Magnetic Interactions of Iron Nanoparticles in Arrays and Dilute Dispersions
- 格式:pdf
- 大小:777.65 KB
- 文档页数:11
磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石乔瑞瑞1曾剑峰1贾巧娟1杜军2沈琳3高明远1,*(1中国科学院化学研究所,北京100190;2中山大学药学院,微生物与生化药学实验室,广州510080;3北京大学临床肿瘤学院,北京肿瘤医院,北京100036)摘要:本文根据近年来国内外发表的相关研究成果,总结了磁性氧化铁纳米晶体制备方面的研究进展,并以磁性氧化铁纳米颗粒在肿瘤磁共振分子影像领域中的应用为背景,阐述了肿瘤分子影像领域的未来发展趋势.关键词:磁性纳米颗粒;肿瘤;磁共振;分子影像;多模态中图分类号:O646Magnetic Iron Oxide Nanoparticle ——an Important Cornerstone of MRMolecular Imaging of TumorsQIAO Rui-Rui 1ZENG Jian-Feng 1JIA Qiao-Juan 1DU Jun 2SHEN Lin 3GAO Ming-Yuan 1,*(1Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P .R.China ;2Laboratory of Microbial and BiochemicalPharmacy,School of Pharmaceutical Sciences,Sun Yat-Sen University,Guangzhou 510006,P .R.China ;3Beijing Institute forCancer Research,Peking University School of Oncology,Beijing 100036,P .R.China )Abstract:This review summaries the syntheses and applications of magnetic iron oxide nanocrystals that have been published worldwide.In particular,it discusses the future applications of magnetic iron oxide nanoparticles in molecular imaging of tumors.Key Words:Magnetic nanoparticle;Tumor;Magnetic resonance;Molecular imaging;Multi-modality[Review]doi:10.3866/PKU.WHXB201203023物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2012,28(5),993-1011May Received:January 15,2012;Revised:February 21,2012;Published on Web:March 2,2012.∗Corresponding author.Email:gaomy@;Tel:+86-10-82613214.The project was supported by the National Key Basic Research Program of China (973)(2011CB935800)and National Natural Science Foundation of China (81090271,21003135,20820102035).国家重点基础研究发展计划(973)(2011CB935800)和国家自然科学基金(81090271,21003135,20820102035)资助项目ⒸEditorial office of Acta Physico-Chimica Sinica1引言目前,恶性肿瘤在许多国家位列居民死因顺位的第一或第二位.世界卫生组织2011年最新的统计结果显示,到2020年前,全球癌症发病率将增加50%,即每年将增加1500万癌症患者.不仅如此,癌症的死亡人数也在迅猛上升,至2030年,全球死于癌症的人数将继续增加74%,而且,全球20%的新发癌症病人在中国,24%的癌症死亡病人在中国.1由此可见,恶性肿瘤已经成为导致人类死亡的主要疾病之一,但目前仍然缺乏针对肿瘤早期诊断、转移预警、疗效预测及有效治疗的临床方法.归根结底,肿瘤的临床诊疗不仅需要建立微小肿瘤的早期诊断手段,还亟需发展获取分子及生理层面个体化信息的相关技术方法.从理论上讲,近年来发展的分子影像技术不仅有希望以安全无创的方式,为微小肿瘤提供准确的空间定位信息,还可以为与肿瘤转移、多药耐药及疗效预测提供密切相关的个体化分子信息.目前,肿瘤分子影像技术的发展仍然强烈地取决于分子影像探针技术的发展,而磁性氧化铁纳米颗粒以其独特的物理性质及良好的生993Acta Phys.-Chim.Sin.2012Vol.28物安全性,不仅可以用作灵敏度更高的磁共振造影剂,还为多功能、智能化肿瘤磁共振分子影像探针的构建提供了一个良好的材料平台.近年来,随着纳米颗粒制备技术的飞速发展,围绕磁性氧化铁纳米颗粒构建的肿瘤分子影像探针及相关肿瘤成像已经成为肿瘤分子影像研究的重要热点.2肿瘤临床诊疗的现状与发展趋势实际上,截止本世纪初,几十年的巨额资金投入并没有实质性地降低癌症患者的死亡率.例如:美国的癌症死亡人数占总人口数量的比例在1950年是1.939‰,而2001年是1.940‰.癌症早期发现、早期诊断决定着其临床治疗的效果以及患者的预后.在大多数临床病例中,I期癌症患者的5年生存率>90%.2在更早期(癌变前期)发现癌症的患者通常可以被治愈.然而恶性肿瘤通常起病隐匿,早期多无明显临床表现.一旦出现临床症状,大多已属中、晚期,难以根治.恶性肿瘤的临床诊断目前主要依赖于生物学检测及医学影像学方法.采用免疫学检测技术、PCR(polymerase chain reaction)技术、基因芯片、蛋白芯片等生物学检测方法,尽管可以检测到微小肿瘤的特征性蛋白、酶、癌基因的变化,但仍然面临以下实际问题:(1)采用生物学检测方法可以实现血清相关肿瘤标志物的检测,但无法对肿瘤进行定位;(2)目前广泛采用的针对甲胎蛋白(AFP)、前列腺癌特异性抗原(TPSA)及癌胚抗原(CEA)的检测方法仅作为肿瘤初筛方法,尚不能成为确诊指标;(3)肿瘤活体组织检查需通过创伤性手段,且获得的组织量少,存在局限性.同时,目前所采用的常规影像手段仍然难以对直径小于0.5cm的微小肿瘤及转移灶进行定位成像.实现恶性肿瘤转移的预警是提高患者生存率、改善生活质量的关键措施.恶性肿瘤的致命之处就在于肿瘤细胞具有很强的转移迁徙和侵袭能力,一旦癌细胞从其原发部位向其他部位扩散,治疗成功的希望就十分渺茫.目前严重缺乏对肿瘤发生、发展、转移进行实时监控的有效手段,临床所采用的肿瘤转移检查主要依赖于定期的常规肿瘤标志物检测以及影像学检查.然而,当临床上诊断为复发和转移时,病人通常都有了较明显的症状和体征,对治疗的耐受性明显降低,从而使治愈率大大降低.从本质上讲,肿瘤的发生发展与其恶性生物学行为密切相关,包括肿瘤的增殖、侵袭、转移和耐药等,这些恶性生物学行为往往是多种细胞内外重要分子事件共同作用的结果.尽管采用磁共振波谱和核医学成像等手段可以在一定范围内获得有限的组织代谢信息,然而它们目前还不足以用于获取与肿瘤恶性生物学行为密切相关的分子信息.由此可见,恶性肿瘤的早期诊断,以及在转移和耐药等肿瘤恶性生物学行为中扮演主导角色的相关分子事件,是恶性肿瘤研究面临的最基本的科学问题,同时也是肿瘤临床诊疗所面临的最重要的难题.发展具有先进功能的纳米分子影像探针,以安全无创和原位实时的方式建立针对肿瘤早期诊断的分子影像技术,发展与恶性肿瘤转移预警及疗效预测相关的动态可视化方法,符合肿瘤个体化治疗这一肿瘤诊疗的终极目标,是肿瘤临床诊断的必然发展趋势.3分子影像的现状与发展趋势3.1医学影像技术德国科学家伦琴1895年发现了X射线并成功获得了其夫人手骨的照片,见图1.这一事件标志着人类在无创的模式下可以实现对人体解剖结构的观察,从而开启了医学影像学研究的先河.截止上世纪80年代,目前临床采用的主要影像学手段已经全部确立,包括:核磁共振成像图1X-ray发明人德国科学家伦琴于1895年12月22日制作的人类历史上第一幅人体X光照片,该照片显示了伦琴夫人左手的内部骨骼Fig.1Hand mit Ringen(print of Wilhelm Röntgenʹs first “medical”X-rays of his wifeʹs left hand taken on22December1895)994乔瑞瑞等:磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石No.5(magnetic resonance imaging,MRI)技术、X射线计算机断层成像(X-ray computed tomography,CT)技术、核医学成像技术(positron emission tomography,PET; single photon emission CT,SPECT)及超声(ultrasound)成像技术等.而近15年上述影像技术又得到了一定的发展,比如先后出现了介入超声(interventional ultrasound)技术、基于多层CT(multislice CT)的三维成像技术及磁共振弥散成像(diffusion MRI)技术等.在过去几年,又出现了多模态影像联用的设备,如: PET/SPECT-CT和PET-MRI,同时小型化动物实验专用设备大量涌现.3与上述临床影像技术相比,光学影像技术在经历了漫长的发展历程后,在过去短短的20年得到了突飞猛进的发展,科学家已经成功地将各种先进的光学手段应用于医学影像学研究中,并建立了多种先进的光学影像方法,包括:荧光反射成像(fluorescence reflectance imaging,FRI)、高分辨率生物发光成像(high-resolution bioluminescence imaging, HR-BLI)、时间分辨BLI、扩散光学层析成像(diffuse optical tomography,DOT)、荧光介导层析成像(fluo-rescence-mediated tomography,FMT)、荧光蛋白光学层析成像(fluorescence protein tomography,FPT)、光学相干层析成像(optical coherence tomography, OCT)、光频选区成像(optical frequency-domain im-aging,OFDI)、共聚焦显微成像(confocal microsco-py)、多光子显微成像(multiphoton microscopy)以及显微内窥镜技术(microendoscopy)等.33.2分子影像技术分子影像(molecular imaging)技术即以非入侵的方式为活体内参与生理和病理过程的分子、病灶的关键靶位及宿主反应进行高灵敏度及特异性成像的方法.分子影像可在解剖形态基础上更为深入地揭示组织细胞的生物学特点,如代谢、增殖、血管生成以及基因表达等.上述生物学信息更接近生命本质,因此不仅有助于提高肿瘤早期诊断的准确率,而且可以在分子水平上为肿瘤转移预警及疗效预测等提供必要的临床依据.分子影像技术所依托的成像手段既包括临床上广泛采用的影像技术,同时也包括目前正在高速发展的各种光学成像手段.临床常用影像技术的基本特征包括:(1)诊断深度无限制;(2)可以实现定量.但各种方法又存在各自的局限性,核医学影像方法虽然具有更高的灵敏度,但空间分辨率较低.CT与MRI具有更高的空间分辨率,但敏感性尚需进一步提高.光学成像技术的缺点包括组织穿透力受限、空间分辨率低及定量难度大等.针对这些缺点,目前在影像仪器方面出现了多种多模态成像技术,包括:FMT-MRI、FMT-CT等,以弥补光学影像的不足.尽管上述光学影像技术的临床应用还有漫长的路要走,但光学影像可原位实时地在分子层面上揭示分子生物学过程的特点,有着目前临床影像技术所不具备的优势.总之,将传统的医学影像技术和新近发展的光学成像方法应用于分子影像,不仅需要更新传统的成像技术,有针对性地发展相关成像设备与成像方法,同时迫切需要发展建立分子影像探针的构建原理和构建方法.而纳米分子影像探针以其独特的优势,在分子影像探针的构建方面体现出不可替代的优势.首先,纳米探针以其独特的尺寸,在经合适的修饰后可表现出较常规小分子探针更长的血液循环时间,这使得纳米探针能够有更多机会与靶点相结合,以利于提高对感兴趣区域的成像灵敏度.其次,纳米探针以其表面多结合位点的结构特点,可选择加载各种模态的成像探针分子以实现多模态分子影像探针的构建.最后,将纳米技术与生物技术相结合还完全有可能构建出对靶点具有智能响应的新一代智能化分子影像探针(target-triggering smart probes).4纳米医学的现状与发展趋势纳米分子影像探针研究属于“纳米医学”这个崭新的研究领域.纳米医学既可广义地定义为一种基于分子工具和医学知识形成的临床诊断和治疗技术,也可以定义为利用纳米尺度或纳米结构材料具有的独特的生物效应来发展其医学应用的科学.4纳米医学提出于上世纪90年代末期,但相关工作始于上个世纪80年代,当时与纳米医学最为密切相关的研究领域就是磁性氧化铁纳米颗粒在肿瘤诊断方面的应用及其临床评估.标准的毒理药理学测试结果表明磁性氧化铁纳米颗粒可以安全地用于人体,5早期研究结果表明静脉注射的氧化铁经分解后会被用于形成血红蛋白、铁蛋白及转铁蛋白.5,6在大量的临床数据基础之上,1996年美国食品药物管理局(U.S.Food and Drug Administration,FDA)率先通过了两种基于磁性氧化铁纳米材料的药物,995Acta Phys.-Chim.Sin.2012Vol.28其中一种为口服类腹腔肠道磁共振造影剂(MRI contrast agent)药物Ferumoxsil,其商品名称为Gastro MARK®,在欧洲又被称为Lumirem®,其主要成分为SiO2修饰的非化学计量比磁性氧化铁纳米颗粒.另一种为静脉注射剂型的具有器官特异性(organ-specific)的造影剂药物Ferumoxide,其商品名为Feridex®,在欧洲又被称为Endorem®.Feridex®的主要成分是右旋糖苷(dextran)修饰的非化学计量比磁性氧化铁纳米颗粒,其血液半衰期为2.4h,清除时间为25h.随后,又出现了血液循环时间更长的造影剂药物Ferumoxtran-10,其商品名为Combidex®,在欧洲又被称为Sinerem®.Combidex®的主要成分是低分子量dextran修饰的非计量磁性氧化铁纳米颗粒,与Feridex®相比,Combidex®表现出更长的血液循环时间,在人体内的血液半衰期长达25-30h.目前,上述造影剂药物已经形成了近10种处于不同临床实验阶段的产品.7迄今为止,基于磁性氧化铁纳米颗粒的磁共振造影剂是人工合成纳米材料在疾病诊断中得到实际应用的最为成功的案例.按照纳米颗粒的流体力学尺寸,商品化的磁性氧化铁纳米颗粒造影剂可粗略地分为SPIO(small particle of iron oxide)和USPIO(ultrasmall particle of iron oxide)两种类型.其中,Feridex®是SPIO类造影剂的典型代表,而Combidex®是USPIO类造影剂的典型代表.这种按照流体力学尺寸对磁性氧化铁纳米颗粒造影剂的划分较为粗略,其边界尺寸也较为模糊,一般认为在40-50nm.Feridex®经静脉注射后,很快会被分布到肝、脾及骨髓等吞噬细胞丰富的网状内皮系统(reticuloen-dothelial system,RES),因而在临床上被广泛用于肝部损伤的临床诊断及良恶性肿瘤的鉴别诊断.Combidex®由于具有更长的血液循环时间,经静脉注射后会有部分从血液系统进入淋巴系统.临床数据表明,该类USPIO造影剂可以成功地用于肿瘤的淋巴结转移诊断,进而扩大了磁性氧化铁纳米造影剂在肿瘤早期诊断中的应用范围.8得益于最近10年发展起来的磁性纳米晶体最先进的制备方法——磁性纳米晶体的热分解制备技术,在2005-2006年,Cheon团队和Gao团队分别在《Journal of the American Chemical Society》和《Advanced Materials》上率先报导了抗体靶向的磁性纳米颗粒在荷瘤鼠模型上的恶性肿瘤诊断.9,10利用USPIO型造影剂具有更长血液循环时间的特点,通过共价耦联肿瘤特异性识别抗体,得到了可以对肿瘤进行活体生物靶向的磁共振分子影像探针.这两个独立完成的研究工作证明了磁性氧化铁纳米颗粒的体内应用,除了通过RES系统摄取磁性氧化铁纳米造影剂这一被动靶向模式(passive targeting)之外,还可以利用纳米材料表面耦联的肿瘤靶向分子与肿瘤靶点的特异性结合实现对肿瘤病灶的主动靶向(active targeting),从而催生并推动了肿瘤的磁共振分子影像方法的建立和发展.同时上述工作也引领了纳米材料生物体内应用的发展趋势.目前,纳米材料的体内应用正从磁性氧化铁纳米颗粒快速向包括贵金属纳米颗粒、纳米碳管、富勒烯、量子点等材料体系拓展.11-14而应用方向则从单一的成像向治疗(肿瘤的热治疗)及成像和药物治疗相结合的方向拓展.15,16实际上,纳米材料的体内应用一直面临着安全性的质疑.虽然磁性氧化铁的体内安全性已经得到了广泛的评估,但其它被用于体内应用研究的纳米材料,如贵金属纳米颗粒、纳米碳管和量子点等尚缺乏完整全面的临床评估.尽管如此,不可否认的是与小分子相比,纳米材料以其特殊的尺寸效应在体内应用方面已经展示出独特的应用价值.7,17总之,纳米医学是肿瘤深入研究的必经之路.纳米医学研究的内涵不仅包括纳米材料及纳米智能结构在疾病临床诊疗中的应用,同时也包括如何利用纳米材料及纳米智能结构的独特性质,在分子层面揭示疾病的发生发展过程的相关机制.5基于磁性氧化铁纳米颗粒的磁共振造影剂5.1磁性氧化铁纳米颗粒的磁共振造影剂的现状与发展趋势在众多医学影像手段中,MRI具有更高的人体安全性,2009年IBM公司和美国斯坦福大学合作已经将核磁共振成像分辨率提高到10nm以内.18这一最新研究成果表明以核磁共振为核心,进一步发展肿瘤的分子影像技术方法具有积极的意义.MRI具有安全、无创、高空间分辨率、多方位及多参数成像等特点,同时所获得的解剖信息不受组织深度影响,MRI已经成为目前临床诊断中不可或缺的重要成像手段之一.同时,由于MRI能够实现高分辨率的软组织成像,因此有望作为分子影像的996乔瑞瑞等:磁性氧化铁纳米颗粒——通向肿瘤磁共振分子影像的重要基石No.5重要成像手段用于肿瘤的早期鉴别诊断.然而,由于MRI存在敏感性低的缺点,所以用于提高病灶与健康组织之间成像对比度的MRI造影剂在临床诊断应用中变得不可或缺.以医学科学院肿瘤医院为例,据不完全统计50%以上的患者在接受磁共振造影检测前需要注射造影剂.目前,常见的MRI造影剂主要分为两类,即顺磁性造影剂和超顺性造影剂.其中顺磁性造影剂可实现T1加权像的对比增强,因此又被成为T1造影剂.T1造影剂主要采用顺磁类金属离子,如Gd(III)、Mn(II)和Fe(III)等,但临床应用最为广泛的是Gd的有机金属配合物,如Gd-DTPA(diethylene triamine pentacetate acid,DTPA)在临床上被广泛用于血管造影,因此又被称为血池造影剂.正常情况下,Gd配合物造影剂不能通过血脑屏障(blood-brain-barrier, BBB),但是由于肿瘤血管通透性增加,因此Gd配合物造影剂可以用于脑肿瘤造影.Gd-DTPA的临床注射计量为0.1-0.3mmol·kg-1BW(body weight),血液半衰期为90min左右,24h的体内清除率在90%以上,19主要清除途径是肾脏.溶液中自由的Gd离子具有非常高的毒性,但与有机配体结合后,其毒性大大降低.最近美国FDA已发布关于含Gd类造影剂的公共卫生警告,警告Gd类造影剂可能导致肾源性纤维化/肾源性纤维皮肤病(nephrogenic systemic fibrosis/nephrogenic fibrosing dermopathy).与顺磁性Gd配合物类造影剂不同,超顺磁性造影剂有更好的T2加权成像的对比增强效果,因此超顺磁性造影剂又被成为T2造影剂,鉴于已经有很多关于磁性纳米晶体增强MRI对比度原理方面的文献报导,20在此不再赘述.目前的T2造影剂主要以磁性氧化铁纳米颗粒为主,与Gd类小分子造影剂相比,以磁性氧化铁纳米颗粒为核心的纳米造影剂的检测灵敏度要显著高于Gd类造影剂,7比如Gd有机配合类造影剂在体外的检测灵敏度为10-4-10-5 mol·L-1,21而磁性氧化铁纳米颗粒造影剂的检测灵敏度可达10-9mol·L-1.22,23因此,磁性氧化铁纳米颗粒以其优异的体内安全性、肿瘤组织特异性及高磁敏感性,已经成为构建新型MRI造影剂的首选材料.尽管Advanced Magnetics(后更名为AMAG Pharmaceuticals)推出的Feridex®和Combidex®磁共振造影剂在临床研究与应用中取得了巨大的成功,最近AMAG Pharmaceuticals决定停产FDA已经批准上市的Feridex®和始终没有获得FDA批准上市的Combidex®,只保留了GastroMARK®和另外一种处于三期临床(Phase III clinical trial)的静脉注射药物Ferumoxytol,其商品名称为Feraheme®.Feraheme®的主要成分是葡萄糖山梨酸羧甲基醚缩聚物(polyglucose sorbitol carboxylmethyl ether)修饰的非化学计量比磁性氧化铁纳米颗粒,它既可以用于治疗成人慢性肾病引起的缺铁性贫血,又可以用于MR造影.一直得到高度关注并在欧洲取得临床应用的Combidex®被迫停产的原因颇为复杂,其中肿瘤淋巴转移的临床诊断效率尚需提高是其中的一个主要的原因.24由此可见,早期商品化的磁性氧化铁纳米颗粒制剂并不能完全满足临床诊断的实际需求,尤其是更为困难的肿瘤诊断.因此,不论是从事肿瘤MRI造影剂临床应用的医生还是肿瘤疾病患者都在呼唤着新一代磁性氧化铁纳米颗粒肿瘤MRI造影剂.在这一临床需求的推动下,近年来关于磁性氧化铁纳米颗粒的合成与造影剂应用研究呈高速发展趋势.同时基于新型磁性氧化铁纳米颗粒的各种相关科研产品层出不穷,其中Oneder-Hightech发展的新型造影剂产品已经得到了广泛的应用.5.2磁性纳米晶体的合成目前临床用商品化的磁性纳米颗粒造影剂均是采用共沉淀法制备的.共沉淀方法的原理是通过化学计量比的二价和三价铁离子在特定pH值及稳定剂存在的情况下,通过水解、陈化反应来实现磁性氧化铁纳米颗粒制备的.共沉淀方法尽管可以在严格的条件下实现一定尺寸磁性纳米颗粒的制备,25但仍然存在一些不可避免的缺点.首先,铁离子的水解反应为多级反应,动力学控制参数多,不利于对颗粒尺寸,尤其是尺寸分布的调控.其次,共沉淀反应的介质“水”作为强极性溶剂以及OH-与三价铁离子的强配位能力,使得氧化铁纳米颗粒的表面修饰变得非常复杂.再次,水作为强极性溶剂也会同时诱导纳米颗粒表面某些晶面体现出优势生长趋势,进而使得到的颗粒形状趋于不规则.最后,溶剂水以其有限的沸点温度,也不利于获得高结晶度的磁性氧化铁纳米颗粒.得益于纳米颗粒的高温热分解制备技术,上述诸多颗粒合成所面临的缺陷得以克服.高温热分解反应的反应介质为高沸点的非极性或弱极性溶剂,从化学合成原理上讲,高温热分解方法摒弃了铁离子的水解反应,转而通过有机铁盐或有机铁配合物997Acta Phys.-Chim.Sin.2012Vol.28的热分解来实现磁性纳米晶体的制备.尽管铁前驱体的热分解反应非常复杂,但更高的反应温度有利于大大提高产物的结晶度,从而进一步提高了磁性氧化铁纳米颗粒的磁响应特性.而无水参与的热解反应不仅有利于实现纳米晶体表面修饰的多样性,同时也有利于获得窄粒度分布的磁性纳米晶体.总而言之,相对于在水体系中制备的纳米颗粒,通过热分解反应在非水体系中制备得到的磁性氧化铁纳米颗粒具有更好的磁响应性及更窄的粒度分布.本文将在非水体系中通过热分解铁前驱体的方式制备得到的高结晶度、窄粒度分布的磁性氧化铁纳米晶体,称为新型氧化铁纳米颗粒.1999年,Alivisatos 团队26率先报导了利用热分解制备技术合成的γ-Fe 2O 3磁性纳米晶体.实验中,他们通过直接向300°C 的三辛胺溶剂中注射FeCup 3(Cup:C 6H 5N(NO)O -)三辛胺溶液方法(热注射法,hot-injection method),制备得到了平均尺寸为(10.0±1.5)nm 的γ-Fe 2O 3磁性纳米晶体,见图2(a).由图可见,利用热分解方法得到的纳米晶体,其形貌清晰,且粒度分布宽度远远小于利用共沉淀方法得到的纳米颗粒的粒度分布宽度.因此,该研究工作一经报导,便得到高度关注,旋即掀起了高质量磁性氧化铁纳米晶体制备研究的热潮.稍后,Hyeon 团队27改进了上述合成方法,选用Fe(CO)5作为反应原料,以热注射方法制备得到了单分散的γ-Fe 2O 3纳米晶体,见图2(b).通过改变Fe(CO)5及作为稳定剂的油酸之间的比例,实现了颗粒尺寸在4-11nm 范围内的调控.同时进一步利用种子生长方法,得到了尺寸为16nm 的γ-Fe 2O 3纳米晶体.2002年,Sun 团队28以乙酰丙酮铁(Fe(acac)3)为铁前驱体,油酸、油胺为稳定剂,1,2-十六醇为还原剂,在高沸点溶剂苯醚中,通过加热法(heating-up method),即直接加热含有所有反应物的溶液到指定温度,成功地合成了4nm 的球形Fe 3O 4纳米晶体,并以此为晶种,通过种子生长方法制得了20nm 的球形Fe 3O 4纳米晶体(图2(c)).采用类似的方法,Sun 团队29随后还合成了一系列单分散的MFe 2O 4(M=Fe,Mn,Co)磁性纳米晶体.2004年,同样采用加热法,Peng 团队30报导了一种简便的制备过渡金属氧化物纳米晶体的合成路线,他们通过采用分解脂肪酸铁盐的方式,实现了图2通过热分解不同种类的前驱体制备得到的磁性氧化铁纳米晶体的透射电镜(TEM)照片Fig.2Transmission electron microscope (TEM)images of magnetic nanocrystals prepared bypyrolyzing various types of iron precursors(a)γ-Fe 2O 3nanocrystals synthesized by pyrolyzing FeCup 3;(b)γ-Fe 2O 3nanocrystals synthesized by pyrolyzing Fe(CO)5;(c)Fe 3O 4nanocrystalsprepared by pyrolyzing Fe(acac)3;(d)magnetic iron oxide nanocrystals prepared by using iron oleate as precursor.Images a,b,c and d are reprinted from Refs.26,27,28,and 30,respectively,withpermissions.998。
磁共振成像法(MRI)放宽电离纳米粒子的效率测试方法摘要近年来,在核磁共振中使用丝虫纳米颗粒因其在医学诊断和治疗中的潜在应用而引起越来越多的关注。
然而,缺乏测试这些纳米粒子放松效率的标准化方法。
在这项研究中,我们提出了一种新方法,用以评价用于核磁共振应用的Ferrite纳米粒子的放松效率。
导言Ferrite纳米粒子具有独特的磁性,使得它们最理想地用于核磁共振对比剂。
这些纳米粒子具有改变附近水分子放松时间的能力,这可以增强核磁共振图像中的对比度。
然而,这些纳米粒子在改变放松时间方面的效率需要精确测量,以评估其临床使用潜力。
材料和方法在这项研究中,我们用溶胶法合成了费尔特纳米粒子,并用传输电子显微镜(TEM),X射线衍射(XRD)和振动样品磁力测量(VSM)来描述其物理和磁性。
纳米颗粒随后被分散在水中,以产生用于测试的悬浮。
为了进行放松效率测试,我们使用了标准的核磁共振扫描仪,场强度为3 Tesla。
Ferrite纳米粒子的悬浮被放置在幽灵中,并使用T1和T2加权序列进行核磁共振扫描。
然后用配位算法计算出放松时间,以评估纳米粒子在改变水质子放松时间方面的效率。
结果我们的结果显示,被合成的Ferrite纳米粒子的颗粒平均大小为20纳米,并表现出超等磁性行为,饱和磁化为40 emu、g。
对纳米颗粒悬浮的核磁共振扫描显示,与纯水控制相比,T1和T2的放松时间都显著下降,表明强大的放松增强效应。
讨论情况拟议方法提供了一个简单有效的方法,用以测试用于核磁共振应用的Ferrite纳米粒子的放松效率。
通过准确测量这些纳米粒子存在的水质子的放松时间,我们可以定量评估它们作为临床核磁共振的对比剂的潜力。
结论所开发的方法提供了一个可靠的方法,用以评价用于核磁共振应用的发酵纳米粒子的放松效率。
这种方法可用于比较不同纳米粒子配方的性能,并指导设计更有效的核磁共振对比剂供临床使用。
需要进行进一步研究,以验证这些纳米粒子在核磁共振成像中的潜在临床应用。
一种用于肿瘤磁热协同治疗的新型铁磁响应性载药胶束产生磁热疗指通过注射等方式将磁性介质送入病灶区域,在体外交变磁场作用下磁性介质产生热量从而杀死肿瘤细胞。
磁热疗不具备侵入性和治疗穿透深度限制,已成为肿瘤治疗尤其是深层肿瘤治疗领域的重要方式。
为提高磁性介质进入肿瘤细胞的效率、选择性和磁热疗效果,磁性材料表面需要进行各种修饰及药物附加。
但是,临床中使用的磁性材料往往存在热转换效率低、加热速度和药物释放速度慢、磁性材料剂量需求大等问题。
针对上述问题,合肥工业大学化学与化工学院陆杨研究员课题组与中国科学技术大学俞书宏院士团队以及华南理工大学杨显珠教授课题组合作,制备出铁磁性纳米胶束,提供一种有效增强磁热治疗效果的方案。
研究团队以立方型铁磁氧化铁晶体作为磁性材料,采用具有粘流态内核的两性疏水材料mPEG-b-PHEP 胶束作为纳米载体,包载磁性材料和具有肿瘤杀伤效果的有效成分大黄素,实现恶性肿瘤的核磁共振造影成像引导的磁热—化疗联合治疗。
经过测试,该研究团队制备出的铁磁性纳米胶束的饱和磁化强度是目前商业化造影剂的2倍。
该铁磁性纳米胶束磁热性能良好,在交变磁场作用下,可迅速产生高热,远高于临床上使用的磁性纳米材料的热转化效率;在红外光加热刺激下表现出超灵敏的药物释放,释放速度显著优于传统的聚乳酸为内核的胶束。
通过外磁场引导,该磁性纳米载体可携带抗肿瘤药物高效靶向肿瘤部位,在磁热和化疗协同作用下,以极低剂量便可显著杀伤肿瘤细胞。
这种磁性纳米载体还可以携带其他活性成分,具有广阔的临床应用前景。
(杨秀丽供稿)安徽2020年获中央引导地方科技发展资金居全国第7位日前,财政部下达2020年中央引导地方科技发展资金预算,安徽省获得中央引导资金8200万元,在全国2020年中央引导地方科技发展资金总额零增长的情况下实现了稳步增长,居全国31个省(市、自治区)第7位,占全国中央引导资金总份额的4.13%,高出全国平均水平0.9个百分点。
磁性纳米粒子对赤铁矿表面磁性影响的试验研究牛福生;张晓亮;张晋霞【摘要】Surface magnetization of hematite in pulp with synthetic Fe3O4 magnetic nanoparticles which were formed in the method of oxidation precipitation by air method in pulp and were coated on the surface of hematite .Then adopt the method of magnetic separation forrecycling .The experimental results showed that this method can greatly improve the recovery rate of hematite magnetic separation .Selective separation of hematite from quartz can be realized when ammonia0 .2mol/L ,the pulp temperature of 70℃ ,pH=8 ,3kg/tmagneticparticles ,10kg/t sodium oleate .Through quantitative analysis EDLVO energy between particles to preliminary explore action mechanism and determine the effective magnetization of magnetic nanoparticles and mineral grains range of 0~50 nm .%采用氧化沉淀法在开放体系下制备纳米Fe3 O4 磁性粒子 ,利用该纳米磁性粒子对弱磁性的赤铁矿表面进行磁化处理 ,再采用磁选法对其进行回收.试验结果表明 ,该方法可大大提高赤铁矿的磁选回收率.在氨水用量0 .2mol/L ,反应温度70℃ ,磁性粒子用量3kg/t ,油酸钠用量10kg/t ,矿浆pH控制在8左右的条件下 ,可实现赤铁矿与石英的选择性分离.通过对颗粒间EDLVO作用能的计算 ,确定磁性粒子与矿物颗粒间的有效磁化作用距离为0~50nm.【期刊名称】《中国矿业》【年(卷),期】2015(024)012【总页数】5页(P112-116)【关键词】微细粒;赤铁矿;表面磁化;油酸钠;EDLVO理论【作者】牛福生;张晓亮;张晋霞【作者单位】华北理工大学矿业工程学院 ,河北唐山063009;河北省安全技术及开采重点实验室,河北唐山063009;华北理工大学矿业工程学院 ,河北唐山063009;华北理工大学矿业工程学院 ,河北唐山063009;河北省安全技术及开采重点实验室,河北唐山063009【正文语种】中文【中图分类】TD951铁矿石是钢铁工业的重要原料,随着易采选铁矿石资源日趋枯竭,难利用铁矿资源,特别是微细粒嵌布赤铁矿资源的高效回收和规模利用已成为当今国际选矿界研究和生产领域的重要课题。
清华大学科技成果——纳米磁流体磁感应热疗清华大学科技成果——纳米磁流体磁感应热疗成果简介肿瘤磁感应热疗技术是清华大学历时9年,自主创新研发出的微创、安全、有效的靶向肿瘤热疗技术。
磁感应热疗是将磁性介质植入或导入肿瘤组织,在交变磁场的作用下,肿瘤内温度可迅速升高到处方温度,肿瘤细胞迅速被杀死。
肿瘤磁感应热疗具有治疗成本低、适应症广泛、无毒副作用等优点。
肿瘤磁感应热疗设计理念新颖,较高温度直接凝固蛋白质,疗效确切,每次治疗仅为5-20分钟。
肿瘤磁感应治疗通过向患者体内肿瘤靶向输注具有铁磁特性的介质,在外部中频交变磁场作用下介质产热,使肿瘤局部快速形成适形的高温区,避免周边正常组织升温,肿瘤组织温度控制在50℃以上,达到瞬间杀灭肿瘤细胞。
热扩散形成的热疗效应可使肿瘤周边亚临床病灶细胞凋亡,蛋白变性,并激发患者主动免疫,打击潜在转移的亚临床病灶。
磁流体在保持超顺磁性的同时具有液体的流动性,可通过注射方式进入肿瘤组织,实现无创热疗,通过控制注射磁流体的量和磁感应热疗设备的参数可精确控制热疗温度;磁流体经氨基硅烷修饰后可提高磁流体的分散性、稳定性和生物安全性,且在磁纳米粒子表面引入氨基,为在磁纳米粒子表面连结生物大分子如单抗、药物等提供条件,可进一步发展为主动靶向介质和热化疗复合介质。
与其他肿瘤治疗手段相比较,肿瘤磁感应治疗技术具有微创安全、靶向特异性和激发机体主动免疫几大优势。
创新点(1)特异治疗:磁感应热疗技术治疗局部肿瘤(2)靶向治疗:靶向定位技术治疗远处转移病灶(3)局部聚集:利用磁场聚集仪将磁场精确聚集于肿瘤部位市场前景(1)医疗市场:全球生物工程与医药产业已成为继信息技术后的又一个经济增长点。
我国生物工程和医药产业持续高速增长,成为世界上发展最快的医药市场之一。
中国有13000万个县级以上的医院,有很大一部分低收入人口,急需自主创新的、低治疗成本的医疗新技术。
(2)技术创新:本项目所采用磁聚集系统及医用交变磁场技术属于医电行业高新技术,是自主知识产权与各项成熟技术的集合。
铁磁纳米粒子复合金纳米粒子双功能纳米酶在当今科技发展迅猛的时代,纳米技术已经成为一个备受关注的研究领域。
特别是铁磁纳米粒子和金纳米粒子的复合应用以及双功能纳米酶的研究,引起了广泛的兴趣和关注。
本文将对这一领域进行深入探讨,从基础概念到前沿应用,以期能为读者呈现一幅清晰而有价值的图景。
一、铁磁纳米粒子复合金纳米粒子的基本概念从名字上看,铁磁纳米粒子与金纳米粒子似乎毫不相关,但它们的复合却可以带来奇妙的化学和物理性质。
铁磁纳米粒子在外加磁场的作用下表现出磁性,而金纳米粒子则以其优异的催化性能闻名。
将这两种纳米粒子复合起来,不仅可以同时具备磁性和催化性,还能为其他领域的研究提供更多可能。
文章将深入探讨这种复合的制备方法、结构特征和性质表现。
二、双功能纳米酶的研究与应用纳米酶是一种与天然酶相似的纳米颗粒,具有优异的生物兼容性和催化性能。
而双功能纳米酶则是在其基础上进一步改良,同时具备了铁磁性和催化功能。
这种新型纳米酶在生物医学、环境治理和能源领域都有着广泛的应用前景。
文章将对双功能纳米酶的制备、性能和应用进行详细介绍,探讨其在不同领域的潜在贡献和挑战。
三、个人观点和展望从我的角度来看,铁磁纳米粒子复合金纳米粒子双功能纳米酶的研究既有理论意义,又有实际应用价值。
这种双功能纳米酶的出现,为纳米技术在生物医学和环境领域的应用带来了全新的可能性。
未来,我期待更多的科研机构和企业能够投入到这一领域的开发中,推动铁磁纳米粒子复合金纳米粒子双功能纳米酶的商业化应用,为人类的健康和环境保护做出更大的贡献。
总结通过本文的探讨,读者对铁磁纳米粒子复合金纳米粒子双功能纳米酶这一课题应有了更全面、更深入的理解。
我们从基础概念出发,逐步展开对这一课题的分析和讨论,最终展望了其未来的发展前景。
希望本文能够为相关领域的科研工作者和爱好者提供一定的指引和启发,推动该领域的进一步发展。
纳米技术日新月异,铁磁纳米粒子和金纳米粒子的复合应用以及双功能纳米酶的研究已经引起了广泛的兴趣和关注。
FEATURE ARTICLEMagnetic Interactions of Iron Nanoparticles in Arrays and Dilute DispersionsDorothy Farrell,†,‡Yuhang Cheng,†R.William McCallum,§Madhur Sachan,†andSara A.Majetich*,†Physics Department,Carnegie Mellon Uni V ersity,Pittsburgh,Pennsyl V ania15213-3890,London Centre forNanotechnology,Uni V ersity College London,London,WC1E7HN,UK,and Ames Laboratory,Iowa StateUni V ersity,Ames,Iowa50011Recei V ed:January10,2005;In Final Form:May11,2005The magnetic properties of monodisperse Fe nanoparticles with over4orders of magnitude difference inconcentration are studied by a combination of ordinary and remanent hysteresis loops,zero field cooledmagnetization as a function of temperature,and magnetic relaxation rates.We compare the behavior of dilutedispersions with different concentrations,dispersions,and arrays made from the same particles,and nanoparticlearrays with different particle sizes and separations.The results are related to theoretical predictions and areused to create a unified picture of magnetostatic interactions within the assemblies.IntroductionMonodisperse monodomain magnetic nanoparticles1-5are an ideal system for studying magnetostatic interactions,since they act like giant magnetic moments.There have been numerous studies of these nanoparticles in ferrofluids,5-19where the particle concentration is a few volume percent or less,and also in self-assembled nanoparticle arrays,20-26where the volume fraction is limited only by the thickness of the surfactant coating. Magnetostatic forces are long-range and have subtle effects. These have been documented by studying the peak temperature in the imaginary susceptibility as a function of frequency over 5orders of magnitude as a ferrofluid is diluted.8Dilute ferrofluids have also been shown to behave like dipolar spin glasses.9In a more concentrated assembly,where the interactions are stronger,it is theoretically possible to have a purely dipolar ferromagnet.For a two-dimensional hexagonal lattice of point dipoles,the magnetic ground state is ferromagnetic,but for a square lattice,the minimum energy configuration has alternating rows of aligned spins.27It is therefore interesting to see if the interactions in nanoparticle arrays are sufficiently strong to test these predictions at finite temperatures.Different groups have reported conflicting results on whether the coercivity,remanence,and relaxation rate go up or down with increasing particle concentration.19The self-assembled nanoparticle arrays show some collective behavior,but the magnetostatic forces that cause it are weak and long range, compared with the exchange forces that couple atomic spins within a particle.It is unclear under what conditions mean field theories based on dipolar interactions will be valid,or on what length scale Landau-Lifschitz-Gilbert modeling of magnetization dynamics beaks down due to the granularity of the particle assemblies.Here we describe how the magnetic properties of monodis-perse Fe nanoparticles are modified by changing the particle concentration and particle size.Unlike previous studies,we study similar particles with over4orders of magnitude difference in the volume fraction,ranging from highly dilute dispersions to close-packed arrays.Because of the surfactant coating,the particle assemblies can have high density without exchange coupling between particles that would otherwise dominate the magnetic properties.The goal of this work is to develop an improved understanding of the magnetization pattern within a*Corresponding author.E-mail:sm70@.†Carnegie Mellon University.‡University College London.§Iowa StateUniversity.Sara Majetich received an A.B.in chemistry at Princeton University,and a Masters Degree in Physical Chemistry at Columbia University.She earned a Ph.D.in Solid State Physics from the Universityof Georgia and did postdoctoral work at Cornell University beforejoining the faculty at Carnegie Mellon University in1990.She isthe recipient of a National Young Investigator Award from the NSF.More about the Majetich group research can be found at http:///user/sm70/index.html.13409 J.Phys.Chem.B2005,109,13409-1341910.1021/jp050161v CCC:$30.25©2005American Chemical SocietyPublished on Web06/23/2005dense nanoparticle assembly,through macroscopic measure-ments of the magnetization as a function of the applied field, temperature,and time.Experimental MethodsA.Sample Preparation and Structure.Monodisperse Fe nanoparticles4.5to9.3nm in diameter were prepared under an argon atmosphere via thermal decomposition of iron pen-tacarbonyl,Fe(CO)5,using a heterogeneous nucleation technique that has been reported elsewhere.32To vary the particle size, an additional stage of growth followed.The volume of octyl ether was doubled to reduce the concentration of particles in solution and heating began again.Fe(CO)5was again added at 100°C,and heating continued until260°C,after which the sample was cooled and removed to an argon atmosphere glovebox for washing.Reactions were done with and without a1:1molar ratio mixture of oleic acid(OA)and oleylamine (OY)present.The surfactant binds to the Fe particle surface and provides a barrier against agglomeration.OA is used for strong binding to the Fe surface,and OY is mixed with OA to reduce the oxidation reactivity of the OA.The molar ratio of the first stage Fe to surfactant in these syntheses was varied between2.2:1and4.6:1,treating each OA/OY pair as a single molecule.Assuming a headgroup area of0.25nm2for OA and OA/OY mixes,comparisons of surfactant concentration(15-45mM)and particle concentration indicate that surfactant concentration is greater than that needed to coat the surfaces of the particles.The samples were washed by adding ethanol in a 3:1volume ratio to the octyl ether,causing the particles to aggregate.The aggregates were then collected with a magnet, the supernatant was decanted,and hexane added to redisperse the particles.Surfactant was added at a concentration of15to 45mM during each washing stage.The hexane suspensions were typically2-20times more dilute than the original octyl ether suspensions.Since the surfactant chain provides the steric repulsion that keeps particles separated even in a dried state,the interparticle spacing in dried assemblies of particles can be reduced by exchanging surfactants.A mixture of hexanoic acid(HA),C5H11-COOH,and hexylamine(HY),C6H13NH2was used as a replacement short chain surfactant.The shorter chain length of these molecules results in smaller surfactant volume,allowing them to penetrate the larger surfactant coating and displace the larger molecules.Like OA and OY,HA and HY reacted upon mixing,and were therefore also considered to be a double-chained surfactant in the mixed state.The as-made particle concentrations of the samples were determined from calibrated X-ray fluorescence.32The energies of the emitted X-rays are specific to the elements in the sample, and the relative concentrations of the elements are determined by pattern intensities.The results indicate a roughly40%yield for the synthesis,based on the initial amount of Fe(CO)5and the average particle size found from TEM.These results were used to estimate the concentrations of the hexane dispersions made from them.The particle arrays were generally formed from dispersions with number densities between2×1015and3×1014particles per cubic centimeter.Once particle dispersions were prepared with the desired surfactant and particle concentration,transmission electron microscopy(TEM)grids were prepared.For the particle size and separation determination,grids were prepared by dropping a single drop of particle dispersion on the grid with a pipet. The Fe particles imaged in the arrays are partially oxidized because of the brief exposure during transfer to the microscope.The degree of oxidation can be minimized by flocculating the particles first,33but this makes it more difficult to determine the size and spacing information,which are critical to this study. The particle size and the separations between particles in the arrays were determined from TEM images taken with a Philips EM420microscope operating at120keV.NIH Image1.6.2 software was used to analyze the digitized images for the particle size distributions.The distributions were then fit to Gaussian functions to determine the average particle sizes and standard deviations,σ.Figure1shows TEM images of arrays with different particle sizes but the same edge-to-edge interparticle spacing.Figure2shows images of particle arrays made from the same batch of nanoparticles,but with different surfactant coatings to change the interparticle spacing.Note how the length scale of structural ordering is reduced in the sample with the shorter chain surfactant.The surfactant coating plays a signifi-cant role in the mobility of the particles during self-assembly. The images of Figures1and2are from arrays prepared bythe Figure1.TEM images of(a)6.7(0.7nm and(b)8.5(1.0nm Fe particles coated with OA/OY.Size distributions and Gaussian fits to determine the average particle diameter and standard deviation,σ,for (c)the particles from Figure1a,with a total of2140particles,and(d) for the particles from Figure1b,with a total of5695particles.These data could also be fit to a log-normal function with the same average size and a normalizedσof0.12.The“spikes”in the data arise from variations between arrays but size uniformity within an array.13410J.Phys.Chem.B,Vol.109,No.28,2005Farrell et al.evaporation method;Figure 3shows a typical TEM image is a dipped grid,or the sort used in magnetic measurements.Note that the length scale of the ordered regions is smaller.B.Magnetic Measurements.Evidence for interactions between Fe nanoparticles is obtained by comparing the mag-netization of samples with isolated particles with more concen-trated solutions.The temperature,applied magnetic field,and time-dependent response of the magnetization all reveal different aspects of these interactions.Magnetic measurements were done with a Quantum Design MPMS over a range of temperatures (T )10-300K)and applied fields (H )0-50kOe).This system can detect magnetic moments in the range of 10-5to 1emu with good signal-to-noise ratios.The particles used for magnetic measurements were maintained in a low oxygen environment at all times.For the magnetic studies,grids were dipped into the particle suspension using tweezers,and then held aloft in the glovebox to dry.The dip method was utilized to maximize the particle concentration.In the concentrated samples,stacks of TEM grids containing multilayer arrays,embedded in silicone grease,were used.For the dilute samples,glass ampules containing hexane dispersions were used.In all cases the diamagnetic background was subtracted.The zero-field cooled magnetization as a function of tem-perature was used to identify the blocking temperature,T B ,and to identify the temperature range over which hysteresis loops and interaction effects are observable.To determine the blocking temperature,the sample was cooled in zero field from room temperature to 10K.Once the temperature stabilized,a 100Oe field was applied so that the magnetization would be nonzero.The moment was measured at this and subsequent higher temperatures to determine M ZFC (T ).For standard hysteresis loops,M (H ),a 50kOe field was applied to saturate the sample,and then the magnetization was measured as the field is reduced and reversed in direction.The remanent magnetization,M r ,is the magnetization of the material following the removal of this field.The coercivity or coercive field,H c ,is the reverse field that must be applied to a previously saturated material to reduce the magnetization to zero.In contrast with a standard hysteresis loop where the magnetization is measured at each value of the applied field H ,in a remanent hysteresis loop,M r (H ),the magnetization at zero field,or remanence,is measured after applying H .In the absence of an applied field,the particle moment aligns with the easy magnetization axis of the particle.In this sense,the remanent coercivity is a measure of the field necessary to flip the orientations of one-half of the moments along the easy axes.Remanent hysteresis loops are particularly useful for fine particles because they remove rotational contributions from the particles as well as any signal from paramagnetic or superpara-magnetic species in the sample.The time dependent magnetic properties were studied by applying a 50kOe field to the sample,removing the field and measuring the remanent moment at intervals over a 10hour period,with the first measurement taken approximately one minute after the field stabilized.We also measured the real and imaginary parts of the AC susceptibility.The susceptibility is defined as M /H .Its real part ′is the component that is in-phase with the AC driving field H ,and the imaginary part ′′corresponds to the out-of-phase component. ′′is a maximum under conditions where the energy dissipation is greatest.Here the driving field had an amplitude of 2Oe and the temperature ranged between 6and 400K.ResultsA.Dilute Dispersions.The minimum Fe particle size where appreciable interaction effects were observed in thehysteresisFigure 2.TEM images of 6.7(0.7nm Fe particles with different surfactant coatings.(a)Particles coated with OA/OY;(b)particles coated with HA/HY.The contraction in interparticle spacing can be seen in HA/HY-coated particles,which had an average edge-to-edge interparticle spacing of 1.2nm,compared to 2.5nm for the OA/OY-coatedparticles.Figure 3.TEM image of nanoparticle arrays prepared by dipping into particle suspensions.Feature Article J.Phys.Chem.B,Vol.109,No.28,200513411loops was ∼6nm,though smaller moment particles have shown pronounced differences in AC susceptibility studies.5We compared the properties of samples of 7.0(0.8nm Fe nanoparticles dispersed in hexane with different volume frac-tions,ranging from 0.003to 0.03%.This corresponds to a V erage spacings between particle centers of 84to 181nm,which may seem sufficient to neglect particle interactions,but significant differences were observed.For dilute dispersions of this particle size,there were only small changes in the zero field-cooled magnetization as a function of temperature.Small reductions were observed with increasing concentration,but the error in determining the peak temperature from our plots was (5K,so this is only marginally significant.Figure 4shows the hysteresis loops.There are two main changes as the particle concentration increases:the coercivity decreases and the sample saturates at lower fields.The rema-nence ratio was roughly constant at 0.29,but in all cases less than the value of 0.5expected for noninteracting uniaxial particles.For cubic materials such as Fe that have (100)easy axes,the theoretical remanence ratio is even higher,0.8660.33Similar coercivity and rate of saturation trends were also seen in the remanent hysteresis loops.The magnetic relaxation in zero field (Figure 5)shows that both samples have nearly logarithmic decay over the time window studied (approximately one minute to 10hours,or ∼102-104s),and that the more concentrated sample has a slower relaxation rate.Here the sample was saturated,and thenthe field was turned off.The data are normalized relative to the magnetization and time at the first H )0data point.An ensemble of identical noninteracting particles is theoreti-cally predicted to relax exponentially,with a time constant τrelated to the energy barrier height,relative to the thermal energy available.31Here the theoretical time dependent remanence is given by M r )M s exp(-t /τN ),where the Ne ´el decay time isdefined by τN )f 0-1exp(-KV /k B T ),and f 0is a constant relatedto the Larmor precession frequency of the magnetic moment and is on the order of 109s -1.In all known systems where there are detectable interactions between nanoparticles,the remanence actually decays much more slowly than in this simple model.Logarithmic decay has been reported for many systems,including magnetic recording media.This is understood in terms of a distribution of energy barriers,which may result from a distribution of particle volumes,variations in the particle orientations or local values of the magnetocrystalline anisotropy,K ,or differences in the local effective field due to magnetostatic ing a simple model with a uniform energy barrier density over a finite energy width,34the remanence has a logarithmic time dependence,M r (t )/M 0)1-S ln(t /t 0).35Here M 0is the magnetization at the time,t 0,of the first remanent measurement,and S is the characteristic slope of the decay.The magnetic viscosity,S ,is 0.019for the 0.003vol %sample and 0.010for the more concentrated 0.03vol %sample.The magnetic viscosity can also be related to the distribution of energy barriers,f (∆E ),which is given by S /kT .34,35A large viscosity indicates a large fraction of energy barriers within the time window of the measurement.Table 1summarizes the magnetic properties of these dilute dispersions as a function of concentration.B.Dilute Dispersions Versus Arrays.The nanoparticle arrays obviously have far greater concentrations than the dilute dispersions,ranging from 28to 46vol %for the samples discussed parison of the hysteresis loop for a dispersion with that of an array made from the same particles (Figure 6)shows similar characteristics to the dilute dispersions with different concentrations,only more pronounced.ThearraysFigure 4.(a)Hysteresis loops at 10K for 7.0(0.8nm particles frozen in hexane,for different particle concentrations;(b)Low field region of the hysteresis loops.H c )240Oe for the 0.03vol.%sample,and 460Oe for the 0.003vol.%sample.Figure 5.Magnetic relaxation as a function of time,for dilute hexane dispersions of 7.0(0.8nm particles with different volume fractions,at 10K with H )0.TABLE 1:Comparison of Dilute Dispersions of 7.0(0.8nm Particles as a Function of Concentrationvolume fraction,x V hysteresis loop H c (Oe)remanent hysteresis loop H c (Oe)remanence ratio,M r /M s blocking temperature,T B (K)magnetic viscosity,S 0.00032404300.27400.0100.000034607200.29300.01913412J.Phys.Chem.B,Vol.109,No.28,2005Farrell et al.show much more rapid saturation than the dilute sample,and they have a smaller coercivity (250Oe versus 600Oe).If we compare the rate of magnetic relaxation for arrays made from the same particles in Figure 7,the viscosity increases to 0.0225.Table 2summarizes the magnetic properties of these larger particles in dilute dispersions and in arrays.In dilute ferrofluids there may be two peak temperatures of the imaginary AC susceptibility, ′′,but the higher temperature occurs when the fluid is in a liquid rather than frozen state and is associated with Brownian relaxation,in which the particles themselves rotate.8A dilute,frozen ferrofluid therefore has a single peak associated with magnetic moment rotation within the particle.Figure 8shows the temperature dependence of M ′and M ′′(corresponding to ′and ′′,respectively)for arrays of 8.5nm nanoparticles,for two different excitation frequencies,and shows a peak plus a broad shoulder at higher temperatures.The peak temperature shifted upward from 47(2K at 1Hz to 60(5K at 1000Hz.There was no clear shift in the position of the shoulder.The shape of this curve reflects the distribution of energy barriers at zero field,which suggests that there are many weakly coupled particles plus a smaller proportion of more strongly coupled clusters.The upward shift in peak temperature as the frequency increases reveals that as the time scale of measurement is changed from 1to 10-3s,the proportion of particles that are blocked over that time scale increases.This is the reason that the blocking temperature that would be estimated from Figure 8a is higher than that for the SQUID magnetometer data,where the measurement time is much longer.The fact that the shoulder is insensitive to frequency indicates that its magnetization is stable over periods longer than 1s.C.Arrays with Different Conditions.To test for evidence of significant interactions,the same sample was first measured with the field parallel and then perpendicular to the applied field.If there were no interaction effects,the results would be identical.Because the arrays are essentially a thin film of nanoparticles,interacting particles would be expected to show shape anisotropy and should favor an in-plane magnetization.Figure 7shows remanent hysteresis loops for arrays 7.0(0.8nm particles,the same as those used for Figures 4and 5.When the applied field is perpendicular to the plane of the arrays,there is a slower approach to saturation and a higher coercivity (450Oe versus 330Oe),which is consistent with a preference for in-plane magnetization.At saturation,all of the particle moments are perpendicular to the plane.When the field is reduced,interactions cause the magnetization to rotate back into the plane,and then larger fields in the opposite direction are needed to rotate them out of plane again.Figure 7b shows that the magnetic relaxation is faster when the applied field is perpen-dicular to the sample plane.All remaining magnetic measure-ments were made with the applied field parallel to the plane of the TEM grids.Next,changes in the magnetic behavior as a function of the particle size were assessed by comparing the properties of 6.7(0.7nm and 8.5(1.0nm particles.These particles had the same oleic acid/oleylamine surfactant coating and an average edge-to-edge interparticle spacing of 2.5nm.Figure 6.Hysteresis loops for 9.3(1.4nm particles,as a 0.002vol.%solution in hexane,and in nanoparticle arrays,at 10K.The magnetizations are normalized to the values at 50kOe.The dilute sample has a slower approach to saturation and a higher coercivity than the arrayssample.Figure 7.(a)Remanent hysteresis loops taken parallel and perpen-dicular to the plane of arrays of 7.0(0.8nm Fe particles;(b)Magnetic relaxation as a function of time,parallel and perpendicular to the plane of the arrays.TABLE 2:Comparison of Dilute Dispersions and Arrays of 9.3(1.4nm Particlesvolume fraction,x V hysteresisloop H c (Oe)remanent hysteresis loop H c (Oe)remanence ratio,M r /M s blocking temperature,T B (K)magnetic viscosity,S 0.00026008500.201200.0230.6024000.320.32750.014Feature Article J.Phys.Chem.B,Vol.109,No.28,200513413Figure 9a shows that the zero field-cooled magnetization curve shifts to higher temperatures (T B )35K versus 105K)and broadens considerably.The zero field cooling freezes in a nearly random distribution of particle moments.When the field is applied at low temperature,the measured magnetization is low,unlike in the case for a bulk ferromagnet.As the temperature is increased with the field on,more and more of the particles have sufficient energy to surmount the barrier and align with the applied field,so the magnetization increases.At a certain point,the thermal energy exceeds the magnetic potential energy associated with alignment,so the moments become more disordered again and the magnetization decreases at high temperature.The zero field cooled magnetization curve will show a peak at the blocking temperature.A field cooled magnetization curve is also measured,and some groups have identified the point of deviation between the zero field cooled and field cooled curves as T B ,which typically gives slightly higher values.The field that is applied during measurement can also shift T B ;ideally the smallest field that leads to a good signal-to-noise ratio is used.Above the blocking temperature thermal fluctuations are sufficient to randomize the magnetic moment directions within the measurement time,and they are said to be superparamag-netic.Below T B ,hysteresis is still observed and the particles are said to be blocked.This is not a true phase transition,like that between ferromagnetic and paramagnetic states at the Curie temperature,because it depends on the measurement time.For magnetometry measurements,the time between data points,τm ,is 100seconds,while for Mo ¨ssbauer spectroscopy or neutron scattering,it is closer to a nanosecond time scale.In dilute dispersions,the blocking temperature can be used to estimate the magnetocrystalline anisotropy,K ,found from the relation KV ≈kT ln(τm f 0)≈25kT for the measurement time of the SQUID ing this method,we estimated K )7.7×105ergs/cm 3for the 6.7nm particles,and K )1.1×106ergs/cm 3for the 8.5nm particles.The bulk value for Fe is 5.2×105ergs/cm 3.Our values could be slightly higher due to their thin oxide shells (∼0.5nm).32K could also be overestimated because of the finite size distributions.The zero field cooled magnetization curve contribution from particles of a given size depends on the fraction of particles with that size times the particle volume,so larger particles are weighted more heavily.Simulations as a function of the normalized size distribution 36suggest that K could be overestimated by asmuchFigure 8.(a)Real part of the AC magnetization as a function of temperature,for 8.5nm nanoparticle arrays;(b)Imaginary part of the ACmagnetization.Figure 9.(a)Zero field cooled magnetization for 6.7and 8.5nm particles;(b)Remanent hysteresis loops;(c)Magnetic relaxation as a function of time.13414J.Phys.Chem.B,Vol.109,No.28,2005Farrell et al.as a factor of1.7for the8.5nm particles and1.3for the6.7 nm particles,based on the size distribution alone.When particles interact magnetostatically,the peak temperature of the zero field cooled magnetization may increase,but it cannot strictly be interpreted in terms of a single particle volume and anisotropy. The asymmetric nature of dipolar interactions makes it hard to treat the results in terms of an effective anisotropy,though this may be appropriate for the most dilute systems where there are only pairs of interacting particles.The changes in the zero field cooled magnetization as a function of temperature are best understood as a shift in the energy barrier distribution.Here the larger particles have on average higher energy barriers to switching,and also a broader distribution of barriers that cannot be attributed simply to the size distribution.Remanent hysteresis loops show that the coercivity is slightly smaller for the larger particles,but the most notable different is in the rate of approach to saturation(Figure9b).Arrays with the larger particles also have a slower rate of magnetic relaxation (Figure9c).Over the first few data points collected,the magnetic relaxation drops sharply and then decays logarithmically.Here we have chosen M0and t0at the beginning of the logarithmic portion.In all relaxation measurements,some drop is observed due to the effect of changing the field in the magnetometer. However,this effect is particularly pronounced in the arrays and could be related to the rapid generation of flux closure pathways.If the particle spacing is reduced from2.5to1.2nm by exchanging the oleic acid/oleylamine surfactant for hexanoic acid/hexylamine,the properties of the arrays are also modified. There is a small increase in the blocking temperature with the smaller spacing,and the zero field cooled magnetization curve is slightly broader(Figure10a).With the reduced spacing,there is a much more gradual approach to saturation in the remanent hysteresis loop(Figure10b).Figure10c shows that arrays with a smaller interparticle spacing have a slightly slower magnetic relaxation rate.Table3summarizes the effects of changing the particle size and spacing in self-assembled arrays. DiscussionThe overall picture of magnetic interactions in dilute disper-sions and nanoparticle arrays is at first confusing.In the dilute solutions,stronger interactions cause the sample to saturate at lower fields,but in the arrays higher concentrations lead to higher saturation fields.Going from a dilute to a more concentrated dispersion decreased the viscosity;however, concentrating the particles further by forming an array increases S again.Finally,changing the dipole energy per pair of particles in the arrays by roughly a factor of2leads to different results, depending on whether this is accomplished by increasing the particle size or by decreasing the interparticle spacing.A variety of models have been used to simulate the behavior of monodomain particles based on magnetostatic interactions that modify the distribution of energy barriers to switching.5-19 There are two main theoretical approaches to understanding magnetic nanoparticle interactions.The first builds on the statistical nature of the interactions as a function of the separation between particle moments,but does not explicitly model the positions and orientations.Some groups have used mean field methods15,17or an empirical Vogel-Fulcher law.8 The interacting particles have also been treated as a cluster glass. Here the particles within a cluster switch collectively and the stability of a cluster is determined by its size,but interactions between clusters are ignored.10-12The second group of models explicitly monitors the moment directions within an ensemble of particles and mimimize the overall energy of the system to find the magnetic ground state.6,7,19-21This energy includes the sum of magnetostatic,anisotropy,and Zeemann terms.In addition to this Monte Carlo approach,Landau-Lifshitz dynami-cal simulations18have also been used to find the relaxed state configuration.As the particle assembly becomes more concen-trated,the approach of these granular models becomes more important.Due to the finite volume of the particles and the preference for self-assembling into close-packed structures,the experimental distributions of particle separations may not agree with simple statistical models.In addition,there is a need for more realistic time-and temperature-dependent models in order to develop a more intuitive understanding of the complex collectivebehavior.Figure10.(a)Zero field cooled magnetization for6.7nm particles with average edge-to-edge inteparticle spacings of2.5and1.2nm;(b) Remanent hysteresis loops;(c)Magnetic relaxation as a function of time.Feature Article J.Phys.Chem.B,Vol.109,No.28,200513415。