,S23=S32
Mises应力是即第四强度理论,根据能量守恒原理,用于判断材料是否屈服的应力准则,即Mises准则,一般使用于判断延性比较好的材料,对于脆性材料,一般采用第一强度理论。
最新资料推荐ABAQUS中应力・应变详解放飞梦想2021-04-28 10:32:381、三维空间中任一点应力有6个分量q,丐,馮,陽,込八鼻,在ABAQUS中分别对应Sil,S22,S33,S12,S13,S23。
,2、一股情况下,通过该点的任意截面上有正应力及其剪应力作用。
但有一些特殊截面,在这些截面上仅有正应力作用,而无剪应力作用。
称这些无剪应力作用的面为主截面,其上的正应力为主应九主截面的法线叫主轴,主截面为互相正交。
主应力分别以巧,6,码表示,按代数值排列〔有正负号〕为cq > cr2 > cr3o其中crifCr29 cry在ABAQUS 中分别对应Max. Principal. Mid. Principal、Min. Principal,这三个量在任何坐标系统下都是不畫量。
u。
可利用最大主应力判断一些情况:比方混凝土的开裂,菽励;主应力〔拉应力〕大于混凝土的抗拉强度,那么认为混凝土开裂,同时通过显示最大主应力的法线方向,可以大致表示岀裂缝的开裂方向等。
2利用最小主应力,可以查看实体中剩余压应力的大小等。
3b3、弹塑性材料的屈服准那么屮、魄甥唸屈服准那么〞〔巧■引2+® _还〕2+ 〔円■巧尸=2氏其中£为材料的初始屈服应力…在三维空间中屈服面为椭圆柱面;在二维空间中屈服面为椭圆。
〜癒吟效应力的定义为:〔牵扯到张量知识*q=Vl。
尽其中s为偏应力张量,其表达式为S = C7+ 〃I.其中〞为应力,I为单位矩阵,P为等效压应力〔定义如下〕:I匸■如,也就是我们常见的八£© +巧襦〕。
3 还可以具体表达为:Px底2小其中Sij = Cj +% P =■抄“,加为偏应力张量〔反响塑性变形形状的变化*gS ABAQUS中对应期烁尼有6个分量〔随坐标定义的不同而变化〕S11,S22,S33, S12, S13,S23 “址新资料推荐32琢辣屈服准那么Q主应力间的最大差值=23假设明确了巧王帀王円,那么有2(“・5)=上,假设不明确就需要分别两两求差值,2看哪个最大。
abaqus提取集的应力值
要在Abaqus中提取集的应力值,您可以采取以下步骤:
1. 在Abaqus中打开要分析的模型。
2. 转到"Field Output"选项卡,并确保已选择"Stress"选项。
3. 在"Stress"选项下,选择您要提取的应力类型,例如总应力(S11,S22,S33,S12,S13,S23),等效应力(EQV)等。
4. 选择您要在哪些位置提取应力值的选项。
您可以选择在整个模型中提取应力,也可以选择在特定区域或集合中提取应力。
5. 点击"Create"按钮以创建应力输出集合。
6. 在"Output"选项卡下,选择集合名称,并设置输出步骤和间隔。
7. 运行模拟并等待结果生成。
8. 结果生成后,转到"Visualization"选项卡,并选择要可视化
的结果类型(例如Stress)。
9. 在"Display"选项下,选择您之前创建的应力输出集合。
10. 在模型上显示应力值分布。
通过以上步骤,您就可以在Abaqus中提取集的应力值并进行
可视化分析。
Abaqus节点应力和单元应力分析在工程和科学领域中,节点应力和单元应力分析是非常重要的任务,它们可以帮助我们了解材料的行为和结构的稳定性。
Abaqus是一种常用的有限元分析软件,可以用于进行节点应力和单元应力分析。
节点应力分析节点应力是指在有限元模型中每个节点处的应力值。
通过节点应力分析,我们可以确定结构中各个位置的最大、最小以及平均应力值,并且可以对结构进行强度评估。
Abaqus使用有限元方法来计算节点应力。
有限元方法将结构离散化为许多小型单元,然后通过求解线性方程组来估计每个节点处的位移和变形。
根据位移和变形信息,可以计算出每个节点处的应力。
要进行节点应力分析,在Abaqus中需要完成以下步骤:1.创建几何模型:使用Abaqus提供的几何建模工具来创建你想要分析的结构模型。
2.定义材料属性:根据所选材料的特性,在Abaqus中定义材料属性。
这些属性包括弹性模量、泊松比等。
3.设置边界条件:定义结构上的边界条件,例如固定支撑、施加的力或位移等。
4.网格划分:将结构离散化为小型单元,并生成网格。
可以根据需要调整网格密度。
5.定义分析步骤:通过定义加载步骤和分析类型来设置节点应力分析。
6.运行分析:在Abaqus中运行节点应力分析,并获得每个节点处的应力结果。
单元应力分析单元应力是指在有限元模型中每个单元内部的应力值。
通过单元应力分析,我们可以了解结构中不同单元的受力情况,从而评估结构的稳定性和强度。
Abaqus使用有限元方法计算单元应力。
在有限元模型中,结构被划分为许多小型单元,每个单元都有自己的材料属性和几何特性。
通过求解线性方程组,可以得到每个单元内部的位移和变形信息,并根据这些信息计算出每个单元内部的应力。
要进行单元应力分析,在Abaqus中需要完成以下步骤:1.创建几何模型:使用Abaqus提供的几何建模工具来创建你想要分析的结构模型。
2.定义材料属性:根据所选材料的特性,在Abaqus中定义材料属性。
[ABAQUS应⽤] 后处理中的应⼒S11结果
在ABAQUS/Standard或Explicit结果查看中均有应⼒这⼀选项,应⼒选项⽐较丰富,有
s11,s22、还是有主应⼒、mises应⼒等等,这⾥容易混淆的是s11指的是应⼒,还是弹塑性⼒学中的偏应⼒?⽽且在ABAQUS帮助中对这两个参数的符号没有区别,如下图所⽰。
这两者应⼒之间的关系就是偏应⼒=应⼒+静⽔压⼒。
静⽔压⼒在ABAQUS中就是Pressure,为主应⼒之和的(-1/3)。
所以应⼒和偏应⼒的概念是有区别的,这⾥简单建了⼀个模型,来说明ABAQUS后处理的s11指的就是应⼒,⽽不是偏应⼒。
模型:建⽴⼀个1m*1m*4m的体,体的底部固结,体的顶部施加1 N/m2,弹性模量任意,由简单的⼒学知识确定,⾯内应⼒应为1 N/m2。
参看结果:⼀共参看三个结果:MISES应⼒,S33单⽅向应⼒和静⽔压⼒。
理论答案(受压为负):Mises应⼒应为1 N/m2; S33单⽅向应⼒应为 -1 N/m2;净⽔压⼒应为 0.33 N/m2;下⾯三个图完全吻合,说明 ABAQUS后处理的s11指的就是应⼒,⽽不是偏应⼒。
MISES应⼒
S33 应⼒
静⽔压⼒Pressure。
abaqus 应力参数解读-回复ABAQUS是一种常用的有限元分析软件,常用于工程领域中的结构力学分析。
在ABAQUS软件中,应力是一个重要的参数,用于描述材料内部受力的情况。
本文将围绕ABAQUS软件中的应力参数展开讨论,为读者提供一步一步解读的指导。
首先,我们需要了解ABAQUS中的应力参数是如何计算的。
ABAQUS使用了经典的有限元方法,其中将结构细分为许多小单元,然后根据物理方程和边界条件计算每个单元的应力。
这些单元的应力信息可以通过输出请求的方式进行提取和存储。
所以,在使用ABAQUS分析模型时,我们可以通过观察不同的应力参数,了解材料的受力情况。
在ABAQUS中,可以通过多种方式获取应力参数。
最常用的方法是使用Node输出请求,在定义模型时选择输出节点上的应力信息。
另外,还可以通过坐标点、指定单元等方式获取应力参数。
获取应力参数后,我们需要详细解读分析结果,以获得与工程实际问题相对应的应力分布。
在进行应力解读时,我们首先要了解ABAQUS中常用的应力参数。
其中,最基本的应力参数是von Mises应力,它是一种有效应力的度量,用于评估材料是否破裂。
von Mises应力的计算公式是根据各向异性材料的各向同性假设得出的。
除von Mises应力外,还可以通过输出其他应力参数,如等效应力、主应力、应力椭圆等。
在进行应力参数解读时,我们需要注意以下几个方面:1. 定量分析:通过对应力参数进行定量分析,我们可以了解材料内部是否存在过载或者应力集中现象。
比如,在结构设计中,我们可以通过检查von Mises应力是否超过材料强度极限,从而判断结构是否安全。
2. 空间分布:除了了解应力的数值上限外,空间分布的信息也很重要。
我们可以基于节点或单元上的应力结果,绘制应力云图或等值线图,以直观地展示不同部位的应力分布情况。
通过观察应力的空间分布,我们可以判断材料内部的应力传递和变化规律。
3. 材料行为评估:应力参数还可以用于评估材料的机械行为特性。
b三维空间中任一点应力有&个分量码,牡厂氐”乐,在ABAQUSt 分别对应£11, £22、S33, S12,S13, S23, a£ 一股情况下,通过该点的任意戳面上有正应力及其剪应力作用◎但有一些彳殊截面,在这些截面上仅有正应力作用,而无剪应力作用。
称这些无前应力作丿的面为主霰面*其上的正应力为主应力,主截面的法线叫主轴,主截面为互相1 交。
主应力分别以巧,匕4表示,按氏数值松列(有正负号)为巧工円工b 絆其中5•听•码在ABAQUS 中分别对应Max PrincipaL Mid. Principal. Mi:Principal,这三个量在任何坐标系统下都是不变量…+J可利用最大主应力判断一些情况比如混凝土的开裂,君最衣主应力〔拉J 力)大于混凝土的抗拉趣度,则认为混凝土开裂,同时通过显示最大主应力的扌线方向,可以大致表示出裂缝的开裂方向等。
P刑埠最小主应力,可以查看实体中残余压应力的大小等,7仪左弹塑性材料的JS服准则A31.脈慝冋戲推贻〔血-+(巧-円尸+込-巧『=2远其中込为材料的初始屈服应力*在三维空间中屈服面为椭圆柱面』在二维空间中屈服面为椭圆°存塑0等效应力的定义为,(華扯到张量知识H7 =侮其中0为偏应力张量,‘其表达式为S =厅+ pL其中仃为应丈I为单位矩阵,P为等效压应力〔定义如下)「也就是我们常见E1, 、戸二〒(碍+巧十刃八”还可以具体表迖为:口"=其中Sij =J +皿几P= 一叔叫比为偏应力张量(反应2 性变形形伏的变化丄卩仪学在ABAQVS中对应坳宓,它有百个分量(随坐标定义的不同而娈化)S11S22, S33. S12, 313, S23 卍3.2.聪沛服准则屮主应力间的最大差值屮若明确了巧壬口飞理,则有女巧-勾二匕若不明确就需曼分别两两求差值, 看哪个最大。
*ABAQUS中的Jh理等效应力就是「住应力问的最大差值咋h.3ABAQUS中的F比鹑ur—…竽豉压应力氽即为上面提到的R »= -討匚也就是我们常见的"*丐+丐+耳)…d3 4ABAQUS中的Third Invariant—第?应力不变量,定义如下=丄r = [^S - S: S)l/i=(詛涉汕触)":其屯s魁见3 [中的解释」我们常见的表达式为尸二%巧%“*在ABAQITg中对应变的部分理解PK E—总应变i茹-应变分量卡d2, EP…主应变; EP V—分为Minimum, intermediate, and nmiiiium principal stramr (EF <EP2 <EP3>M NE-—名义应变i NEP—-主名义应变丨" _4 LE•…真应变(或对数应变);1&—X应变分量;LEP…主真应变;卜5、EET¥性应变j仪& IE_-非萍性应变分量;〜仏FE…塑性应变分量…8> PEEQ…等效塑性应变一在塑性分析中若该值》厲表示材料已经屈服?卩描述整个变形过程中塑性应变的累积结果若单调枷载贝PEEQ=PEMAG ;P 9、PEMAG——塑性应变量(幅值期热哄)—描述变形过程中某一对刻的塑供应变,与加载历史无关!扣10.THE--热应变分量.真实应力、名义应力、真实应变、名义应变的关系名义应变,又称相对应变或工程应变、适用于小应变分析。
在ABAQUS中对应力得部分理解
关于abaqus中 mises, s11 s22 s33 ,s12,tresca pressure, max principal,mid principal,min principal。
简单地理解,
在ABAQUS中,一般就是把X轴当做1轴,Y轴当做2轴,Z轴当做3轴;那么:
S11就就是X轴向得应力,正值为拉应力,负值为压应力;
S22就就是Y轴向得应力,正值为拉应力,负值为压应力;
S33就就是Z轴向得应力,正值为拉应力,负值为压应力;
S12就就是在YZ平面上,沿Y向得剪力;
S13就就是在YZ平面上,沿Z向得剪力;
S23就就是在XZ平面上,沿Z向得剪力;
由于剪力得对称性:S12=S21,S13=S31,S23=S32
Mises应力就是即第四强度理论,根据能量守恒原理,用于判断材料就是否屈服得应力准则,即Mises准则,一般使用于判断延性比较好得材料,对于脆性材料,一般采用第一强度理论。
ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。
因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。
S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。
LE----真应变(或对数应变) LEij---真应变 ... 应变分量;
PE---塑性应变分量;
PEEQ---等效塑性应变
ABAQUS Field Output Stresses
S stress components and invariants 应力分量和变量 SVAVG volume-averaged stress components and invariants (Eulerian only) MISESMAX 最大 Mises 应力 TSHR transverse shear stress(for thick shells)横向剪切应力 CTSHR transverse shear stress in stacked continuum shells 连续堆垛壳横向剪切应力 TRIAX stress triaxiality 应力三轴度 VS stress in the elastic-viscous network 弹粘性网格应力PS stress in the plastic-viscous network 塑粘性网格应力 SFABRIC stress components in fabric constitutive measure 纤维本构应力分量 SSAVG average shell section stress 平均壳节点应力
Strain
E total strain components 总应变分量 VE viscous strain in the elastic-viscous network 黏性应变弹黏性网格PE plastic strain components 塑性应变分量 PEVAVG volume-averaged plastic strain components (Eulerian only) VEEQ equivalent viscous
strain in the elastic-viscous network PEEQ equivalent plastic strain PEEQVAVG volume-averaged viscous strain components (Eulerian only) PEEQT equivalent plastic strain(tension: cast iron and concrete) 等效塑性应变 PEEQMAX maximum equivalent plastic strain 最大等效塑性应变PEMAG plastic strain magnitude 塑性应变 PEQC equivalent plastic strain at multiple yield surfaces 多屈服面等效塑性应变 NE normal strain components 垂直塑性应变 LE logarithmic strain components 对数应变SE mechanical strains and curvatures 机械应变和曲率DAMAGEC compressive damage 压缩破坏 DAMAGET t ensile damage 拉伸破坏 DAMAGEFT fiber compressive damage 纤维压缩破坏 DAMAGAMT matrix tensile damage 复合拉伸破坏 DAMAGAMC matrix compressive damage 复合压缩破坏 DAMAGESHR shear damage 剪切破坏 SDEG scalar stiffness degradation 尺寸刚度梯度 EFABRIC total strain components in fabric constitutive measure 纤维本构总应变
Force/Reactions RF reaction forces and moments 反应力和力矩 RT reaction forces 反应力
RM reaction moments 反应力矩 CF concentrated forces and moments 集中力和力矩 SF section forces and moments 节点力和力矩 NFORC nodal forces due to element stress 结力-单元应力 RBFOR force in rebar BF body forces 体力 GRAV uniformly distributed gravity loads 统一分布重力加载 P pressure loads 压力加载 HP Hydrostatic pressure loads 静水压力加载 TRSHR shear traction vector 剪切牵引载体 TRNOR normal component of traction vector 牵引载体垂直分量 VP viscous pressure loads 黏性压力载荷 STAGP stagnation pressure loads 停滞压力载荷 SBF stagnation body forces 停滞体力
1、??弹塑性分析中并不一定总要考虑几何非线性。
“几何非线性”的含义是位移的大小对
结构的响应发生影响,例如大位移、大转动、初始应力、几何刚性化和突然翻转等。
2、??等效塑性应变PEEQ与塑性应变量PEMAG,这两个量的区别在于,PEMAG描述的是变形
过程中某一时刻的塑性应变,与加载历史无关;而PEEQ是整个变形过程中塑性应变的累积结果。
等效塑性应变PEEQ大于0表明材料发生了屈服。
在工程结构中,等效塑性应变一般不应超过材料的破坏应变(failure strain)。
3、??在定义塑性材料时应严格按下表原则输入对应的真实应力与塑性应变:
注意:塑性材料第一行中的塑性应变必须为0,其含义为:在屈服点处的塑性应变为0。
4、??定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的
应力和应变值。
5、??对于塑性损伤模型,其应力应变曲线中部能有负斜率。