数学--必修4第一章复习导航
- 格式:doc
- 大小:190.50 KB
- 文档页数:2
数学必修四第一章知识点总结第一章矩阵与行列式1.矩阵的定义:矩阵是由m∙n个数按照m行n列排列起来的一个数表。
2.矩阵的运算:(1)矩阵的加法:对应位置上的元素进行相加。
(2)矩阵的乘法:满足矩阵乘法规则的两个矩阵相乘,结果矩阵的元素等于第一个矩阵的相应行和第二个矩阵的相应列元素的乘积之和。
(3)数字与矩阵的乘法:数乘矩阵中的每一个元素。
3.矩阵的性质:(1)矩阵的加法满足交换律和结合律。
(2)矩阵的数乘满足结合律和分配律。
4.单位矩阵:n阶单位矩阵是一个n∙n的矩阵,主对角线上元素为1,其他元素为0。
5.方阵和对角阵:(1)方阵是行数和列数相等的矩阵。
(2)主对角线外的元素全为零的方阵是对角阵。
6.转置矩阵:矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
7.矩阵的乘积:(1)若矩阵A的列数等于矩阵B的行数,则可以计算矩阵A与矩阵B 的乘积,得到一个新的矩阵C,其中矩阵C的行数等于矩阵A的行数,列数等于矩阵B的列数。
(2)矩阵乘积的运算性质:结合律,分配律,但一般不满足交换律。
8.克拉默法则:若n元线性方程组的系数矩阵的行列式不等于0,则n元线性方程组有唯一解,且解可以用各个未知量的系数作为分子和系数矩阵的行列式作为通分式的分母来表示。
9.行列式的定义:(1)一阶行列式:行列式的元素就是该元素本身。
(2)二阶行列式:行列式元素按主对角线方向相乘,再减去次对角线方向的元素相乘。
(3)三阶行列式:每个元素与与其所在行行标和列标分别相同、不相同的元素构成的二阶行列式之差相乘,最后再按正负号相加。
(4)多阶行列式:利用拉普拉斯定理进行计算。
10.行列式的性质:(1)行列式的转置等于行列式本身。
(2)若行列式有两行或两列完全相同,则行列式的值等于零。
(3)互换行列式的两行(两列),行列式值不变。
(4)行列式的其中一行(列)的元素都乘以一个数k,等于用数k乘以此行列式的值。
(5)行列式中有两行(两列)元素对应成比例,则行列式的值等于零。
高中数学必修四第一章知识点梳理一、角的概念的推广•任意角的概念角可以看成平面内一条射线绕着端点从一个位置转到另一个位置所成的图形。
•正角、负角、零角按逆时针方向旋转成的角叫做正角,按顺时针方向旋转所成的角叫做负角,一条射线没有作任何旋转所成的叫做零角。
可见,正确理解正角、负角和零角的概、关键是看射线旋转的方向是逆时针、顺时针还是没有转动。
•象限角、轴线角当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,那么角的终边在第几象限(终边的端点除外),就说这个角是第几象限角。
当角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合时,终边落在坐标轴上的角叫做轴线角。
•终边相同角所有与角a终边相同的角,连同角a在内,可构成集合S={ 3 | 3 =a +k?360° ,k € Z},即任一与角a终边相同的角,都可以表示成角a与整数个周角的和。
二、弧度制•角度定义制1规定周角的—为一度的角,记做1 °,360这种用度作为单位来度量角的单位制叫做角度制,角度制为60进制。
•弧度制定义1 、长度等于半径的弧度所对的圆心角叫做1弧度的角。
用弧度作为单位来度量角的单位制叫做弧度制。
1弧度记做1rad。
2、根据圆心角定理,对于任意一个圆心角a,它所对的弧长与半径的比与半径的大小无关,而是一个仅与角a有关的常数,故可以取为度量标准。
•弧度数一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.如果半径为r的圆的圆心角a所对的弧的长为I,那么,角a的弧度数的绝对值是|a | -。
ra的正负由角a的终边的旋转方向决定,逆时针方向为正,顺时针方向为负。
三、任意角的三角函数•任意角的三角函数的定义设a是一个任意大小的角,a的终边上任意点P的坐标是(x,y),它与原点的距离r(r J X2~y20),那么1、比值-叫做a的正弦,记做sin ,即sin 上。
r r2、比值-叫做a 的余弦,记做COS ,即COS r3、比值—叫做a 的正切,记做tan ,即tanxx另外,我们把比值 一叫做a 的余切,记做COt ,即COtyrrr;把比值一叫做a 的余割,记做 CSC ,即CSC x yy对于一个确定的角 a ,上述的比值是唯一确定的, 它们都可以看成从一个角的集合到一个 比值的集合的映射,是以角为自变量,以比值为函数值的函数,我们把它们统称为三角函数。
P xyAOM T 高中数学必修4知识点总结 第一章 三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lr α=.6、弧度制与角度制的换算公式:2360π=,1180π=,180157.3π⎛⎫=≈ ⎪⎝⎭.7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()22r r x y =+>,则sin y r α=,cos x r α=,()tan 0y x x α=≠.9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT . 11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭. 12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭.口诀:正弦与余弦互换,符号看象限. 13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ.函数()sin y x ωϕ=A ++B,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15、正弦函数、余弦函数和正切函数的图象与性质: sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2ππ奇偶性奇函数 偶函数 奇函数函数 性 质单调性在2,222k kππππ⎡⎤-+⎢⎥⎣⎦()k∈Z上是增函数;在32,222k kππππ⎡⎤++⎢⎥⎣⎦()k∈Z上是减函数.在[]()2,2k k kπππ-∈Z上是增函数;在[]2,2k kπππ+()k∈Z上是减函数.在,22k kππππ⎛⎫-+⎪⎝⎭()k∈Z上是增函数.对称性对称中心()(),0k kπ∈Z对称轴()2x k kππ=+∈Z对称中心(),02k kππ⎛⎫+∈Z⎪⎝⎭对称轴()x k kπ=∈Z对称中心(),02kkπ⎛⎫∈Z⎪⎝⎭无对称轴第二章 平面向量16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b-≤+≤+ .⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c++=++ ;③00a a a +=+= .⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--.设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y A B=-- .19、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ.①a aλλ=;②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a的方向相反;当0λ=时,0a λ= .⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③()a b a bλλλ+=+.⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.20、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ= .设()11,a x y =,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、()0b b ≠ba CBAa b C C -=A -AB =B共线.21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫ ⎪++⎝⎭.(当时,就为中点公式。
数学必修四第一章知识点总结数学,作为一门科学,可以追溯到古代文明。
它是一门逻辑严谨且普遍适用的学科,不仅在科学研究中扮演重要角色,也在日常生活中发挥着巨大作用。
在高中阶段,学生们接触到了更加深入和抽象的数学概念和理论。
而数学必修四中的第一章,则是引导学生进入高中数学学习的重要一步。
本文将对数学必修四第一章的知识点进行总结和探讨,帮助读者更好理解和掌握这些内容。
一、集合与映射第一章的重点内容是集合与映射的概念与运算。
在集合的介绍中,我们学习到集合的概念、集合的表示方法、集合运算以及集合的性质。
而在映射的探讨中,我们则了解到映射的定义与表示、映射的性质与判定、一对一映射与满射的概念、映射的合成和反函数等。
集合是数学中一种基础的概念,它可以看作具有某种共同特征的元素的整体。
集合可以用罗列法、描述法来表示,还可以通过集合间的交、并、差等运算进行运算。
在运算的过程中,我们需要注意集合运算的运算律和性质,以确保我们得出的结果正确。
映射是集合之间的一种关系,它将一个集合中的元素对应到另一个集合中。
映射的特点是对于每个元素,它都有唯一的对应元素。
我们可以通过箭头图和表示法来表示映射。
映射的性质有可逆性、一一性和满性,我们可以通过这些性质来判定一个映射的特殊类型。
二、不等式第一章的另一重要内容是不等式的运算与求解。
不等式是数学中一种常见的关系式,它描述了两个数量的大小关系。
我们学习到了一元线性不等式、一元二次不等式以及其它常见不等式的求解方法。
在解不等式的过程中,我们需要注意不等式的运算规则和性质。
对于一元线性不等式,我们可以利用增减法、取反法和绝对值法等方法来求解。
而对于一元二次不等式,我们需要将其化为一元二次方程的形式,再通过求解方程来得到不等式的解集。
此外,我们还学习到了不等式的集合表示法和图像表示法,这些表示方法可以帮助我们更好地理解和分析不等式的解集。
同时,我们还需要注意一些常见的不等式性质和技巧,如三角不等式和均值不等式等,这些性质可以帮助我们在求解复杂不等式时提供指引和思路。
数学必修四第一章知识点总结第一章初等数论与数论方法一、整数研究了整数及其运算性质,引导学生辨识和解决在初中学习过程中遇到的有关整数的复杂问题。
1. 整数的概念整数是正整数、负整数和零的统称。
整数的绝对值是指它离原点的距离,是非负的整数。
2. 整数的四则运算(1)加法运算:正数相加、负数相加应用法则,可以化为正数相加或正负数相减的运算问题来解决。
(2)减法运算:整数减法法则就是整数加法法则的推广。
(3)乘法运算:两个数相乘的积的符号与它们的积的因数的符号有关。
(4)除法运算:零不能作为除数,有理数的除法也要遵循约分原则。
3. 整数的应用整数是在数轴上有序排列的,整数运算也是数轴上大小关系的推算。
在温度、债务、货币、海拔高度、海拔深度等相关实际生活中,需要使用整数。
二、整数的乘方及开方1. 乘方概念以数 a 为底 n 为指数的乘方运算通常记作aⁿ (a ≠ 0, n > 0), 它表示连续相同乘数 a 用 n-1个乘号与自己相乘的乘积。
2. 乘方的运算性质(1)乘方的运算性质: 同底数乘方相乘,指数相加;(2)乘方运算的简便法则:同一底数不同指数相乘可以利用指数运算法则;(3)指数运算法则:①乘方的运算法则:同底数的几个数的乘方, 底数相同, 指数相加;②除法可以转换为乘方;(4)零的乘方等于 1: 0 的任何正整数次幂都等于 1。
3. 开方的概念一个数的平方根就是对应的平方的运算过程,一个数的 n 次方根是对应的 n 次方的运算过程。
4. 定义(1)二次方程的解法:①因式分解法;②公式法;③配方法;(2)含一个未知数的方程;(3)一元二次方程:我国古代代数的发展,以求一元二次方程的解为目标;(4)一次方程:秦九韶二次方程的解法是把一次方程的求根问题化成二次方程的求根问题。
5. 一元二次方程(1)一元二次方程的定义:① 它是一元的;② 它的最高次项是二次项③ 它与一元二次函数有相联系的地方;一元二次方程及根的关系:一元二次方程的单解和两解,它对应的一元二次函数的图象几何方程的根与几何意义的关系;(2)整数系数的一元二次方程;(3)一元二次方程及根的关系;(4)一元二次方程数学题。
高中数学必修四第一章知识点必看各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,运用,数学作为最烧脑的科目之一,也是一样的。
下面是小编给大家整理的一些高中数学必修四第一章知识点的学习资料,希望对大家有所帮助。
高一数学必修四知识点总结第一章三角函数正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.第二象限角的集合为k36090k360180,k第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k第一象限角的集合为k360k36090,k3、与角终边相同的角的集合为k360,k4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是l.r1806、弧度制与角度制的换算公式:2360,1,157.3.1807、若扇形的圆心角为为弧度制,半径为r,弧长为l,周长为C,面积为S,则lr,C2rl,111Slrr2.228、设是一个任意大小的角,它与原点的距离是rr的终边上任意一点的坐标是x,y,则sin0,yxy,cos,tanx0.rrx9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin,cos,tan.222211、角三角函数的基本关系:1sin2cos21sin1cos,cos1sin;2sintancossinsintancos,cos.tan12、函数的诱导公式:1sin2ksin,cos2kcos,tan2ktank.2sinsin,coscos,tantan.3sinsin,coscos,tantan.4sinsin,coscos,tantan.口诀:函数名称不变,符号看象限.5sincos,cossin.6sincos,cossin.2222口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移个单位长度,得到函数ysinx 的图象;再将函数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数ysinx的图象.②数ysinx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数ysinx的图象;再将函数ysinx的图象上所有点向左(右)平移个单位长度,得到函数ysinx的图象;再将函数ysinx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横2坐标不变),得到函数ysinx的图象.14、函数ysinx0,0的性质:①振幅:;②周期:2;③频率:f1;④相位:x;⑤初相:.2函数ysinx,当x-x1时,取得最小值为ymin;当x-x2时,取得值为ymax,则11x2x1x1x2ymaxyminymaxymin22,,2.yASinx,A0,0,T215周期问题2yACosx,A0,0,TyASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T22yACosxb,A0,0,b0,TTyAcotx,A0,0,yAtanx,A0,0,TyAcotx,A0,0,TyAtanx,A0,0,T高一数学必修四线性回归分析知识点线性回归方程设x与y是具有相关关系的两个变量,且相应于n组观测值的n 个点(xi,yi)(i=1,......,n)大致分布在一条直线的附近,则回归直线的方程为。
1第一章 三角函数知识点1、角的定义:⎧⎪⎪⎨⎪⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角。
第一象限角的集合为22,2k k k παπαπ⎧⎫<<+∈Z ⎨⎬⎩⎭第二象限角的集合为22,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭第三象限角的集合为322,2k k k παππαπ⎧⎫+<<+∈Z ⎨⎬⎩⎭第四象限角的集合为3222,2k k k παπαππ⎧⎫+<<+∈Z ⎨⎬⎩⎭终边在x 轴上的角的集合为{},k k ααπ=∈Z 终边在y 轴上的角的集合为,2k k πααπ⎧⎫=+∈Z ⎨⎬⎩⎭终边在坐标轴上的角的集合为,2k k παα⎧⎫=∈Z ⎨⎬⎩⎭3、与角α终边相同的角的集合为{}2,k k ββπα=+∈Z4、已知α是第几象限角,确定()*n nα∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。
5、长度等于半径长的弧所对的圆心角叫做1弧度。
6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=。
7、弧度制与角度制的换算公式:180********.3180πππ⎛⎫===≈ ⎪⎝⎭,,8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==。
9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r =>,则sin yrα=,cos x r α=,()tan 0y x x α=≠。
10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正。
精品文档第一、任意角的三角函数一:角的概念:角的定义,角的三要素,角的分类〔正角、负角、零角和象限角〕,正确理解角,与角终边相同的角的集合|2k,kz ,弧度制,弧度与角度的换算, 弧长lr 、扇形面积s1lr1 r 2,22二:任意角的三角函数定义:任意角 的终边上任意取一点p 的坐标是〔x ,y 〕,它与原点的距离是rx 2 y 2(r>0),那么角的正弦sinay 、余弦cosa x、正切tana y,它们都是以角rrx为自变量,以比值为函数值的函数 。
三角函数值在各象限的符号:三:同角三角函数的关系式与诱导公式:1.平方关系:sin2cos21sin2.商数关系:cos3.诱导公式——口诀:奇变偶不变,符号看象限 。
正弦 余弦 正切第二、三角函数图象和性质 根底知识:1、三角函数图像和性质y=sinxy37-5 - 1-7-3 22o252-4 -2-3--12342 2 22y=cosxy-537-3--13 2222o-4-7 -2 -3 -12542222tanx x.yy=tanx3--2o 3-222精品文档x解析式y=sinx y=cosx y tanx定义域y y当x,当x,值域y取最小值-1和最值当xy取最大值1周期性T2奇偶性奇函数在2k2,2k2单调性上是增函数在2k2,2k 3 2上是减函数yy取最小值-1,当x,无最值y取最大值1T2T偶函数奇函数kZ在2k,2k kZ上是增,k kZ在k函数22kZ在2k,2k上为增函数kZ上是减函数对称中心(k,0)k Z对称中心(k2,0)k Z对称中心(k,0)k Z对称性k 对称轴方程x k,k Z或者对称轴方程x2,对称中心(k2,0)kZ kZ2、熟练求函数y Asin(x)的值域,最值,周期,单调区间,对称轴、对称中心等,会用五点法作yAsin(x)简图:五点分别为:、、、、。
3、图象的根本变换:相位变换:y sinx ysin(x)周期变换:y sin(x)y sin(x)振幅变换:y sin(x)y Asin(x)4、求函数yAsin(x)的解析式:即求A由最值确定,ω有周期确定,φ有特殊点确定。
必修4第一章复习导航
本章聚焦
1.准确理解三角函数定义是学好本章的关键:
(1).三角函数是一种特殊函数,自变量是角α,函数分别是三个比
,,y x y r r x . (2)sin α, cos α,tan α它们都是三角函数记号,分别都是一个整体,实质就是“()f x ”.
2.熟练掌握三角公式是准确解题的先决条件
(1) 同角三角函数关系式的推导有两种方法一是三角函数定义,二是利用单位圆中三角函数线,要切实领会.
(2)由22sin
+cos =1αα,sin tan cos ααα=可知tan ,α cos α,sin α三个量中只需知道一个即可求另外两个.
(3)诱导公式推导的依据是三角函数定义,推导的工具方法是在单位圆中角α、2k π
α+、α-、πα+、πα-的终边与单位圆交点坐标的特殊性,及角α、2k πα+、α-、πα+、πα-等角终边位置
关系的特殊性.
(4)诱导公式的记忆可用口诀“函数名不变,符号看象限”记忆,其中“函数名不变”是指等式两边的三角函数同名,“符号”是指等号右边是正号还是负号,“看象限”是指把α看成锐角时原三角函数值的符号.
(5)同角三角函数的关系式的作用是:已知某任意角的一种三角函数值,就能求出另一种三角函数值.诱导公式的作用是:把求任意角的三角函数值转化为求锐角三角函数值 3.单位圆中三角函数线是处理三角问题的重要手段:
三角函数线的特征是:正弦线“站在x 轴上(起点在x 轴上)”、余弦线“躺在x 轴上(起点是原点)”、正
切线“站在点
(1,0)A 处(起点是A )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,
‘正弦’⇔‘纵坐标’、‘余弦’⇔‘横坐标’、‘正切’⇔‘纵坐标除以横坐标之商’”; 4.三角函数的图象性质是高考的热点内容
1.函数sin()y x ωϕ=+,x ∈R 及函数
cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω
=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 2.函数sin()y A x ωϕ=+表达式的确定:A 由最值确定;ω由周期确定;ϕ由图象上的特殊点确定,函数sin()(0,0)y A x A ωϕω=+>>中,A 影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;ϕ影响函数的初相.当ϕ=k π+
2π时是偶函数,当ϕ=k π时是奇函数,当ϕ≠
2k π时是非奇非偶函数(k ∈Z) 4.对于函数sin()(0,0)y A x A ωϕω=+>>的图象,关于点(
ωϕ-πk ,0)中心对称,关于直线x=2k ππϕ
ω
+
- (k ∈Z)轴对称.相邻的两个对称中心或两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一..
5.函数sin()y A x ωϕ=+图象的画法:①“五点法”――设X x ωϕ=+,令X =0,3,,,222
ππππ求出相应的x 值,计算得出五点的坐标,描点后得出图象;这是作函数简图常用方法
方法平台
1.本章三角函数的变形(计算)的基本思路是:一角二名三结构.即首先观察角与角之间的关系,注意角的一些常用变式,第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.基本的技巧有:
(1)巧变角(2)三角函数名互化(切割化弦),(3)公式变形使用(4)式子结构转化(5)常值变换主要指“1”的变换(6)正余弦“三兄妹:sin cos sin cos x x x x ±、”的内存联系――“知一求二”,
2.图象变换法①(相位变换)先把
sin y x =的图象上所有的点向左(当0ϕ>时),或向右(当0ϕ<时)平行移动ϕ个单位,得函数
sin()y x ϕ=+的图象;②(周期变换)再把函数sin()y x ϕ=+的图象上所有点的横坐标缩短(当ω
>1时),或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变),得函数sin()y x ωϕ=+的图象;③(振幅变换)再把函数sin()y x ωϕ=+的图象上所有点的纵坐标伸长(当A >1时)或缩短(当0<A <1时)到原来的A 倍(横坐标不变),得函数sin()y A x ωϕ=+的图象;
3.研究函数
sin()y A x ωϕ=+性质的方法:类比于研究sin y x =的性质,只需将
sin()y A x ωϕ=+中的x ωϕ+看成sin y x =中的x ,但在求sin()y A x ωϕ=+的单调区间时,要特别注意A 和ω的符号,通过诱导公式先将ω化正. 4.求角的方法:先确定角的范围,再求出关于此角的某一个三角函数(要注意选择,其标准有二:一是此三角函数在角的范围内具有单调性;二是根据条件易求出此三角函数值)
5.绝对值或平方对三角函数周期性的影响的一般说来说某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定.。