全国卷I数学双向细目表
- 格式:docx
- 大小:47.11 KB
- 文档页数:28
数学试题双向细目表I. 整数与有理数A. 基本概念1. 整数的定义及性质2. 有理数的定义及性质B. 整数与有理数的运算1. 加法与减法2. 乘法与除法3. 混合运算C. 整数与有理数的应用1. 温度计算2. 货币兑换问题II. 代数表达式与方程式A. 代数表达式1. 变量与常数2. 四则运算3. 代数表达式化简B. 方程式1. 一元一次方程式2. 一元二次方程式3. 解方程应用题III. 几何A. 基本概念1. 点、线、面的定义2. 角的定义与性质B. 图形的性质与分类1. 三角形2. 四边形3. 圆与圆的构造C. 坐标系与向量1. 平面直角坐标系2. 向量的定义与运算IV. 概率与统计A. 概率1. 随机事件与样本空间2. 概率的计算3. 事件的复合与互斥B. 统计1. 数据的收集与整理2. 平均数与中位数3. 概率统计应用题V. 函数与图像A. 函数概念与性质1. 函数的定义2. 函数的图像与性质B. 常见函数类型1. 线性函数与非线性函数2. 幂函数与指数函数3. 对数函数与三角函数C. 函数的运算与应用1. 函数的加减与乘除2. 函数的复合与反函数VI. 三角函数A. 基本概念与性质1. 弧度与角度的换算2. 三角函数的定义B. 三角函数的图像与周期性1. 正弦函数与余弦函数2. 正切函数与余切函数C. 三角函数的应用1. 三角函数方程的解法2. 三角函数在几何中的应用VII. 数列与数学归纳法A. 数列的概念与性质1. 等差数列与等比数列2. 通项公式与求和公式B. 数学归纳法1. 数学归纳法的原理2. 数学归纳法的应用VIII. 解析几何A. 平面解析几何1. 平面直角坐标系2. 点、线、圆的方程B. 空间解析几何1. 空间直角坐标系2. 直线与平面的方程3. 空间图形的分类IX. 近似计算A. 有效数字与误差1. 有效数字的定义2. 误差的计算与表示B. 近似计算方法1. 数的四舍五入2. 数的科学记数法3. 近似计算的应用X. 排列组合与概率A. 排列与组合1. 排列的定义与计算2. 组合的定义与计算B. 概率统计1. 事件的概率计算2. 投掷与抽取问题的概率XI. 三角函数与复数A. 三角函数的复数表示1. 克莱布斯-戴维(C-D)公式2. 欧拉公式与复数表示B. 复数的运算与性质1. 复数的加减与乘除2. 复数的共轭与模XII. 微积分基础A. 导数的定义与性质1. 导数的定义2. 导数的性质与计算B. 函数的极值与应用1. 函数的极大值与极小值2. 函数的应用问题XIII. 平面向量A. 向量的概念与性质1. 向量的定义与表示2. 向量的性质与运算B. 向量的应用1. 向量的坐标表示2. 向量运算在几何中的应用XIV. 几何证明A. 平面几何证明1. 各种基本几何定理的证明2. 几何图形性质的证明B. 空间几何证明1. 空间几何定理的证明2. 空间图形性质的证明XV. 指数与对数函数A. 指数函数与对数函数的性质1. 指数函数的定义与性质2. 对数函数的定义与性质B. 指数与对数函数的应用1. 指数增长问题2. 对数衰减问题。
考试内容能力层次高考要求07年理解有关集合的概念和意义逻辑联结词四种命题及其相互关系理解逻辑联结词"或"."且""非"的含义;四种命题及其相互关系全特称命题的否定理解2充分条件与必要条件掌握充要条件的意义映射与函数理解有关概念抽象函数函数的单调性掌握判断一些简单函数单调性的方法二次函数掌握解决有关数学问题指数函数与对数函数掌握指数函数与对数函数的概念图象和性质函数的图象理解有关概念,利用特值、单调、周期、奇偶判断零点与方程理解有关概念,会求零点区间、个数利用函数知识解应用题掌握应用函数知识解决实际难度问题函数的综合问题掌握综合运用函数知识解决数学问题推理与证明数列的概念理解数列、通项公式的概念全国高考数学(新课标)知识双掌握由Sn求an的公式掌握能利用函数的奇偶性与图象的对称性的关系描述函数图象14(二次函数是偶函数求字母)函数的定义域·解析式·值域掌握有关概念集合与集合运算掌握有关术语和符号,能正确地表示出一些简单的集合1(不等式)函数的奇偶性等比数列掌握等比数列的通项公式,前n 项和公式6(等比性质)掌握差比裂项求和三角函数概念公式掌握任意角的正弦、余弦、正切的定义,用三角函数线表示正弦、余弦和正切;同角三角函数的基本关系式;正弦、余弦的诱导公式和差倍公式掌握通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力9(二倍角、和差公式约分,含π/4的)求值图象与性质掌握会用三角函数线画正弦函数,正切函数的图象,由诱导公式画余弦函数的图象;理解它们的性质;会用"五点法"3(一个半周期闭区间上图象)用"五点法"画函数y=Asin(ωx+Φ)的简图图象变换掌握利用三角知识求范围最值掌握运用所学三角知识解决实际问题A 、ω、Φ的物理意义y=Asin(ωx+Φ)的图象三角最值及综合应用掌握数列的综合应用理解掌握有关概念及解决实际问题等差数列掌握等差数列的通项公式,前n 项和公式16(基本量求d )了解共线向量,平面向量基本定理理解向量,向量共线的充要条件,平面向量的坐标掌握向量的几何表示,实数与向量的积,向量加法与减法,平面向量的坐标运算4(线性运算的坐标表示)了解用平面向量的数量积可以处理有关长度、角度和垂直等问题掌握平面向量的数量积及其几何意义;向量垂直的条件向量综合掌握综合不等式的概念性质理解不等式的性质不等式证明分析法、综合法、比较法证明简单的不等式均值不等式掌握并会简单的应用;解不等式掌握二次不等式、简单的分式不等式的解法掌握简单的绝对值不等式的解法直线方程及位置关系理解直线的倾斜角和斜率掌握两点斜率公式:一点和斜率求出直线方程的方法;点斜式、两点式和一般式,熟练求出直线方程.两条直线平行与垂直的条件,两条直线成的角、点到直线的距离公式,两条直线的位直关系了解简单的线性规划问题,线性规划的意义掌握二元一次不等式表示平面区域,简单线性规划问题向量、向量的加法与减法、实数与向量的积数量积正余弦定理掌握正弦定理、余弦定理,并能运用它们解斜三角形17(实际测量,用字母表示)线性规化不等式的应用灵活运用有关概念绝对值不等式理解不等式|a+b|≤|a|+|b|圆与圆理解16(外切)直线与圆掌握直线与圆的位置关系21(交点个数,结合向量共线类似椭圆问题)掌握椭圆的标准方程及其几何性质理解椭圆的定义、概念双曲线了解双曲线的标准方程及其几何性质13(几何性质应用求离心率)抛物线了解抛物线的标准方程及其几何性质7(从坐标考抛物线定义)轨迹方程了解直线与圆锥曲线掌握综合综合应用熟练掌握综合线面、面面平行线面、面面垂直18(面面垂直化为线面垂直,存在问题)三视图掌握三视图8(体积)体积计算了解会求几何体的表面积、体积,会处理几何体的侧面展开图问题8,11了解球的概念11(球内接三棱锥)掌握球的性质、表面积、体积公式,球面距离综合圆的方程球椭圆掌握圆的标准方程和一般方程算法初步掌握程序框图5(求和)古典概型掌握计算等可能性事件的概率,会用互斥事件的概率加法公式和相互独立事件的概率乘法公式计算一些事件的概率20(1)几何概型了解计算几何概型概率20(2)了解独立性检验了解线性回归的方法简单应用了解茎叶图掌握频率分布直方图抽样导数概念运算掌握函数在一点处的导数的定义和导数的几何意义;基本导数公式;和、差、积、商的求导法则;会求某些简单函数的导数;掌握导数求切线10导数应用了解可导函数的单调性与其导数的关系;可导函数在某点取得极值的必要条件和充分条件19掌握平均数与方差计算12统计掌握会求一些实际问题的最大值和最小值19掌握导数证明不等式、恒成立了解复数的有关概念及复数的代数表示和几何意义掌握运算法则,能进行复数代数形式的加法、减法、乘法、除法运算15说明21题必考有选修选考复数08年09年10年11年12年备注4(全特称命题的真假)321(2)(二次函数最值及解含参二次不等式)11(指对都有的不等式)12(画图象求最值)12(综合周期、奇偶绝对值画图求交点个数)11(指对都有的不等式)10(求零点区间)18(1)9(奇偶与指数不等式结合)12(图象与对数运算结合)知识双向细目表(文史类)1(绝对值不等式与有限集)1(有限集)316(奇偶性求和)1(不等式)1(有限集)1(不等式)8(和与项的比)1517(1)14(由和求公比)7(用到定义)11(二倍角化为二次函数求最值)17(1)107、11(用到)17(1)6(由定义得解析式并判断图象)11(单调区间、对称轴)16(由图象求ω、Φ进而求值)9(由图象求ω、Φ)12(求和)8(性质应用)17(求完通项、和后求和最值)17(2)13(通项应用)9(共线条件)2(用数量积坐标运算求夹角)5(由垂直求字母)7(由垂直求字母)13(由垂直求字母,非坐标)7(二次不等式解法,三个范围公共解)21(2)(讨论解含参二次不等式)20(斜率取值范围,化为不等式问题)10(线段点到原点距离)61114520(1)(1次比2次型不等式求范围)17(2)17(实际测量求值)16(解三角形求线段长)15(解三角形后求面积)17(2)20(2)(分成弧的比)20(2)(结合OA、OB垂直类似椭圆问题)20(1)由定义性质求方程20(1)椭圆定义4(离心率)42(直接求焦距)5(渐近线求离心率)1014(弦中点求抛物线方程)4(知切点求切线)9(定义应用求距离)10(用到)20(2)(切线方程)20(2)代入法求轨迹并讨论什么曲线16(求交点与原点组成三角形面积)20(2)(弦长问题)12(平行垂直判断)1812(平行垂直判断)18(线线垂直与线面垂直、面面垂直转化,求体积)18(1)1819(1)1811(三视图求全面积)1587(三视图求体积)1818(2)19(2)14(球内接正六棱柱求球的体积)7(知内接长方体求表面积)16(球中直角三角形)18(由直观图得三视图计算体积,证线面平行)9(平行、垂直,体积计算)5(求关于直线对称的圆)13(求圆的方程)20(1)(由三点定方程)20(1)(结合抛物线条件求圆的方6(三数输出最大)10(条件结构)56(图的含义)19(2)14(估计古典概型)618(2)19(2)3(散点图观察正负相关)3(相关系数的理解)16(说明直观含义)19(2)(画图并由图估计平均数)19(1)(分层抽样人数)19(1)(估计比例)(3)(用分层更好)421(切线求字母,切线与定直线围成面积)1321(1)(切线求字母)13(知切点求切线)21(1)(2)(恒成立求字母范围)21(1)(求极值)21(1)(单调区间)19(1)。
高考数学知识点双向细目表在高中阶段,数学是学生们的重要学科之一,也是高考必考科目之一。
为了顺利备战高考,了解数学知识点是非常重要的。
本文将为大家提供一份高考数学知识点双向细目表,以帮助同学们更好地了解数学知识体系和复习规划。
首先,我们来了解一下高考数学知识点的分类。
数学高考知识点主要包括代数、几何、三角学、概率与统计以及数学思维能力等五个方面。
每个方面又包含了具体的知识点。
下面将以这五个方面进行详细介绍。
代数部分是数学中的基础内容,主要包括函数、方程与不等式、数列与数学归纳法、概率与统计等几个知识点。
其中函数是代数部分的核心,包括一次函数、二次函数、指数函数、对数函数等。
函数的性质、图像与应用都是需要掌握的内容。
方程与不等式也是非常重要的知识点,包括一元一次方程、二元一次方程、二次方程、绝对值不等式以及分式方程等。
此外,数列与数学归纳法是代数部分的另一重点,需要了解等差数列与等比数列的概念与性质,以及如何利用数学归纳法证明数学命题。
最后,概率与统计是数学中的实际应用部分,需要了解基本的概率与统计方法,如频率、概率、条件概率、正态分布等。
几何部分是数学中的空间内容,主要包括平面几何、立体几何和空间解析几何。
平面几何包括了直线、曲线、多边形、圆等基本图形的性质与应用。
立体几何则需要了解体积、表面积等概念,要掌握球、圆锥、棱柱、棱台等几何体的性质。
空间解析几何是几何部分的进阶内容,需要掌握平面与直线的表示方法、位置关系与求交点的方法。
三角学是数学中的三角函数部分,主要包括三角函数的定义与性质、三角函数的图像与变换、三角恒等式与解三角方程等。
在此部分,还涉及到向量的概念与性质,包括向量的表示方法、运算法则、点积与叉积等。
概率与统计部分是数学中的实际应用部分,需要了解概率的基本概念与性质,条件概率、事件独立性的判定与计算方法等。
统计部分则包括数据的收集与整理、频数分析与频率分析、正态分布与抽样调查等内容。
2023年数学学科高考双向细目表第一部分:知识与技能
1.1 数与代数
- 数的性质和运算
- 同类项与合并
- 一元一次方程与不等式
- 二元一次方程组与不等式组
- 函数与图像
- 幂指对数
- 平面向量
1.2 几何与形状
- 二维平面几何
- 三维空间几何
- 点、直线与面的位置关系
- 图形的性质与计算
- 圆的性质与计算
- 空间中的平面与直线
1.3 数据、统计与概率
- 数据的收集与整理
- 数据的分析与解释
- 概率的基本概念
- 概率计算与应用
- 统计与统计图表
第二部分:解决问题与实践应用
2.1 数学问题解决
- 解决实际问题的数学建模
- 利用数学工具解决问题
- 数学推理与论证方法
2.2 数学实践应用
- 应用数学知识解决实际问题
- 利用数学工具进行实际操作
- 数学思维与计算能力的培养
第三部分:学科素养与拓展
- 数学史和数学文化
- 数学与其他学科的关系
- 数学研究方法和论文写作
以上为2023年数学学科高考双向细目表,包含了数学学科的知识与技能、解决问题与实践应用以及学科素养与拓展三个部分。
详细列出了各个部分的具体内容,旨在指导学生备考高考并培养数学思维与计算能力。